51
|
Windisch M, Flunkert S, Havas D, Hutter-Paier B. Commentary to the recently published review "Drug pipeline in neurodegeneration based on transgenic mice models of Alzheimer's disease" by Li, Evrahimi and Schluesener. Ageing Res. Rev. 2013 Jan;12(1):116-40. Ageing Res Rev 2013; 12:852-4. [PMID: 23851053 DOI: 10.1016/j.arr.2013.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 12/01/2022]
Abstract
Li and colleagues summarized the most frequently used Alzheimer's disease (AD) mouse models available for drug testing and the mediating effects of the different compounds. With almost 300 cited publications, authors present the research community's effort of the last 10 years in finding a new drug for the treatment of AD. Some of the transgenic mouse lines mentioned by Li and colleagues are discussed only very briefly. Since we are convinced that a couple of these models indeed have a great value for AD research and the development of new AD drugs we will subsequently describe a few of them in more detail. A suitable mouse model of AD does not only have to mimic major hallmarks of AD that are modifiable by different test substances as mentioned by the authors; they also have to be translational to clinical trials in humans. For the following discussion, we will therefore also include information on clinical trials of drugs previously tested in the different transgenic mice.
Collapse
Affiliation(s)
- M Windisch
- QPS Austria GmbH, Parkring 12, 8074 Grambach, Austria.
| | | | | | | |
Collapse
|
52
|
Saido T, Leissring MA. Proteolytic degradation of amyloid β-protein. Cold Spring Harb Perspect Med 2013; 2:a006379. [PMID: 22675659 DOI: 10.1101/cshperspect.a006379] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The amyloid β-protein (Aβ) is subject to proteolytic degradation by a diverse array of peptidases and proteinases, known collectively as Aβ-degrading proteases (AβDPs). A growing number of AβDPs have been identified, which, under physiological and/or pathophysiological conditions, contribute significantly to the determination of endogenous cerebral Aβ levels. Despite more than a decade of investigation, the complete set of AβDPs remains to be established, and our understanding of even well-established AβDPs is incomplete. Nevertheless, the study of known AβDPs has contributed importantly to our understanding of the molecular pathogenesis of Alzheimer disease (AD) and has inspired the development of several novel therapeutic approaches to the regulation of cerebral Aβ levels. In this article, we discuss the general features of Aβ degradation and introduce the best-characterized AβDPs, focusing on their diverse properties and the numerous conceptual insights that have emerged from the study of each.
Collapse
Affiliation(s)
- Takaomi Saido
- Riken Brain Science Institute, Saitamo 351-0198, Japan
| | | |
Collapse
|
53
|
Neuropeptide Y receptors activation protects rat retinal neural cells against necrotic and apoptotic cell death induced by glutamate. Cell Death Dis 2013; 4:e636. [PMID: 23681231 PMCID: PMC3674367 DOI: 10.1038/cddis.2013.160] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
It has been claimed that glutamate excitotoxicity might have a role in the pathogenesis of several retinal degenerative diseases, including glaucoma and diabetic retinopathy. Neuropeptide Y (NPY) has neuroprotective properties against excitotoxicity in the hippocampus, through the activation of Y1, Y2 and/or Y5 receptors. The principal objective of this study is to investigate the potential protective role of NPY against glutamate-induced toxicity in rat retinal cells (in vitro and in an animal model), unraveling the NPY receptors and intracellular mechanisms involved. Rat retinal neural cell cultures were prepared from newborn Wistar rats (P3-P5) and exposed to glutamate (500 μM) for 24 h. Necrotic cell death was evaluated by propidium iodide (PI) assay and apoptotic cell death using TUNEL and caspase-3 assays. The cell types present in culture were identified by immunocytochemistry. The involvement of NPY receptors was assessed using selective agonists and antagonists. Pre-treatment of cells with NPY (100 nM) inhibited both necrotic cell death (PI-positive cells) and apoptotic cell death (TUNEL-positive cells and caspase 3-positive cells) triggered by glutamate, with the neurons being the cells most strongly affected. The activation of NPY Y2, Y4 and Y5 receptors inhibited necrotic cell death, while apoptotic cell death was only prevented by the activation of NPY Y5 receptor. Moreover, NPY neuroprotective effect was mediated by the activation of PKA and p38K. In the animal model, NPY (2.35 nmol) was intravitreally injected 2 h before glutamate (500 nmol) injection into the vitreous. The protective role of NPY was assessed 24 h after glutamate (or saline) injection by TUNEL assay and Brn3a (marker of ganglion cells) immunohistochemistry. NPY inhibited the increase in the number of TUNEL-positive cells and the decrease in the number of Brn3a-positive cells induced by glutamate. In conclusion, NPY and NPY receptors can be considered potential targets to treat retinal degenerative diseases, such as glaucoma and diabetic retinopathy.
Collapse
|
54
|
dos Santos VV, Santos DB, Lach G, Rodrigues ALS, Farina M, De Lima TCM, Prediger RD. Neuropeptide Y (NPY) prevents depressive-like behavior, spatial memory deficits and oxidative stress following amyloid-β (Aβ(1-40)) administration in mice. Behav Brain Res 2013; 244:107-15. [PMID: 23396168 DOI: 10.1016/j.bbr.2013.01.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 12/25/2022]
Abstract
Neuropeptide Y (NPY) is a 36-amino acid peptide widely distributed in the central nervous system (CNS) that has been associated with the modulation of several functions including food intake, learning and memory, mood and neuroprotection. There is great interest in understanding the role of NPY in the deleterious effects induced by the central accumulation of amyloid-β (Aβ) peptides, a pathological hallmark of Alzheimer's disease (AD). Herein, we evaluated the effects of a single intracerebroventricular (i.c.v.) administration of NPY (0.0234 μmol/μL) 15 min prior to the i.c.v. injection of aggregated Aβ1-40 peptide (400 pmol/mouse) in behavioral and neurochemical parameters related to oxidative stress in mice. Pretreatment with NPY prevented Aβ1-40-induced depressive-like responses and spatial memory impairments evaluated in the tail suspension and object location tasks, respectively. The protective effects of NPY on spatial memory of Aβ1-40-treated mice were abolished by the pretreatment with the selective Y2 receptor antagonist BIIE0246. On the other hand, the administration of NPY and Aβ1-40 did not alter the performance of the animals in the elevated plus-maze and open field arena, indicating lack of effects on anxiety state and locomotor function. Although Aβ1-40 infusion did not change hippocampal and cortical glutathione peroxidase (GPx) activity and glutathione (GSH) levels, Aβ1-40-infused animals showed an increased lipid peroxidation in hippocampus and prefrontal cortex that were blunted by NPY administration. These findings indicate that central administration of NPY prevents Aβ1-40-induced depressive-like behavior and spatial memory deficits in mice and that this response is mediated, at least in part, by the activation of Y2 receptors and prevention of oxidative stress.
Collapse
Affiliation(s)
- Vanessa V dos Santos
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, UFSC, Florianópolis-SC, Brazil
| | | | | | | | | | | | | |
Collapse
|
55
|
Croce N, Gelfo F, Ciotti MT, Federici G, Caltagirone C, Bernardini S, Angelucci F. NPY modulates miR-30a-5p and BDNF in opposite direction in an in vitro model of Alzheimer disease: a possible role in neuroprotection? Mol Cell Biochem 2013; 376:189-95. [DOI: 10.1007/s11010-013-1567-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/18/2013] [Indexed: 11/28/2022]
|
56
|
Malva JO, Xapelli S, Baptista S, Valero J, Agasse F, Ferreira R, Silva AP. Multifaces of neuropeptide Y in the brain--neuroprotection, neurogenesis and neuroinflammation. Neuropeptides 2012; 46:299-308. [PMID: 23116540 DOI: 10.1016/j.npep.2012.09.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/17/2012] [Accepted: 09/25/2012] [Indexed: 12/20/2022]
Abstract
Neuropeptide Y (NPY) has been implicated in the modulation of important features of neuronal physiology, including calcium homeostasis, neurotransmitter release and excitability. Moreover, NPY has been involved as an important modulator of hippocampal and thalamic circuits, receiving particular attention as an endogenous antiepileptic peptide and as a potential master regulator of feeding behavior. NPY not only inhibits excessive glutamate release (decreasing circuitry hyperexcitability) but also protects neurons from excitotoxic cell death. Furthermore, NPY has been involved in the modulation of the dynamics of dentate gyrus and subventricular zone neural stem cell niches. In both regions, NPY is part of the chemical resource of the neurogenic niche and acts through NPY Y1 receptors to promote neuronal differentiation. Interestingly, NPY is also considered a neuroimmune messenger. In this review, we highlight recent evidences concerning paracrine/autocrine actions of NPY involved in neuroprotection, neurogenesis and neuroinflammation. In summary, the three faces of NPY, discussed in the present review, may contribute to better understand the dynamics and cell fate decision in the brain parenchyma and in restricted areas of neurogenic niches, in health and disease.
Collapse
Affiliation(s)
- J O Malva
- Laboratory of Biochemistry and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal.
| | | | | | | | | | | | | |
Collapse
|
57
|
Decressac M, Barker RA. Neuropeptide Y and its role in CNS disease and repair. Exp Neurol 2012; 238:265-72. [PMID: 23022456 DOI: 10.1016/j.expneurol.2012.09.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/09/2012] [Accepted: 09/20/2012] [Indexed: 01/04/2023]
Abstract
Neuropeptide Y (NPY) is widely expressed throughout the CNS and exerts a number of important physiological functions as well as playing a role in pathological conditions such as obesity, anxiety, epilepsy, chronic pain and neurodegenerative disorders. In this review, we highlight some of the recent advances in our understanding of NPY biology and how this may help explain not only its role in health and disease, but also its possible use therapeutically.
Collapse
Affiliation(s)
- M Decressac
- Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden.
| | | |
Collapse
|
58
|
Corvino V, Marchese E, Giannetti S, Lattanzi W, Bonvissuto D, Biamonte F, Mongiovì AM, Michetti F, Geloso MC. The neuroprotective and neurogenic effects of neuropeptide Y administration in an animal model of hippocampal neurodegeneration and temporal lobe epilepsy induced by trimethyltin. J Neurochem 2012; 122:415-26. [DOI: 10.1111/j.1471-4159.2012.07770.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
59
|
Maesako M, Uemura K, Kubota M, Kuzuya A, Sasaki K, Hayashida N, Asada-Utsugi M, Watanabe K, Uemura M, Kihara T, Takahashi R, Shimohama S, Kinoshita A. Exercise is more effective than diet control in preventing high fat diet-induced β-amyloid deposition and memory deficit in amyloid precursor protein transgenic mice. J Biol Chem 2012; 287:23024-33. [PMID: 22563077 DOI: 10.1074/jbc.m112.367011] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence suggests that some dietary patterns, specifically high fat diet (HFD), increase the risk of developing sporadic Alzheimer disease (AD). Thus, interventions targeting HFD-induced metabolic dysfunctions may be effective in preventing the development of AD. We previously demonstrated that amyloid precursor protein (APP)-overexpressing transgenic mice fed HFD showed worsening of cognitive function when compared with control APP mice on normal diet. Moreover, we reported that voluntary exercise ameliorates HFD-induced memory impairment and β-amyloid (Aβ) deposition. In the present study, we conducted diet control to ameliorate the metabolic abnormality caused by HFD on APP transgenic mice and compared the effect of diet control on cognitive function with that of voluntary exercise as well as that of combined (diet control plus exercise) treatment. Surprisingly, we found that exercise was more effective than diet control, although both exercise and diet control ameliorated HFD-induced memory deficit and Aβ deposition. The production of Aβ was not different between the exercise- and the diet control-treated mice. On the other hand, exercise specifically strengthened the activity of neprilysin, the Aβ-degrading enzyme, the level of which was significantly correlated with that of deposited Aβ in our mice. Notably, the effect of the combination treatment (exercise and diet control) on memory and amyloid pathology was not significantly different from that of exercise alone. These studies provide solid evidence that exercise is a useful intervention to rescue HFD-induced aggravation of cognitive decline in transgenic model mice of AD.
Collapse
Affiliation(s)
- Masato Maesako
- School of Human Health Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Croce N, Ciotti MT, Gelfo F, Cortelli S, Federici G, Caltagirone C, Bernardini S, Angelucci F. Neuropeptide Y protects rat cortical neurons against β-amyloid toxicity and re-establishes synthesis and release of nerve growth factor. ACS Chem Neurosci 2012; 3:312-8. [PMID: 22860197 DOI: 10.1021/cn200127e] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/16/2012] [Indexed: 02/03/2023] Open
Abstract
Neuropeptide Y (NPY) is a 36 amino acid peptide, widely distributed within central nervous system neurons. More recently, it has been shown that NPY is involved in Alzheimer's disease (AD), a disorder characterized by accumulation of amyloid β-peptide (Aβ) in neurons. In a previous study, we investigated the effect of NPY on neuronal damage by exposing SH-SY5Y cells (an established human derived neuroblastoma cell line) to Aβ's pathogenic fragment 25-35 (Aβ(25-35)). We found a NPY-neuroprotective action associated with changes in intracellular production of nerve growth factor (NGF), a member of the neurotrophin family. Since our results were encouraging, we decided to replicate our data using primary cortical neurons cultured in presence of Aβ(25-35), and investigated whether NPY had similar neuroprotective action. Moreover, since cortical neurons are able to produce and release NGF, we investigated whether the synthesis and release of NGF were modified in such experimental conditions. Our results showed that a preincubation with NPY counteracted the toxic effect of Aβ, as measured by increased cell viability. Moreover, NPY pretreatment had an effect on NGF since its intracellular synthesis was increased, release was normalized, and mRNA expression was downregulated. Notably, these effects on NGF were in the opposite direction of those produced by incubating the cells with Aβ alone. This study in primary cortical neurons supports the hypothesis that NPY may be a neuroprotective agent against β-amyloid neurotoxicity. These data also suggest that NPY may influence the synthesis and the release of NGF by cortical neurons.
Collapse
Affiliation(s)
| | - Maria Teresa Ciotti
- Institute of Cellular Biology
and Neurobiology, National Council of Research, Rome, Italy
| | | | - Silvia Cortelli
- Department
of Internal Medicine, Tor Vergata University, Rome, Italy
| | - Giorgio Federici
- Department
of Internal Medicine, Tor Vergata University, Rome, Italy
| | | | - Sergio Bernardini
- Department
of Internal Medicine, Tor Vergata University, Rome, Italy
| | | |
Collapse
|
61
|
Rangani RJ, Upadhya MA, Nakhate KT, Kokare DM, Subhedar NK. Nicotine evoked improvement in learning and memory is mediated through NPY Y1 receptors in rat model of Alzheimer's disease. Peptides 2012; 33:317-28. [PMID: 22266216 DOI: 10.1016/j.peptides.2012.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/06/2012] [Accepted: 01/06/2012] [Indexed: 02/05/2023]
Abstract
We investigated the role of endogenous neuropeptide Y (NPY) system in nicotine-mediated improvement of learning and memory in rat model of Alzheimer's disease (AD). Intracerebroventricular (icv) colchicine treatment induced AD-like condition in rats and showed increased escape latency (decreased learning), and amnesic condition in probe test in Morris water maze. In these rats, nicotine (0.5mg/kg, intraperitoneal), NPY (100 ng/rat, icv) or NPY Y1 receptor agonist [Leu(31), Pro(34)]-NPY (0.04 ng/rat, icv) decreased escape latency by 54.76%, 55.81% and 44.18%, respectively, on day 4 of the acquisition. On the other hand, selective NPY Y1 receptor antagonist, BIBP3226 (icv) produced opposite effect (44.18%). In the probe test conducted at 24h time point, nicotine, NPY or [Leu(31), Pro(34)]-NPY increased the time spent by 72.72%, 44.11% and 26.47%, respectively; while BIBP3226 caused reduction (8.82%). It seems that while NPY or [Leu(31), Pro(34)]-NPY potentiated, BIBP3226 attenuated the learning and memory enhancing effects of nicotine. Brains of colchicine treated rats showed significant reduction in NPY-immunoreactivity in the nucleus accumbens shell (cells 62.23% and fibers 50%), bed nucleus of stria terminalis (fibers 71.58%), central nucleus of amygdala (cells 74.33%), arcuate nucleus (cells 70.97% and fibers 69.65%) and dentate gyrus (cells 58.54%). However, in these rats nicotine treatment for 4 days restored NPY-immunoreactivity to the control level. We suggest that NPY, perhaps acting via NPY Y1 receptors, might interact with the endogenous cholinergic system and play a role in improving the learning and memory processes in the rats with AD-like condition.
Collapse
Affiliation(s)
- Ritesh J Rangani
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Nagpur 440 033, India
| | | | | | | | | |
Collapse
|
62
|
Nalivaeva NN, Beckett C, Belyaev ND, Turner AJ. Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer's disease? J Neurochem 2011; 120 Suppl 1:167-185. [PMID: 22122230 DOI: 10.1111/j.1471-4159.2011.07510.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
: The amyloid cascade hypothesis of Alzheimer's disease envisages that the initial elevation of amyloid β-peptide (Aβ) levels, especially of Aβ(1-42) , is the primary trigger for the neuronal cell death specific to onset of Alzheimer's disease. There is now substantial evidence that brain amyloid levels are manipulable because of a dynamic equilibrium between their synthesis from the amyloid precursor protein and their removal by amyloid-degrading enzymes (ADEs) providing a potential therapeutic strategy. Since the initial reports over a decade ago that two zinc metallopeptidases, insulin-degrading enzyme and neprilysin (NEP), contributed to amyloid degradation in the brain, there is now an embarras de richesses in relation to this category of enzymes, which currently number almost 20. These now include serine and cysteine proteinases, as well as numerous zinc peptidases. The experimental validation for each of these enzymes, and which to target, varies enormously but up-regulation of several of them individually in mouse models of Alzheimer's disease has proved effective in amyloid and plaque clearance, as well as cognitive enhancement. The relative status of each of these enzymes will be critically evaluated. NEP and its homologues, as well as insulin-degrading enzyme, remain as principal ADEs and recently discovered mechanisms of epigenetic regulation of NEP expression potentially open new avenues in manipulation of AD-related genes, including ADEs.
Collapse
Affiliation(s)
- Natalia N Nalivaeva
- Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, St. Petersburg, Russia
| | - Caroline Beckett
- Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nikolai D Belyaev
- Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Anthony J Turner
- Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
63
|
Decressac M, Pain S, Chabeauti PY, Frangeul L, Thiriet N, Herzog H, Vergote J, Chalon S, Jaber M, Gaillard A. Neuroprotection by neuropeptide Y in cell and animal models of Parkinson's disease. Neurobiol Aging 2011; 33:2125-37. [PMID: 21816512 DOI: 10.1016/j.neurobiolaging.2011.06.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/10/2011] [Accepted: 06/18/2011] [Indexed: 11/26/2022]
Abstract
This study was aimed to investigate the potential neuroprotective effect of neuropeptide Y (NPY) on the survival of dopaminergic cells in both in vitro and in animal models of Parkinson's disease (PD). NPY protected human SH-SY5Y dopaminergic neuroblastoma cells from 6-hydroxydopamine-induced toxicity. In rat and mice models of PD, striatal injection of NPY preserved the nigrostriatal dopamine pathway from degeneration as evidenced by quantification of (1) tyrosine hydroxylase (TH)-positive cells in the substantia nigra pars compacta, levels of (2) striatal tyrosine hydroxylase and dopamine transporter, (3) dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) as well as (4) rotational behavior. NPY had no neuroprotective effects in mice treated with Y(2) receptor antagonist or in transgenic mice deficient for Y(2) receptor suggesting that NPY effects are mediated through this receptor. Stimulation of Y(2) receptor by NPY triggered the activation of both the ERK1/2 and Akt pathways but did not modify levels of brain derived neurotrophic factor (BDNF) or glial cell line-derived neurotrophic factor. These results open new perspectives in neuroprotective therapies using NPY and suggest potential beneficial effects in PD.
Collapse
Affiliation(s)
- Mickael Decressac
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, Centre National de la Recherche Scientifique (CNRS), Poitiers, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Croce N, Dinallo V, Ricci V, Federici G, Caltagirone C, Bernardini S, Angelucci F. Neuroprotective effect of neuropeptide Y against β-amyloid 25-35 toxicity in SH-SY5Y neuroblastoma cells is associated with increased neurotrophin production. NEURODEGENER DIS 2011; 8:300-9. [PMID: 21346312 DOI: 10.1159/000323468] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 12/09/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In the central nervous system, several neuropeptides are believed to be involved in the pathophysiology of Alzheimer's disease (AD). Among them, neuropeptide Y (NPY) is a small peptide widely distributed throughout the brain, where it serves as a neurotransmitter and/or a modulator of several neuroendocrine functions. More recently, NPY has generated interest because of its role in neuroprotection against excitotoxicity and modulation of neurogenesis. Interestingly, these effects are also influenced by neurotrophins, critical molecules for the function and survival of neurons that degenerate in AD. OBJECTIVE Our purpose was to investigate whether NPY might be a neuroprotective agent in AD and whether neurotrophins are involved in NPY-induced neuroprotection. METHODS To test this hypothesis, we exposed the SH-SY5Y neuroblastoma cell line to toxic concentrations of β-amyloid (Aβ) peptide fragment 25-35 (Aβ(25-35)) and measured cell survival and neurotrophin expression before and after a preincubation with NPY in the growth medium. RESULTS Our results demonstrated that preincubation with NPY prevented cell loss due to the toxic effect of Aβ(25-35). Moreover, while intracellular production of nerve growth factor and brain-derived neurotrophic factor were reduced by Aβ, NPY restored or even increased neurotrophin protein and mRNA in SH-SY5Y cells. CONCLUSION In conclusion, this study demonstrates that NPY increases the survival of SH-SY5Y neuroblastoma cells and counteracts the toxic effect of Aβ. In addition, NPY restores the neurotrophin levels in these cells. Although preliminary, these observations might be useful to understand the pathology of Alzheimer's and/or develop new therapeutic strategies.
Collapse
|
65
|
Spencer B, Marr RA, Gindi R, Potkar R, Michael S, Adame A, Rockenstein E, Verma IM, Masliah E. Peripheral delivery of a CNS targeted, metalo-protease reduces aβ toxicity in a mouse model of Alzheimer's disease. PLoS One 2011; 6:e16575. [PMID: 21304989 PMCID: PMC3031588 DOI: 10.1371/journal.pone.0016575] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 01/05/2011] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD), an incurable, progressive neurodegenerative disorder, is the most common form of dementia. Therapeutic options have been elusive due to the inability to deliver proteins across the blood-brain barrier (BBB). In order to improve the therapeutic potential for AD, we utilized a promising new approach for delivery of proteins across the BBB. We generated a lentivirus vector expressing the amyloid β-degrading enzyme, neprilysin, fused to the ApoB transport domain and delivered this by intra-peritoneal injection to amyloid protein precursor (APP) transgenic model of AD. Treated mice had reduced levels of Aβ, reduced plaques and increased synaptic density in the CNS. Furthermore, mice treated with the neprilysin targeting the CNS had a reversal of memory deficits. Thus, the addition of the ApoB transport domain to the secreted neprilysin generated a non-invasive therapeutic approach that may be a potential treatment in patients with AD.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Robert A. Marr
- Department of Neuroscience, Center for Stem Cell and Regenerative Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Ryan Gindi
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Rewati Potkar
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Sarah Michael
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Anthony Adame
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Edward Rockenstein
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Inder M. Verma
- Laboratory of Genetics, Salk Institute for Biological Studies, San Diego, California, United States of America
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
66
|
Neuropeptide Y modifies the disease course in the R6/2 transgenic model of Huntington's disease. Exp Neurol 2010; 226:24-32. [DOI: 10.1016/j.expneurol.2010.07.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 06/24/2010] [Accepted: 07/20/2010] [Indexed: 01/25/2023]
|
67
|
Neurodegeneration in a transgenic mouse model of multiple system atrophy is associated with altered expression of oligodendroglial-derived neurotrophic factors. J Neurosci 2010; 30:6236-46. [PMID: 20445049 DOI: 10.1523/jneurosci.0567-10.2010] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by striatonigral degeneration and olivo-pontocerebellar atrophy. Neuronal degeneration is accompanied by primarily oligodendrocytic accumulation of alpha-synuclein (alphasyn) as opposed to the neuronal inclusions more commonly found in other alpha-synucleinopathies such as Parkinson's disease. It is unclear how alphasyn accumulation in oligodendrocytes may lead to the extensive neurodegeneration observed in MSA; we hypothesize that the altered expression of oligodendrocyte-derived neurotrophic factors by alphasyn may be involved. In this context, the expression of a number neurotrophic factors reportedly expressed by oligodendrocytes [glial-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor 1 (IGF-1), as well as basic fibroblast growth factor 2 (bFGF2), reportedly astrocyte derived] were examined in transgenic mouse models expressing human alphasyn (halphasyn) under the control of either neuronal (PDGFbeta or mThy1) or oligodendrocytic (MBP) promoters. Although protein levels of BDNF and IGF-1 were altered in all the alphasyn transgenic mice regardless of promoter type, a specific decrease in GDNF protein expression was observed in the MBP-halphasyn transgenic mice. Intracerebroventricular infusion of GDNF improved behavioral deficits and ameliorated neurodegenerative pathology in the MBP-halphasyn transgenic mice. Consistent with the studies in the MBP-halphasyn transgenic mice, analysis of GDNF expression levels in human MSA samples demonstrated a decrease in the white frontal cortex and to a lesser degree in the cerebellum compared with controls. These results suggest a mechanism in which alphasyn expression in oligodendrocytes impacts on the trophic support provided by these cells for neurons, perhaps contributing to neurodegeneration.
Collapse
|
68
|
Nilsson P, Iwata N, Muramatsu SI, Tjernberg LO, Winblad B, Saido TC. Gene therapy in Alzheimer's disease - potential for disease modification. J Cell Mol Med 2010; 14:741-57. [PMID: 20158567 PMCID: PMC3823109 DOI: 10.1111/j.1582-4934.2010.01038.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 02/09/2010] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is the major cause of dementia in the elderly, leading to memory loss and cognitive decline. The mechanism underlying onset of the disease has not been fully elucidated. However, characteristic pathological manifestations include extracellular accumulation and aggregation of the amyloid beta-peptide (Abeta) into plaques and intracellular accumulation and aggregation of hyperphosphorylated tau, forming neurofibrillary tangles. Despite extensive research worldwide, no disease modifying treatment is yet available. In this review, we focus on gene therapy as a potential treatment for AD, and summarize recent work in the field, ranging from proof-of-concept studies in animal models to clinical trials. The multifactorial causes of AD offer a variety of possible targets for gene therapy, including two neurotrophic growth factors, nerve growth factor and brain-derived neurotrophic factor, Abeta-degrading enzymes, such as neprilysin, endothelin-converting enzyme and cathepsin B, and AD associated apolipoprotein E. This review also discusses advantages and drawbacks of various rapidly developing virus-mediated gene delivery techniques for gene therapy. Finally, approaches aiming at down-regulating amyloid precursor protein (APP) and beta-site APP cleaving enzyme 1 levels by means of siRNA-mediated knockdown are briefly summarized. Overall, the prospects appear hopeful that gene therapy has the potential to be a disease modifying treatment for AD.
Collapse
Affiliation(s)
- Per Nilsson
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWako-shi, Saitama, Japan
- KI-Alzheimer’s Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska InstitutetNovum, Huddinge, Sweden
| | - Nobuhisa Iwata
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWako-shi, Saitama, Japan
| | - Shin-ichi Muramatsu
- Division of Neurology, Department of Medicine, Jichi Medical SchoolShimotsuke, Tochigi, Japan
| | - Lars O Tjernberg
- KI-Alzheimer’s Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska InstitutetNovum, Huddinge, Sweden
| | - Bengt Winblad
- KI-Alzheimer’s Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska InstitutetNovum, Huddinge, Sweden
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWako-shi, Saitama, Japan
| |
Collapse
|
69
|
Duclot F, Meffre J, Jacquet C, Gongora C, Maurice T. Mice knock out for the histone acetyltransferase p300/CREB binding protein-associated factor develop a resistance to amyloid toxicity. Neuroscience 2010; 167:850-63. [PMID: 20219649 DOI: 10.1016/j.neuroscience.2010.02.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/11/2010] [Accepted: 02/20/2010] [Indexed: 10/19/2022]
Abstract
p300/CREB binding protein-associated factor (PCAF) regulates gene expression by acting through histone acetylation and as a transcription coactivator. Although histone acetyltransferases were involved in the toxicity induced by amyloid-beta (Abeta) peptides, nothing is known about PCAF. We here analyzed the sensitivity of PCAF knockout (KO) mice to the toxic effects induced by i.c.v. injection of Abeta(25-35) peptide, a nontransgenic model of Alzheimer's disease. PCAF wild-type (WT) and KO mice received Abeta(25-35) (1, 3 or 9 nmol) or scrambled Abeta(25-35) (9 nmol) as control. After 7 days, Abeta(25-35) toxicity was measured in the hippocampus of WT mice by a decrease in CA1 pyramidal cells and increases in oxidative stress, endoplasmic reticulum stress and induction of apoptosis. Memory deficits were observed using spontaneous alternation, water-maze learning and passive avoidance. Non-treated PCAF KO mice showed a decrease in CA1 cells and learning alterations. However, Abeta(25-35) injection failed to induce toxicity or worsen the deficits. This resistance to Abeta(25-35) toxicity did not involve changes in glutamate or acetylcholine systems. Examination of enzymes involved in Abeta generation or degradation revealed changes in transcription of presenilins, activity of neprilysin (NEP) and an absence of Abeta(25-35)-induced regulation of NEP activity in PCAF KO mice, partly due to an altered expression of somatostatin (SRIH). We conclude that PCAF regulates the expression of proteins involved in Abeta generation and degradation, thus rendering PCAF KO insensitive to amyloid toxicity. Modulating acetyltransferase activity may offer a new way to develop anti-amyloid therapies.
Collapse
Affiliation(s)
- F Duclot
- INSERM U 710, Montpellier, France
| | | | | | | | | |
Collapse
|