51
|
Wichmann T, Bergman H, DeLong MR. Basal ganglia, movement disorders and deep brain stimulation: advances made through non-human primate research. J Neural Transm (Vienna) 2017; 125:419-430. [PMID: 28601961 DOI: 10.1007/s00702-017-1736-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/17/2017] [Indexed: 11/30/2022]
Abstract
Studies in non-human primates (NHPs) have led to major advances in our understanding of the function of the basal ganglia and of the pathophysiologic mechanisms of hypokinetic movement disorders such as Parkinson's disease and hyperkinetic disorders such as chorea and dystonia. Since the brains of NHPs are anatomically very close to those of humans, disease states and the effects of medical and surgical approaches, such as deep brain stimulation (DBS), can be more faithfully modeled in NHPs than in other species. According to the current model of the basal ganglia circuitry, which was strongly influenced by studies in NHPs, the basal ganglia are viewed as components of segregated networks that emanate from specific cortical areas, traverse the basal ganglia, and ventral thalamus, and return to the frontal cortex. Based on the presumed functional domains of the different cortical areas involved, these networks are designated as 'motor', 'oculomotor', 'associative' and 'limbic' circuits. The functions of these networks are strongly modulated by the release of dopamine in the striatum. Striatal dopamine release alters the activity of striatal projection neurons which, in turn, influences the (inhibitory) basal ganglia output. In parkinsonism, the loss of striatal dopamine results in the emergence of oscillatory burst patterns of firing of basal ganglia output neurons, increased synchrony of the discharge of neighboring basal ganglia neurons, and an overall increase in basal ganglia output. The relevance of these findings is supported by the demonstration, in NHP models of parkinsonism, of the antiparkinsonian effects of inactivation of the motor circuit at the level of the subthalamic nucleus, one of the major components of the basal ganglia. This finding also contributed strongly to the revival of the use of surgical interventions to treat patients with Parkinson's disease. While ablative procedures were first used for this purpose, they have now been largely replaced by DBS of the subthalamic nucleus or internal pallidal segment. These procedures are not only effective in the treatment of parkinsonism, but also in the treatment of hyperkinetic conditions (such as chorea or dystonia) which result from pathophysiologic changes different from those underlying Parkinson's disease. Thus, these interventions probably do not counteract specific aspects of the pathophysiology of movement disorders, but non-specifically remove the influence of the different types of disruptive basal ganglia output from the relatively intact portions of the motor circuitry downstream from the basal ganglia. Knowledge gained from studies in NHPs remains critical for our understanding of the pathophysiology of movement disorders, of the effects of DBS on brain network activity, and the development of better treatments for patients with movement disorders and other neurologic or psychiatric conditions.
Collapse
Affiliation(s)
- Thomas Wichmann
- Department of Neurology, Emory University, Atlanta, GA, USA. .,Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA.
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), Institute of Medical Research Israel-Canada (IMRIC), Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research (ELSC), The Hebrew University, Jerusalem, Israel.,Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | | |
Collapse
|
52
|
Kumbhare D, Holloway KL, Baron MS. Parkinsonism and dystonia are differentially induced by modulation of different territories in the basal ganglia. Neuroscience 2017; 353:42-57. [DOI: 10.1016/j.neuroscience.2017.03.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
|
53
|
Baizabal-Carvallo JF, Alonso-Juarez M. Low-frequency deep brain stimulation for movement disorders. Parkinsonism Relat Disord 2016; 31:14-22. [DOI: 10.1016/j.parkreldis.2016.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 12/24/2022]
|
54
|
Kammermeier S, Pittard D, Hamada I, Wichmann T. Effects of high-frequency stimulation of the internal pallidal segment on neuronal activity in the thalamus in parkinsonian monkeys. J Neurophysiol 2016; 116:2869-2881. [PMID: 27683881 DOI: 10.1152/jn.00104.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 09/22/2016] [Indexed: 01/28/2023] Open
Abstract
Deep brain stimulation of the internal globus pallidus (GPi) is a major treatment for advanced Parkinson's disease. The effects of this intervention on electrical activity patterns in targets of GPi output, specifically in the thalamus, are poorly understood. The experiments described here examined these effects using electrophysiological recordings in two Rhesus monkeys rendered moderately parkinsonian through treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), after sampling control data in the same animals. Analysis of spontaneous spiking activity of neurons in the basal ganglia-receiving areas of the ventral thalamus showed that MPTP-induced parkinsonism is associated with a reduction of firing rates of segments of the data that contained neither bursts nor decelerations, and with increased burst firing. Spectral analyses revealed an increase of power in the 3- to 13-Hz band and a reduction in the γ-range in the spiking activity of these neurons. Electrical stimulation of the ventrolateral motor territory of GPi with macroelectrodes, mimicking deep brain stimulation in parkinsonian patients (bipolar electrodes, 0.5 mm intercontact distance, biphasic stimuli, 120 Hz, 100 μs/phase, 200 μA), had antiparkinsonian effects. The stimulation markedly reduced oscillations in thalamic firing in the 13- to 30-Hz range and uncoupled the spiking activity of recorded neurons from simultaneously recorded local field potential (LFP) activity. These results confirm that oscillatory and nonoscillatory characteristics of spontaneous activity in the basal ganglia receiving ventral thalamus are altered in MPTP-induced parkinsonism. Electrical stimulation of GPi did not entrain thalamic activity but changed oscillatory activity in the ventral thalamus and altered the relationship between spikes and simultaneously recorded LFPs.
Collapse
Affiliation(s)
- Stefan Kammermeier
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia.,Udall Center of Excellence in Parkinson's Disease Research, Emory University, Atlanta, Georgia
| | - Damien Pittard
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia.,Udall Center of Excellence in Parkinson's Disease Research, Emory University, Atlanta, Georgia
| | - Ikuma Hamada
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia.,Udall Center of Excellence in Parkinson's Disease Research, Emory University, Atlanta, Georgia
| | - Thomas Wichmann
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; .,School of Medicine, Department of Neurology, Emory University, Atlanta, Georgia; and.,Udall Center of Excellence in Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
55
|
Wichmann T, DeLong MR. Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality? Neurotherapeutics 2016; 13:264-83. [PMID: 26956115 PMCID: PMC4824026 DOI: 10.1007/s13311-016-0426-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks.
Collapse
Affiliation(s)
- Thomas Wichmann
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
| | - Mahlon R DeLong
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
56
|
Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol 2015; 115:19-38. [PMID: 26510756 DOI: 10.1152/jn.00281.2015] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/22/2015] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) is widely used for the treatment of movement disorders including Parkinson's disease, essential tremor, and dystonia and, to a lesser extent, certain treatment-resistant neuropsychiatric disorders including obsessive-compulsive disorder. Rather than a single unifying mechanism, DBS likely acts via several, nonexclusive mechanisms including local and network-wide electrical and neurochemical effects of stimulation, modulation of oscillatory activity, synaptic plasticity, and, potentially, neuroprotection and neurogenesis. These different mechanisms vary in importance depending on the condition being treated and the target being stimulated. Here we review each of these in turn and illustrate how an understanding of these mechanisms is inspiring next-generation approaches to DBS.
Collapse
Affiliation(s)
- Todd M Herrington
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Jennifer J Cheng
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Emad N Eskandar
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
57
|
McCairn KW, Iriki A, Isoda M. Common therapeutic mechanisms of pallidal deep brain stimulation for hypo- and hyperkinetic movement disorders. J Neurophysiol 2015; 114:2090-104. [PMID: 26180116 PMCID: PMC4595610 DOI: 10.1152/jn.00223.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022] Open
Abstract
Abnormalities in cortico-basal ganglia (CBG) networks can cause a variety of movement disorders ranging from hypokinetic disorders, such as Parkinson's disease (PD), to hyperkinetic conditions, such as Tourette syndrome (TS). Each condition is characterized by distinct patterns of abnormal neural discharge (dysrhythmia) at both the local single-neuron level and the global network level. Despite divergent etiologies, behavioral phenotypes, and neurophysiological profiles, high-frequency deep brain stimulation (HF-DBS) in the basal ganglia has been shown to be effective for both hypo- and hyperkinetic disorders. The aim of this review is to compare and contrast the electrophysiological hallmarks of PD and TS phenotypes in nonhuman primates and discuss why the same treatment (HF-DBS targeted to the globus pallidus internus, GPi-DBS) is capable of ameliorating both symptom profiles. Recent studies have shown that therapeutic GPi-DBS entrains the spiking of neurons located in the vicinity of the stimulating electrode, resulting in strong stimulus-locked modulations in firing probability with minimal changes in the population-scale firing rate. This stimulus effect normalizes/suppresses the pathological firing patterns and dysrhythmia that underlie specific phenotypes in both the PD and TS models. We propose that the elimination of pathological states via stimulus-driven entrainment and suppression, while maintaining thalamocortical network excitability within a normal physiological range, provides a common therapeutic mechanism through which HF-DBS permits information transfer for purposive motor behavior through the CBG while ameliorating conditions with widely different symptom profiles.
Collapse
Affiliation(s)
- Kevin W McCairn
- Systems Neuroscience and Movement Disorders Laboratory, Korea Brain Research Institute, Daegu, Republic of Korea;
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan; and
| | - Masaki Isoda
- Department of Physiology, Kansai Medical University School of Medicine, Hirakata, Osaka, Japan
| |
Collapse
|
58
|
Udupa K, Chen R. The mechanisms of action of deep brain stimulation and ideas for the future development. Prog Neurobiol 2015; 133:27-49. [DOI: 10.1016/j.pneurobio.2015.08.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 08/04/2015] [Accepted: 08/15/2015] [Indexed: 12/19/2022]
|
59
|
Luo F, Kiss ZHT. Cholinergic mechanisms of high-frequency stimulation in entopeduncular nucleus. J Neurophysiol 2015; 115:60-7. [PMID: 26334006 DOI: 10.1152/jn.00269.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/02/2015] [Indexed: 11/22/2022] Open
Abstract
Chronic, high-frequency (>100 Hz) electrical stimulation, known as deep brain stimulation (DBS), of the internal segment of the globus pallidus (GPi) is a highly effective therapy for Parkinson's disease (PD) and dystonia. Despite some understanding of how it works acutely in PD models, there remain questions about its mechanisms of action. Several hypotheses have been proposed, such as depolarization blockade, activation of inhibitory synapses, depletion of neurotransmitters, and/or disruption/alteration of network oscillations. In this study we investigated the cellular mechanisms of high-frequency stimulation (HFS) in entopeduncular nucleus (EP; rat equivalent of GPi) neurons using whole cell patch-clamp recordings. We found that HFS applied inside the EP nucleus induced a prolonged afterdepolarization that was dependent on stimulation frequency, pulse duration, and current amplitude. The high frequencies (>100 Hz) and pulse widths (>0.15 ms) used clinically for dystonia DBS could reliably induce these afterdepolarizations, which persisted under blockade of ionotropic glutamate (kynurenic acid, 2 mM), GABAA (picrotoxin, 50 μM), GABAB (CGP 55845, 1 μM), and acetylcholine nicotinic receptors (DHβE, 2 μM). However, this effect was blocked by atropine (2 μM; nonselective muscarinic antagonist) or tetrodotoxin (0.5 μM). Finally, the muscarinic-dependent afterdepolarizations were sensitive to Ca(2+)-sensitive nonspecific cationic (CAN) channel blockade. Hence, these data suggest that muscarinic receptor activation during HFS can lead to feedforward excitation through the opening of CAN channels. This study for the first time describes a cholinergic mechanism of HFS in EP neurons and provides new insight into the underlying mechanisms of DBS.
Collapse
Affiliation(s)
- Feng Luo
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Zelma H T Kiss
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
60
|
Stone E, Coote JH, Lovick TA. Effect of electrical vs. chemical deep brain stimulation at midbrain sites on micturition in anaesthetized rats. Acta Physiol (Oxf) 2015; 214:135-45. [PMID: 25778550 DOI: 10.1111/apha.12491] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/16/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022]
Abstract
AIM To understand how deep brain stimulation of the midbrain influences control of the urinary bladder. METHODS In urethane-anaesthetized male rats, saline was infused continuously into the bladder to evoke cycles of filling and voiding. The effect of electrical (0.1-2.0 ms pulses, 5-180 Hz, 0.5-2.5 V) compared to chemical stimulation (microinjection of D,L-homocysteic acid, 50 nL 0.1 M solution) at the same midbrain sites was tested. RESULTS Electrical stimulation of the periaqueductal grey matter and surrounding midbrain disrupted normal coordinated voiding activity in detrusor and sphincters muscles and suppressed urine output. The effect occurred within seconds was reversible and not secondary to cardiorespiratory changes. Bladder compliance remained unchanged. Chemical stimulation over the same area using microinjection of D,L-homocysteic acid (DLH) to preferentially activate somatodendritic receptors decreased the frequency of micturition but did not disrupt the coordinated pattern of voiding. In contrast, chemical stimulation within the caudal ventrolateral periaqueductal grey, in the area where critical synapses in the micturition reflex pathway are located, increased the frequency of micturition. CONCLUSION Electrical deep brain stimulation within the midbrain can inhibit reflex micturition. We suggest that the applied stimulus entrained activity in the neural circuitry locally, thereby imposing an unphysiological pattern of activity. In a way similar to the use of electrical signals to 'jam' radio transmission, this may prevent a synchronized pattern of efferent activity being transmitted to the spinal outflows to orchestrate a coordinated voiding response. Further experiments to record neuronal firing in the midbrain during the deep brain stimulation will be necessary to test this hypothesis.
Collapse
Affiliation(s)
- E. Stone
- School of Clinical and Experimental Medicine; University of Birmingham; Birmingham UK
| | - J. H. Coote
- School of Clinical and Experimental Medicine; University of Birmingham; Birmingham UK
| | - T. A. Lovick
- School of Physiology and Pharmacology; University of Bristol; Bristol UK
| |
Collapse
|
61
|
Abstract
Deep brain stimulation (DBS), applying high-frequency electrical stimulation to deep brain structures, has now provided an effective therapeutic option for treatment of various neurological and psychiatric disorders. DBS targeting the internal segment of the globus pallidus, subthalamic nucleus, and thalamus is used to treat symptoms of movement disorders, such as Parkinson’s disease, dystonia, and tremor. However, the mechanism underlying the beneficial effects of DBS remains poorly understood and is still under debate: Does DBS inhibit or excite local neuronal elements? In this short review, we would like to introduce our recent work on the physiological mechanism of DBS and propose an alternative explanation: DBS dissociates input and output signals, resulting in the disruption of abnormal information flow through the stimulation site.
Collapse
Affiliation(s)
- Satomi Chiken
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Japan
| | - Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Japan
| |
Collapse
|
62
|
Zimnik AJ, Nora GJ, Desmurget M, Turner RS. Movement-related discharge in the macaque globus pallidus during high-frequency stimulation of the subthalamic nucleus. J Neurosci 2015; 35:3978-89. [PMID: 25740526 PMCID: PMC4348192 DOI: 10.1523/jneurosci.4899-14.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 12/21/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) has largely replaced ablative therapies for Parkinson's disease. Because of the similar efficacies of the two treatments, it has been proposed that DBS acts by creating an "informational lesion," whereby pathologic neuronal firing patterns are replaced by low-entropy, stimulus-entrained firing patterns. The informational lesion hypothesis, in its current form, states that DBS blocks the transmission of all information from the basal ganglia, including both pathologic firing patterns and normal, task-related modulations in activity. We tested this prediction in two healthy rhesus macaques by recording single-unit spiking activity from the globus pallidus (232 neurons) while the animals completed choice reaction time reaching movements with and without STN-DBS. Despite strong effects of DBS on the activity of most pallidal cells, reach-related modulations in firing rate were equally prevalent in the DBS-on and DBS-off states. This remained true even when the analysis was restricted to cells affected significantly by DBS. In addition, the overall form and timing of perimovement modulations in firing rate were preserved between DBS-on and DBS-off states in the majority of neurons (66%). Active movement and DBS had largely additive effects on the firing rate of most neurons, indicating an orthogonal relationship in which both inputs contribute independently to the overall firing rate of pallidal neurons. These findings suggest that STN-DBS does not act as an indiscriminate informational lesion but rather as a filter that permits task-related modulations in activity while, presumably, eliminating the pathological firing associated with parkinsonism.
Collapse
Affiliation(s)
- Andrew J Zimnik
- Department of Neurobiology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, and
| | - Gerald J Nora
- Department of Neurobiology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, and
| | - Michel Desmurget
- Centre for Cognitive Neuroscience, UMR5229, CNRS, 67 Boulevard Pinel 69500 Bron, France
| | - Robert S Turner
- Department of Neurobiology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, and
| |
Collapse
|
63
|
Lourens MAJ, Schwab BC, Nirody JA, Meijer HGE, van Gils SA. Exploiting pallidal plasticity for stimulation in Parkinson's disease. J Neural Eng 2015; 12:026005. [PMID: 25650741 DOI: 10.1088/1741-2560/12/2/026005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Continuous application of high-frequency deep brain stimulation (DBS) often effectively reduces motor symptoms of Parkinson's disease patients. While there is a growing need for more effective and less traumatic stimulation, the exact mechanism of DBS is still unknown. Here, we present a methodology to exploit the plasticity of GABAergic synapses inside the external globus pallidus (GPe) for the optimization of DBS. APPROACH Assuming the existence of spike-timing-dependent plasticity (STDP) at GABAergic GPe-GPe synapses, we simulate neural activity in a network model of the subthalamic nucleus and GPe. In particular, we test different DBS protocols in our model and quantify their influence on neural synchrony. MAIN RESULTS In an exemplary set of biologically plausible model parameters, we show that STDP in the GPe has a direct influence on neural activity and especially the stability of firing patterns. STDP stabilizes both uncorrelated firing in the healthy state and correlated firing in the parkinsonian state. Alternative stimulation protocols such as coordinated reset stimulation can clearly profit from the stabilizing effect of STDP. These results are widely independent of the STDP learning rule. SIGNIFICANCE Once the model settings, e.g., connection architectures, have been described experimentally, our model can be adjusted and directly applied in the development of novel stimulation protocols. More efficient stimulation leads to both minimization of side effects and savings in battery power.
Collapse
Affiliation(s)
- Marcel A J Lourens
- MIRA: Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, 7500 AE, The Netherlands
| | | | | | | | | |
Collapse
|
64
|
McCairn KW, Turner RS. Pallidal stimulation suppresses pathological dysrhythmia in the parkinsonian motor cortex. J Neurophysiol 2015; 113:2537-48. [PMID: 25652922 DOI: 10.1152/jn.00701.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/03/2015] [Indexed: 02/06/2023] Open
Abstract
Although there is general consensus that deep brain stimulation (DBS) yields substantial clinical benefit in patients with Parkinson's disease (PD), the therapeutic mechanism of DBS remains a matter of debate. Recent studies demonstrate that DBS targeting the globus pallidus internus (GPi-DBS) suppresses pathological oscillations in firing rate and between-cell spike synchrony in the vicinity of the electrode but has negligible effects on population-level firing rate or the prevalence of burst firing. The present investigation examines the downstream consequences of GPi-DBS at the level of the primary motor cortex (M1). Multielectrode, single cell recordings were conducted in the M1 of two parkinsonian nonhuman primates (Macaca fasicularis). GPi-DBS that induced significant reductions in muscular rigidity also reduced the prevalence of both beta (12-30 Hz) oscillations in single unit firing rates and of coherent spiking between pairs of M1 neurons. In individual neurons, GPi-DBS-induced increases in mean firing rate were three times more common than decreases; however, averaged across the population of M1 neurons, GPi-DBS induced no net change in mean firing rate. The population-level prevalence of burst firing was also not affected by GPi-DBS. The results are consistent with the hypothesis that suppression of both pathological, beta oscillations and synchronous activity throughout the cortico-basal ganglia network is a major therapeutic mechanism of GPi-DBS.
Collapse
Affiliation(s)
- Kevin W McCairn
- Department of Neurological Surgery, University of California, San Francisco, California; Department of Biological Sciences, Milton Keynes, The Open University, Buckinghamshire, United Kingdom; and
| | - Robert S Turner
- Department of Neurological Surgery, University of California, San Francisco, California; Department of Neurobiology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
65
|
McCracken CB, Kiss ZHT. Time and frequency-dependent modulation of local field potential synchronization by deep brain stimulation. PLoS One 2014; 9:e102576. [PMID: 25029468 PMCID: PMC4100931 DOI: 10.1371/journal.pone.0102576] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/20/2014] [Indexed: 11/18/2022] Open
Abstract
High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS), is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP), the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson's disease (PD). We performed simultaneous multi-site local field potential (LFP) recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective), low-frequency (LF, 15 Hz; ineffective) and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR), ventroanterior thalamus (VA), primary motor cortex (M1), and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic effects of GPi DBS for conditions such as PD and dystonia.
Collapse
Affiliation(s)
- Clinton B. McCracken
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Zelma H. T. Kiss
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
66
|
Chiken S, Nambu A. Disrupting neuronal transmission: mechanism of DBS? Front Syst Neurosci 2014; 8:33. [PMID: 24672437 PMCID: PMC3954233 DOI: 10.3389/fnsys.2014.00033] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 02/19/2014] [Indexed: 11/29/2022] Open
Abstract
Applying high-frequency stimulation (HFS) to deep brain structure, known as deep brain stimulation (DBS), has now been recognized an effective therapeutic option for a wide range of neurological and psychiatric disorders. DBS targeting the basal ganglia thalamo-cortical loop, especially the internal segment of the globus pallidus (GPi), subthalamic nucleus (STN) and thalamus, has been widely employed as a successful surgical therapy for movement disorders, such as Parkinson’s disease, dystonia and tremor. However, the neurophysiological mechanism underling the action of DBS remains unclear and is still under debate: does DBS inhibit or excite local neuronal elements? In this review, we will examine this question and propose the alternative interpretation: DBS dissociates inputs and outputs, resulting in disruption of abnormal signal transmission.
Collapse
Affiliation(s)
- Satomi Chiken
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, Graduate University for Advanced Studies Myodaiji, Okazaki, Japan
| | - Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, Graduate University for Advanced Studies Myodaiji, Okazaki, Japan
| |
Collapse
|
67
|
Fenoy AJ, Goetz L, Chabardès S, Xia Y. Deep brain stimulation: are astrocytes a key driver behind the scene? CNS Neurosci Ther 2014; 20:191-201. [PMID: 24456263 DOI: 10.1111/cns.12223] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/05/2013] [Accepted: 12/07/2013] [Indexed: 01/02/2023] Open
Abstract
Despite its widespread use, the underlying mechanism of deep brain stimulation (DBS) remains unknown. Once thought to impart a "functional inactivation", there is now increasing evidence showing that DBS actually can both inhibit neurons and activate axons, generating a wide range of effects. This implies that the mechanisms that underlie DBS work not only locally but also at the network level. Therefore, not only may DBS induce membrane or synaptic plastic changes in neurons over a wide network, but it may also trigger cellular and molecular changes in other cells, especially astrocytes, where, together, the glial-neuronal interactions may explain effects that are not clearly rationalized by simple activation/inhibition theories alone. Recent studies suggest that (1) high-frequency stimulation (HFS) activates astrocytes and leads to the release of gliotransmitters that can regulate surrounding neurons at the synapse; (2) activated astrocytes modulate synaptic activity and increase axonal activation; (3) activated astrocytes can signal further astrocytes across large networks, contributing to observed network effects induced by DBS; (4) activated astrocytes can help explain the disparate effects of activation and inhibition induced by HFS at different sites; (5) astrocytes contribute to synaptic plasticity through long-term potentiation (LTP) and depression (LTD), possibly helping to mediate the long-term effects of DBS; and (6) DBS may increase delta-opioid receptor activity in astrcoytes to confer neuroprotection. Together, the plastic changes in these glial-neuronal interactions network-wide likely underlie the range of effects seen, from the variable temporal latencies to observed effect to global activation patterns. This article reviews recent research progress in the literature on how astrocytes play a key role in DBS efficacy.
Collapse
Affiliation(s)
- Albert J Fenoy
- Department of Neurosurgery, Mischer Neuroscience Institute, University of Texas Medical School at Houston, Houston, TX, USA
| | | | | | | |
Collapse
|
68
|
Suzuki Y, Kiyosawa M, Wakakura M, Mochizuki M, Ishiwata K, Oda K, Ishii K. Glucose hypermetabolism in the thalamus of patients with drug-induced blepharospasm. Neuroscience 2014; 263:240-9. [PMID: 24462606 DOI: 10.1016/j.neuroscience.2014.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/26/2022]
Abstract
We examined the difference in cerebral function alterations between drug-induced blepharospasm patients and essential blepharospasm (EB) patients by using positron emission tomography with (18)F-fluorodeoxyglucose. Cerebral glucose metabolism was examined in 21 patients with drug-induced blepharospasm (5 men and 16 women; mean age, 53.1 [range, 29-78] years), 21 essential EB patients (5 men and 16 women; mean age, 53.0 [range, 33-72] years) and 24 healthy subjects (6 men and 18 women; mean age, 57.9 [range, 22-78] years) with long-term history of benzodiazepines use (drug healthy subjects). Drug-induced blepharospasm patients developed symptoms while taking benzodiazepines or thienodiazepines. Sixty-three normal volunteers (15 men and 48 women; mean age, 53.6 [range, 20-70] years) were examined as controls. Differences between the patient groups and control group were examined by statistical parametric mapping. Additionally, we defined regions of interests on both sides of the thalamus, caudate nucleus, anterior putamen, posterior putamen and primary somatosensory area. The differences between groups were tested using two-sample t-tests with Bonferroni correction for multiple comparisons. Cerebral glucose hypermetabolism on both side of the thalamus was detected in drug-induced blepharospasm, EB patients and drug healthy subjects by statistical parametric mapping. In the analysis of regions of interest, glucose metabolism in both sides of the thalamus in the drug-induced blepharospasm group was significantly lower than that in the EB group. Moreover, we observed glucose hypermetabolism in the anterior and posterior putamen bilaterally in EB group but not in drug-induced blepharospasm group and drug healthy subjects. Long-term regimens of benzodiazepines or thienodiazepines may cause down-regulation of benzodiazepine receptors in the brain. We suggest that the functional brain alteration in drug-induced blepharospasm patients is similar to that in EB patients, and that alteration of the GABAergic system might be related to the pathology of both blepharospasm types.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan; Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan; All Japan Federation of Social Insurance Associations Mishima Hospital, Mishima, Japan.
| | - M Kiyosawa
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan; Kiyosawa Eye Clinic, Tokyo, Japan
| | | | - M Mochizuki
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan
| | - K Ishiwata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - K Oda
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - K Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
69
|
Sato S, Takiyama Y, Ogino Y, Watanabe K, Terao T, Matsumoto C, Chiken S, Nambu A, Nishiyama K, Kumabe T, Fujii K. [DBS therapy for Parkinson's disease - our approach]. Rinsho Shinkeigaku 2013; 53:1053-5. [PMID: 24291877 DOI: 10.5692/clinicalneurol.53.1053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It is controversial whether the STN or the GPi, the main targets of DBS therapy in patients with Parkinson's disease, is the appropriate target. We select GPi-DBS in patients judged by our cognitive function test battery to be at high-risk for cognitive decline after STN-DBS. While DBS surgery is usually performed under local anesthesia for the precise placement of DBS electrodes, general anesthesia might be useful in patients intolerant of long-lasting surgical stress. Our monkey experiments revealed that the most medial part of the STN receives direct input from the limbic cortex, suggesting that the spread of stimulation to these limbic territories may elicit adverse emotional effects. Other monkey experiments on the physiological mechanism of DBS suggest that high-frequency GPi stimulation disrupts information flow through the GPi.
Collapse
Affiliation(s)
- Sumito Sato
- Department of Neurosurgery, Kitasato University School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Pallidal deep brain stimulation modulates afferent fibers, efferent fibers, and glia. J Neurosci 2013; 33:9873-5. [PMID: 23761881 DOI: 10.1523/jneurosci.1471-13.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
71
|
Agnesi F, Connolly AT, Baker KB, Vitek JL, Johnson MD. Deep brain stimulation imposes complex informational lesions. PLoS One 2013; 8:e74462. [PMID: 23991221 PMCID: PMC3753277 DOI: 10.1371/journal.pone.0074462] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/01/2013] [Indexed: 12/21/2022] Open
Abstract
Deep brain stimulation (DBS) therapy has become an essential tool for treating a range of brain disorders. In the resting state, DBS is known to regularize spike activity in and downstream of the stimulated brain target, which in turn has been hypothesized to create informational lesions. Here, we specifically test this hypothesis using repetitive joint articulations in two non-human Primates while recording single-unit activity in the sensorimotor globus pallidus and motor thalamus before, during, and after DBS in the globus pallidus (GP) GP-DBS resulted in: (1) stimulus-entrained firing patterns in globus pallidus, (2) a monophasic stimulus-entrained firing pattern in motor thalamus, and (3) a complete or partial loss of responsiveness to joint position, velocity, or acceleration in globus pallidus (75%, 12/16 cells) and in the pallidal receiving area of motor thalamus (ventralis lateralis pars oralis, VLo) (38%, 21/55 cells). Despite loss of kinematic tuning, cells in the globus pallidus (63%, 10/16 cells) and VLo (84%, 46/55 cells) still responded to one or more aspects of joint movement during GP-DBS. Further, modulated kinematic tuning did not always necessitate modulation in firing patterns (2/12 cells in globus pallidus; 13/23 cells in VLo), and regularized firing patterns did not always correspond to altered responses to joint articulation (3/4 cells in globus pallidus, 11/33 cells in VLo). In this context, DBS therapy appears to function as an amalgam of network modulating and network lesioning therapies.
Collapse
Affiliation(s)
- Filippo Agnesi
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Allison T. Connolly
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kenneth B. Baker
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Matthew D. Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
72
|
Obata K. Synaptic inhibition and γ-aminobutyric acid in the mammalian central nervous system. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2013; 89:139-56. [PMID: 23574805 PMCID: PMC3669732 DOI: 10.2183/pjab.89.139] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 02/25/2013] [Indexed: 05/26/2023]
Abstract
Signal transmission through synapses connecting two neurons is mediated by release of neurotransmitter from the presynaptic axon terminals and activation of its receptor at the postsynaptic neurons. γ-Aminobutyric acid (GABA), non-protein amino acid formed by decarboxylation of glutamic acid, is a principal neurotransmitter at inhibitory synapses of vertebrate and invertebrate nervous system. On one hand glutamic acid serves as a principal excitatory neurotransmitter. This article reviews GABA researches on; (1) synaptic inhibition by membrane hyperpolarization, (2) exclusive localization in inhibitory neurons, (3) release from inhibitory neurons, (4) excitatory action at developmental stage, (5) phenotype of GABA-deficient mouse produced by gene-targeting, (6) developmental adjustment of neural network and (7) neurological/psychiatric disorder. In the end, GABA functions in simple nervous system and plants, and non-amino acid neurotransmitters were supplemented.
Collapse
Affiliation(s)
- Kunihiko Obata
- National Institute for Physiological Sciences, Okazaki, Japan.
| |
Collapse
|
73
|
|