51
|
Tosches MA, Arendt D. The bilaterian forebrain: an evolutionary chimaera. Curr Opin Neurobiol 2013; 23:1080-9. [PMID: 24080363 DOI: 10.1016/j.conb.2013.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/06/2013] [Indexed: 12/14/2022]
Abstract
The insect, annelid and vertebrate forebrains harbour two major centres of output control, a sensory-neurosecretory centre releasing hormones and a primordial locomotor centre that controls the initiation of muscular body movements. In vertebrates, both reside in the hypothalamus. Here, we review recent comparative neurodevelopmental evidence indicating that these centres evolved from separate condensations of neurons on opposite body sides ('apical nervous system' versus 'blastoporal nervous system') and that their developmental specification involved distinct regulatory networks (apical six3 and rx versus mediolateral nk and pax gene-dependent patterning). In bilaterian ancestors, both systems approached each other and became closely intermingled, physically, functionally and developmentally. Our 'chimeric brain hypothesis' sheds new light on the vast success and rapid diversification of bilaterian animals in the Cambrian and revises our understanding of brain architecture.
Collapse
Affiliation(s)
- Maria Antonietta Tosches
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69012 Heidelberg, Germany
| | | |
Collapse
|
52
|
Lee B, Song H, Rizzoti K, Son Y, Yoon J, Baek K, Jeong Y. Genomic code for Sox2 binding uncovers its regulatory role in Six3 activation in the forebrain. Dev Biol 2013; 381:491-501. [PMID: 23792023 DOI: 10.1016/j.ydbio.2013.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/09/2013] [Accepted: 06/12/2013] [Indexed: 01/24/2023]
Abstract
The SRY-related HMG box transcription factor Sox2 plays critical roles throughout embryogenesis. Haploinsufficiency for SOX2 results in human developmental defects including anophthalmia, microphthalmia and septo-optic dysplasia, a congenital forebrain defect. To understand how Sox2 plays a role in neurogenesis, we combined genomic and in vivo transgenic approaches to characterize genomic regions occupied by Sox2 in the developing forebrain. Six3, a homeobox gene associated with holoprosencephaly, a forebrain midline defect, was identified as a Sox2 transcriptional target. This study shows that Sox2 directly regulates a previously unidentified long-range forebrain enhancer to activate Six3 expression in the rostral diencephalon. Further biochemical and genetic evidences indicated a direct regulatory link between Sox2 and Six3 during forebrain development, providing a better understanding of a common molecular mechanism underlying these forebrain defects.
Collapse
Affiliation(s)
- Bumwhee Lee
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si 446-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
53
|
Clark DD, Gorman MR, Hatori M, Meadows JD, Panda S, Mellon PL. Aberrant development of the suprachiasmatic nucleus and circadian rhythms in mice lacking the homeodomain protein Six6. J Biol Rhythms 2013; 28:15-25. [PMID: 23382588 DOI: 10.1177/0748730412468084] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the mammalian hypothalamus is the central pacemaker for peripheral and organismal circadian rhythms. The development of this hypothalamic structure depends on genetic programs throughout embryogenesis. We have investigated the role of the homeodomain transcription factor Six6 in the development of the SCN. We first showed that Six6 mRNA has circadian regulation in the mouse SCN. We then characterized the behavioral activity patterns of Six6-null mice under various photoperiod manipulations and stained their hypothalami using SCN-specific markers. Six6-null mice display abnormal patterns of circadian behavior indicative of SCN abnormalities. The ability of light exposure to reset rhythms correlates with the presence or absence of optic nerves, but all Six6-null mice show irregular rhythms. In contrast, wild-type mice with crushed optic nerves maintain regular rhythms regardless of light exposure. Using immunohistochemistry for arginine vasopressin (AVP), vasoactive intestinal polypeptide (VIP), and β-galactosidase, we demonstrated the lack of these SCN markers in all Six6-null mice regardless of the presence of optic nerve or partial circadian rhythms. Therefore, Six6 is required for the normal development of the SCN, and the Six6-null mouse can mount independent, although irregular, circadian rhythms despite the apparent absence of a histochemically defined SCN.
Collapse
Affiliation(s)
- Daniel D Clark
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | |
Collapse
|
54
|
Gray PA. Transcription factors define the neuroanatomical organization of the medullary reticular formation. Front Neuroanat 2013; 7:7. [PMID: 23717265 PMCID: PMC3653110 DOI: 10.3389/fnana.2013.00007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/19/2013] [Indexed: 01/13/2023] Open
Abstract
The medullary reticular formation contains large populations of inadequately described, excitatory interneurons that have been implicated in multiple homeostatic behaviors including breathing, viserosensory processing, vascular tone, and pain. Many hindbrain nuclei show a highly stereotyped pattern of localization across vertebrates suggesting a strong underlying genetic organization. Whether this is true for neurons within the reticular regions of hindbrain is unknown. Hindbrain neurons are derived from distinct developmental progenitor domains each of which expresses distinct patterns of transcription factors (TFs). These neuronal populations have distinct characteristics such as transmitter identity, migration, and connectivity suggesting developmentally expressed TFs might identify unique subpopulations of neurons within the reticular formation. A fate-mapping strategy using perinatal expression of reporter genes within Atoh1, Dbx1, Lmx1b, and Ptf1a transgenic mice coupled with immunohistochemistry (IHC) and in situ hybridization (ISH) were used to address the developmental organization of a large subset of reticular formation glutamatergic neurons. All hindbrain lineages have relatively large populations that extend the entire length of the hindbrain. Importantly, the location of neurons within each lineage was highly constrained. Lmx1b- and Dbx1- derived populations were both present in partially overlapping stripes within the reticular formation extending from dorsal to ventral brain. Within each lineage, distinct patterns of gene expression and organization were localized to specific hindbrain regions. Rostro-caudally sub-populations differ sequentially corresponding to proposed pseudo-rhombomereic boundaries. Dorsal-ventrally, sub-populations correspond to specific migratory positions. Together these data suggests the reticular formation is organized by a highly stereotyped developmental logic.
Collapse
Affiliation(s)
- Paul A Gray
- Department of Anatomy and Neurobiology, Washington University School of Medicine St. Louis, MO, USA
| |
Collapse
|
55
|
Abstract
The brain plays a central role in controlling energy, glucose, and lipid homeostasis, with specialized neurons within nuclei of the mediobasal hypothalamus, namely the arcuate (ARC) and ventromedial (VMH), tasked with proper signal integration. Exactly how the exquisite cytoarchitecture and underlying circuitry becomes established within these nuclei remains largely unknown, in part because hypothalamic developmental programs are just beginning to be elucidated. Here, we demonstrate that the Retina and anterior neural fold homeobox (Rax) gene plays a key role in establishing ARC and VMH nuclei in mice. First, we show that Rax is expressed in ARC and VMH progenitors throughout development, consistent with genetic fate mapping studies demonstrating that Rax+ lineages give rise to VMH neurons. Second, the conditional ablation of Rax in a subset of VMH progenitors using a Shh::Cre driver leads to a fate switch from a VMH neuronal phenotype to a hypothalamic but non-VMH identity, suggesting that Rax is a selector gene for VMH cellular fates. Finally, the broader elimination of Rax throughout ARC/VMH progenitors using Six3::Cre leads to a severe loss of both VMH and ARC cellular phenotypes, demonstrating a role for Rax in both VMH and ARC fate specification. Combined, our study illustrates that Rax is required in ARC/VMH progenitors to specify neuronal phenotypes within this hypothalamic brain region. Rax thus provides a molecular entry point for further study of the ontology and establishment of hypothalamic feeding circuits.
Collapse
|
56
|
Translational profiling of hypocretin neurons identifies candidate molecules for sleep regulation. Genes Dev 2013; 27:565-78. [PMID: 23431030 DOI: 10.1101/gad.207654.112] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hypocretin (orexin; Hcrt)-containing neurons of the hypothalamus are essential for the normal regulation of sleep and wake behaviors and have been implicated in feeding, anxiety, depression, and reward. The absence of these neurons causes narcolepsy in humans and model organisms. However, little is known about the molecular phenotype of these cells; previous attempts at comprehensive profiling had only limited sensitivity or were inaccurate. We generated a Hcrt translating ribosome affinity purification (bacTRAP) line for comprehensive translational profiling of all ribosome-bound transcripts in these neurons in vivo. From this profile, we identified >6000 transcripts detectably expressed above background and 188 transcripts that are highly enriched in these neurons, including all known markers of the cells. Blinded analysis of in situ hybridization databases suggests that ~60% of these are expressed in a Hcrt marker-like pattern. Fifteen of these were confirmed with double labeling and microscopy, including the transcription factor Lhx9. Ablation of this gene results in a >30% loss specifically of Hcrt neurons, without a general disruption of hypothalamic development. Polysomnography and activity monitoring revealed a profound hypersomnolence in these mice. These data provide an in-depth and accurate profile of Hcrt neuron gene expression and suggest that Lhx9 may be important for specification or survival of a subset of these cells.
Collapse
|
57
|
BMP and TGF-β pathway mediators are critical upstream regulators of Wnt signaling during midbrain dopamine differentiation in human pluripotent stem cells. Dev Biol 2013; 376:62-73. [PMID: 23352789 DOI: 10.1016/j.ydbio.2013.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 01/21/2023]
Abstract
Although many laboratories currently use small molecule inhibitors of the BMP (Dorsomorphin/DM) and TGF-β (SB431542/SB) signaling pathways in protocols to generate midbrain dopamine (mDA) neurons from hES and hiPS cells, until now, these substances have not been thought to play a role in the mDA differentiation process. We report here that the transient inhibition of constitutive BMP (pSMADs 1, 5, 8) signaling, either alone or in combination with TGF-β inhibition (pSMADs 2, 3), is critically important in the upstream regulation of Wnt1-Lmx1a signaling in mDA progenitors. We postulate that the mechanism via which DM or DM/SB mediates these effects involves the up-regulation in SMAD-interacting protein 1 (SIP1), which results in greater repression of the Wnt antagonist, secreted frizzled related protein 1 (Sfrp1) in stem cells. Accordingly, knockdown of SIP1 reverses the inductive effects of DM/SB on mDA differentiation while Sfrp1 knockdown/inhibition mimics DM/SB. The rise in Wnt1-Lmx1a levels in SMAD-inhibited cultures is, however, accompanied by a reciprocal down-regulation in SHH-Foxa2 levels leading to the generation of few TH+ neurons that co-express Foxa2. If however, exogenous SHH/FGF8 is added along with SMAD inhibitors, equilibrium in these two important pathways is achieved such that authentic (Lmx1a+Foxa2+TH+) mDA neuron differentiation is promoted while alternate cell fates are suppressed in stem cell cultures. These data indicate that activators/inhibitors of BMP and TGF-β signaling play a critical upstream regulatory role in the mDA differentiation process in human pluripotent stem cells.
Collapse
|
58
|
A window into domain amplification through Piccolo in teleost fish. G3-GENES GENOMES GENETICS 2012; 2:1325-39. [PMID: 23173084 PMCID: PMC3484663 DOI: 10.1534/g3.112.003624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/31/2012] [Indexed: 12/20/2022]
Abstract
I describe and characterize the extensive amplification of the zinc finger domain of Piccolo selectively in teleost fish. Piccolo and Bassoon are partially functionally redundant and play roles in regulating the pool of neurotransmitter-filled synaptic vesicles present at synapses. In mice, each protein contains two N-terminal zinc finger domains that have been implicated in interacting with synaptic vesicles. In all teleosts examined, both the Bassoon and Piccolo genes are duplicated. Both teleost bassoon genes and one piccolo gene show very similar domain structure and intron-exon organization to their mouse homologs. In contrast, in piccolo b a single exon that encodes a zinc finger domain is amplified 8 to 16 times in different teleost species. Analysis of the amplified exons suggests they were added and/or deleted from the gene as individual exons in rare events that are likely the result of unequal crossovers between homologous sequences. Surprisingly, the structure of the repeats from cod and zebrafish suggest that amplification of this exon has occurred independently multiple times in the teleost lineage. Based on the structure of the exons, I propose a model in which selection for high sequence similarity at the 5′ and 3′ ends of the exon drives amplification of the repeats and diversity in repeat length likely promotes the stability of the repeated exons by minimizing the likelihood of mispairing of adjacent repeat sequences. Further analysis of piccolo b in teleosts should provide a window through which to examine the process of domain amplification.
Collapse
|
59
|
Lee AR, Lamb RR, Chang JH, Erdmann-Gilmore P, Lichti CF, Rohrs HW, Malone JP, Wairkar YP, DiAntonio A, Townsend RR, Culican SM. Identification of potential mediators of retinotopic mapping: a comparative proteomic analysis of optic nerve from WT and Phr1 retinal knockout mice. J Proteome Res 2012; 11:5515-26. [PMID: 22985349 DOI: 10.1021/pr300767a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinal ganglion cells (RGCs) transmit visual information topographically from the eye to the brain, creating a map of visual space in retino-recipient nuclei (retinotopy). This process is affected by retinal activity and by activity-independent molecular cues. Phr1, which encodes a presumed E3 ubiquitin ligase (PHR1), is required presynaptically for proper placement of RGC axons in the lateral geniculate nucleus and the superior colliculus, suggesting that increased levels of PHR1 target proteins may be instructive for retinotopic mapping of retinofugal projections. To identify potential target proteins, we conducted a proteomic analysis of optic nerve to identify differentially abundant proteins in the presence or absence of Phr1 in RGCs. 1D gel electrophoresis identified a specific band in controls that was absent in mutants. Targeted proteomic analysis of this band demonstrated the presence of PHR1. Additionally, we conducted an unbiased proteomic analysis that identified 30 proteins as being significantly different between the two genotypes. One of these, heterogeneous nuclear ribonucleoprotein M (hnRNP-M), regulates antero-posterior patterning in invertebrates and can function as a cell surface adhesion receptor in vertebrates. Thus, we have demonstrated that network analysis of quantitative proteomic data is a useful approach for hypothesis generation and for identifying biologically relevant targets in genetically altered biological models.
Collapse
Affiliation(s)
- Andrew R Lee
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Takeda Y, Jothi R, Birault V, Jetten AM. RORγ directly regulates the circadian expression of clock genes and downstream targets in vivo. Nucleic Acids Res 2012; 40:8519-35. [PMID: 22753030 PMCID: PMC3458568 DOI: 10.1093/nar/gks630] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 05/31/2012] [Accepted: 06/02/2012] [Indexed: 01/02/2023] Open
Abstract
In this study, we demonstrate that the lack of retinoic acid-related orphan receptor (ROR) γ or α expression in mice significantly reduced the peak expression level of Cry1, Bmal1, E4bp4, Rev-Erbα and Per2 in an ROR isotype- and tissue-selective manner without affecting the phase of their rhythmic expression. Analysis of RORγ/RORα double knockout mice indicated that in certain tissues RORγ and RORα exhibited a certain degree of redundancy in regulating clock gene expression. Reporter gene analysis showed that RORγ was able to induce reporter gene activity through the RORE-containing regulatory regions of Cry1, Bmal1, Rev-Erbα and E4bp4. Co-expression of Rev-Erbα or addition of a novel ROR antagonist repressed this activation. ChIP-Seq and ChIP-Quantitative real-time polymerase chain reaction (QPCR) analysis demonstrated that in vivo RORγ regulate these genes directly and in a Zeitgeber time (ZT)-dependent manner through these ROREs. This transcriptional activation by RORs was associated with changes in histone acetylation and chromatin accessibility. The rhythmic expression of RORγ1 by clock proteins may lead to the rhythmic expression of RORγ1 target genes. The presence of RORγ binding sites and its down-regulation in RORγ-/- liver suggest that the rhythmic expression of Avpr1a depends on RORγ consistent with the concept that RORγ1 provides a link between the clock machinery and its regulation of metabolic genes.
Collapse
MESH Headings
- ARNTL Transcription Factors/metabolism
- Animals
- CLOCK Proteins/metabolism
- Cell Line
- Chromatin/chemistry
- Chromatin/metabolism
- Circadian Rhythm/genetics
- Circadian Rhythm Signaling Peptides and Proteins/biosynthesis
- Circadian Rhythm Signaling Peptides and Proteins/genetics
- Cryptochromes/metabolism
- Gene Expression Regulation
- Mice
- Mice, Knockout
- Mice, Neurologic Mutants
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Response Elements
- Transcriptional Activation
Collapse
Affiliation(s)
- Yukimasa Takeda
- Cell Biology Section, Systems Biology Group, Biostatistics Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA and Medicinal Chemistry, GlaxoSmithKline Ltd., Medicines Research Centre, Stevenage, UK
| | - Raja Jothi
- Cell Biology Section, Systems Biology Group, Biostatistics Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA and Medicinal Chemistry, GlaxoSmithKline Ltd., Medicines Research Centre, Stevenage, UK
| | - Veronique Birault
- Cell Biology Section, Systems Biology Group, Biostatistics Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA and Medicinal Chemistry, GlaxoSmithKline Ltd., Medicines Research Centre, Stevenage, UK
| | - Anton M. Jetten
- Cell Biology Section, Systems Biology Group, Biostatistics Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA and Medicinal Chemistry, GlaxoSmithKline Ltd., Medicines Research Centre, Stevenage, UK
| |
Collapse
|
61
|
Li Z, Ptak D, Zhang L, Walls EK, Zhong W, Leung YF. Phenylthiourea specifically reduces zebrafish eye size. PLoS One 2012; 7:e40132. [PMID: 22761952 PMCID: PMC3384602 DOI: 10.1371/journal.pone.0040132] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/01/2012] [Indexed: 11/18/2022] Open
Abstract
Phenylthiourea (PTU) is commonly used for inhibiting melanization of zebrafish embryos. In this study, the standard treatment with 0.2 mM PTU was demonstrated to specifically reduce eye size in larval fish starting at three days post-fertilization. This effect is likely the result of a reduction in retinal and lens size of PTU-treated eyes and is not related to melanization inhibition. This is because the eye size of tyr, a genetic mutant of tyrosinase whose activity is inhibited in PTU treatment, was not reduced. As PTU contains a thiocarbamide group which is presented in many goitrogens, suppressing thyroid hormone production is a possible mechanism by which PTU treatment may reduce eye size. Despite the fact that thyroxine level was found to be reduced in PTU-treated larvae, thyroid hormone supplements did not rescue the eye size reduction. Instead, treating embryos with six goitrogens, including inhibitors of thyroid peroxidase (TPO) and sodium-iodide symporter (NIS), suggested an alternative possibility. Specifically, three TPO inhibitors, including those that do not possess thiocarbamide, specifically reduced eye size; whereas none of the NIS inhibitors could elicit this effect. These observations indicate that TPO inhibition rather than a general suppression of thyroid hormone synthesis is likely the underlying cause of PTU-induced eye size reduction. Furthermore, the tissue-specific effect of PTU treatment might be mediated by an eye-specific TPO expression. Compared with treatment with other tyrosinase inhibitors or bleaching to remove melanization, PTU treatment remains the most effective approach. Thus, one should use caution when interpreting results that are obtained from PTU-treated embryos.
Collapse
Affiliation(s)
- Zeran Li
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Division of Biology & Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Devon Ptak
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Liyun Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Elwood K. Walls
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine Lafayette, West Lafayette, Indiana, United States of America
| | - Wenxuan Zhong
- Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Yuk Fai Leung
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Lafayette, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
62
|
Abstract
In mammals, the circadian system is composed of the central clock in the hypothalamic suprachiasmatic nuclei and of peripheral clocks that are located in other neural structures and in cells of the peripheral tissues and organs. In adults, the system is hierarchically organized so that the central clock provides the other clocks in the body with information about the time of day. This information is needed for the adaptation of their functions to cyclically changing external conditions. During ontogenesis, the system undergoes substantial development and its sensitivity to external signals changes. Perinatally, maternal cues are responsible for setting the phase of the developing clock, while later postnatally, the LD cycle is dominant. The central clock attains its functional properties during a gradual and programmed process. Peripheral clocks begin to exhibit rhythmicity independent of each other at various developmental stages. During the early developmental stages, the peripheral clocks are set or driven by maternal feeding, but later the central clock becomes fully functional and begins to entrain the periphery. During the perinatal period, the central and peripheral clocks seem to be vulnerable to disturbances in external conditions. Further studies are needed to understand the processes of how the circadian system develops and what degree of plasticity and resilience it possesses during ontogenesis. These data may lead to an assessment of the contribution of disturbances of the circadian system during early ontogenesis to the occurrence of circadian diseases in adulthood.
Collapse
|
63
|
Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 2011; 480:547-51. [PMID: 22056989 PMCID: PMC3245796 DOI: 10.1038/nature10648] [Citation(s) in RCA: 1360] [Impact Index Per Article: 104.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/19/2011] [Indexed: 02/07/2023]
Abstract
Human pluripotent stem cells (hPSCs) are a promising source of cells for applications in regenerative medicine. Directed differentiation of hPSCs into specialized cells such as spinal motoneurons1 or midbrain dopamine (DA) neurons2 has been achieved. However, the effective use of hPSCs for cell therapy has lagged behind. While mouse PSC-derived DA neurons have shown efficacy in models of Parkinson’s disease (PD)3, 4, DA neurons from human PSCs generally display poor in vivo performance5. There are also considerable safety concerns for hPSCs related to their potential for teratoma formation or neural overgrowth6, 7 Here we present a novel floor plate-based strategy for the derivation of human DA neurons that efficiently engraft in vivo, suggesting that past failures were due to incomplete specification rather than a specific vulnerability of the cells. Midbrain floor plate precursors are derived from hPSCs in 11 days following exposure to small molecule activators of sonic hedgehog (SHH) and canonical WNT signaling. Engraftable midbrain DA neurons are obtained by day 25 and can be maintained in vitro for several months. Extensive molecular profiling, biochemical and electrophysiological data define developmental progression and confirm identity of hPSC-derived midbrain DA neurons. In vivo survival and function is demonstrated in PD models using three host species. Long-term engraftment in 6-OHDA-lesioned mice and rats demonstrates robust survival of midbrain DA neurons, complete restoration of amphetamine-induced rotation behavior and improvements in tests of forelimb use and akinesia. Finally, scalability is demonstrated by transplantation into Parkinsonian monkeys. Excellent DA neuron survival, function and lack of neural overgrowth in the three animal models indicate promise for the development of cell based therapies in PD.
Collapse
|