51
|
Lim S, Kierzek M, O'Connor AE, Brenker C, Merriner DJ, Okuda H, Volpert M, Gaikwad A, Bianco D, Potter D, Prabhakar R, Strünker T, O'Bryan MK. CRISP2 Is a Regulator of Multiple Aspects of Sperm Function and Male Fertility. Endocrinology 2019; 160:915-924. [PMID: 30759213 DOI: 10.1210/en.2018-01076] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/08/2019] [Indexed: 11/19/2022]
Abstract
The cysteine-rich secretory proteins (CRISPs) are a group of proteins that show a pronounced expression biased to the male reproductive tract. Although sperm encounter CRISPs at virtually all phases of sperm development and maturation, CRISP2 is the sole CRISP produced during spermatogenesis, wherein it is incorporated into the developing sperm head and tail. In this study we tested the necessity for CRISP2 in male fertility using Crisp2 loss-of-function mouse models. In doing so, we revealed a role for CRISP2 in establishing the ability of sperm to undergo the acrosome reaction and in establishing a normal flagellum waveform. Crisp2-deficient sperm possess a stiff midpiece and are thus unable to manifest the rapid form of progressive motility seen in wild type sperm. As a consequence, Crisp2-deficient males are subfertile. Furthermore, a yeast two-hybrid screen and immunoprecipitation studies reveal that CRISP2 can bind to the CATSPER1 subunit of the Catsper ion channel, which is necessary for normal sperm motility. Collectively, these data define CRISP2 as a determinant of male fertility and explain previous clinical associations between human CRISP2 expression and fertility.
Collapse
Affiliation(s)
- Shuly Lim
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Michelina Kierzek
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Anne E O'Connor
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Christoph Brenker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - D Jo Merriner
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Hidenobu Okuda
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Marianna Volpert
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Avinash Gaikwad
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Deborah Bianco
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - David Potter
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - Ranganathan Prabhakar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
| | - Timo Strünker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Moira K O'Bryan
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
52
|
Hamzeh H, Alvarez L, Strünker T, Kierzek M, Brenker C, Deal PE, Miller EW, Seifert R, Kaupp UB. Kinetic and photonic techniques to study chemotactic signaling in sea urchin sperm. Methods Cell Biol 2019; 151:487-517. [PMID: 30948028 DOI: 10.1016/bs.mcb.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sperm from sea urchins are attracted by chemical cues released by the egg-a mechanism called chemotaxis. We describe here the signaling pathway and molecular components endowing sperm with single-molecule sensitivity. Chemotactic signaling and behavioral responses occur on a timescale of a few milliseconds to seconds. We describe the techniques and chemical tools used to resolve the signaling events in time. The techniques include rapid-mixing devices, rapid stroboscopic microscopy, and photolysis of caged second messengers and chemoattractants.
Collapse
Affiliation(s)
- Hussein Hamzeh
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Bonn, Germany
| | - Luis Alvarez
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Bonn, Germany
| | - Timo Strünker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Michelina Kierzek
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Christoph Brenker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Parker E Deal
- Department of Chemistry, University of California, Berkeley, CA, United States
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, CA, United States; Department of Molecular & Cell Biology, University of California, Berkeley, CA, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| | - Reinhard Seifert
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Bonn, Germany
| | - U Benjamin Kaupp
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Bonn, Germany.
| |
Collapse
|
53
|
Yoshida K, Shiba K, Sakamoto A, Ikenaga J, Matsunaga S, Inaba K, Yoshida M. Ca 2+ efflux via plasma membrane Ca 2+-ATPase mediates chemotaxis in ascidian sperm. Sci Rep 2018; 8:16622. [PMID: 30413746 PMCID: PMC6226504 DOI: 10.1038/s41598-018-35013-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022] Open
Abstract
When a spermatozoon shows chemotactic behavior, transient [Ca2+]i increases in the spermatozoon are induced by an attractant gradient. The [Ca2+]i increase triggers a series of stereotypic responses of flagellar waveforms that comprise turning and straight-swimming. However, the molecular mechanism of [Ca2+]i modulation controlled by the attractants is not well defined. Here, we examined receptive mechanisms for the sperm attractant, SAAF, in the ascidian, Ciona intestinalis, and identified a plasma membrane Ca2+-ATPase (PMCA) as a SAAF-binding protein. PMCA is localized in sperm flagella membranes and seems to interact with SAAF through basic amino acids located in the second and third extracellular loops. ATPase activity of PMCA was enhanced by SAAF, and PMCA inhibitors, 5(6)-Carboxyeosin diacetate and Caloxin 2A1, inhibited chemotactic behavior of the sperm. Furthermore, Caloxin 2A1 seemed to inhibit efflux of [Ca2+]i in the sperm, and SAAF seemed to competitively reduce the effect of Caloxin 2A1. On the other hand, chemotactic behavior of the sperm was disordered not only at low-Ca2+, but also at high-Ca2+ conditions. Thus, PMCA is a potent candidate for the SAAF receptor, and direct control of Ca2+ efflux via PMCA is a fundamental mechanism to mediate chemotactic behavior in the ascidian spermatozoa.
Collapse
Affiliation(s)
- Kaoru Yoshida
- Faculty of Biomedical Engineering, Toin University of Yokohama, Yokohama, Kanagawa, 225-8503, Japan
| | - Kogiku Shiba
- Misaki Marine Biological Station, School of Science, the University of Tokyo, Miura, Kanagawa, 238-0225, Japan
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, 415-0025, Japan
| | - Ayako Sakamoto
- Misaki Marine Biological Station, School of Science, the University of Tokyo, Miura, Kanagawa, 238-0225, Japan
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan
| | - Jumpei Ikenaga
- Misaki Marine Biological Station, School of Science, the University of Tokyo, Miura, Kanagawa, 238-0225, Japan
| | - Shigeru Matsunaga
- Misaki Marine Biological Station, School of Science, the University of Tokyo, Miura, Kanagawa, 238-0225, Japan
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, 434-8601, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, 415-0025, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, School of Science, the University of Tokyo, Miura, Kanagawa, 238-0225, Japan.
| |
Collapse
|
54
|
Rennhack A, Schiffer C, Brenker C, Fridman D, Nitao ET, Cheng Y, Tamburrino L, Balbach M, Stölting G, Berger TK, Kierzek M, Alvarez L, Wachten D, Zeng X, Baldi E, Publicover SJ, Benjamin Kaupp U, Strünker T. A novel cross-species inhibitor to study the function of CatSper Ca 2+ channels in sperm. Br J Pharmacol 2018; 175:3144-3161. [PMID: 29723408 PMCID: PMC6031884 DOI: 10.1111/bph.14355] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 04/14/2018] [Accepted: 04/20/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Sperm from many species share the sperm-specific Ca2+ channel CatSper that controls the intracellular Ca2+ concentration and, thereby, the swimming behaviour. A growing body of evidence suggests that the mechanisms controlling the activity of CatSper and its role during fertilization differ among species. A lack of suitable pharmacological tools has hampered the elucidation of the function of CatSper. Known inhibitors of CatSper exhibit considerable side effects and also inhibit Slo3, the principal K+ channel of mammalian sperm. The compound RU1968 was reported to suppress Ca2+ signaling in human sperm by an unknown mechanism. Here, we examined the action of RU1968 on CatSper in sperm from humans, mice, and sea urchins. EXPERIMENTAL APPROACH We resynthesized RU1968 and studied its action on sperm from humans, mice, and the sea urchin Arbacia punctulata by Ca2+ fluorimetry, single-cell Ca2+ imaging, electrophysiology, opto-chemistry, and motility analysis. KEY RESULTS RU1968 inhibited CatSper in sperm from invertebrates and mammals. The compound lacked toxic side effects in human sperm, did not affect mouse Slo3, and inhibited human Slo3 with about 15-fold lower potency than CatSper. Moreover, in human sperm, RU1968 mimicked CatSper dysfunction and suppressed motility responses evoked by progesterone, an oviductal steroid known to activate CatSper. Finally, RU1968 abolished CatSper-mediated chemotactic navigation in sea urchin sperm. CONCLUSION AND IMPLICATIONS We propose RU1968 as a novel tool to elucidate the function of CatSper channels in sperm across species.
Collapse
Affiliation(s)
- Andreas Rennhack
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Christian Schiffer
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| | - Christoph Brenker
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| | - Dmitry Fridman
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Elis T Nitao
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | - Yi‐Min Cheng
- Institute of Life Science and School of Life ScienceNanchang UniversityNanchangJiangxiChina
| | - Lara Tamburrino
- Department of Experimental and Clinical Medicine, Center of Excellence DENOTHEUniversity of FlorenceFlorenceItaly
| | - Melanie Balbach
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Gabriel Stölting
- Institute of Complex Systems – Zelluläre Biophysik 4, Forschungszentrum JülichJülichGermany
| | - Thomas K Berger
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Michelina Kierzek
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| | - Luis Alvarez
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Dagmar Wachten
- Max‐Planck Research Group of Molecular Physiology, Center of Advanced European Studies and ResearchBonnGermany
- Institute of Innate ImmunityUniversity Hospital, University of BonnBonnGermany
| | - Xu‐Hui Zeng
- Institute of Life Science and School of Life ScienceNanchang UniversityNanchangJiangxiChina
| | - Elisabetta Baldi
- Department of Experimental and Clinical Medicine, Center of Excellence DENOTHEUniversity of FlorenceFlorenceItaly
| | | | - U Benjamin Kaupp
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Timo Strünker
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| |
Collapse
|
55
|
Windler F, Bönigk W, Körschen HG, Grahn E, Strünker T, Seifert R, Kaupp UB. The solute carrier SLC9C1 is a Na +/H +-exchanger gated by an S4-type voltage-sensor and cyclic-nucleotide binding. Nat Commun 2018; 9:2809. [PMID: 30022052 PMCID: PMC6052114 DOI: 10.1038/s41467-018-05253-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/15/2018] [Indexed: 11/30/2022] Open
Abstract
Voltage-sensing (VSD) and cyclic nucleotide-binding domains (CNBD) gate ion channels for rapid electrical signaling. By contrast, solute carriers (SLCs) that passively redistribute substrates are gated by their substrates themselves. Here, we study the orphan sperm-specific solute carriers SLC9C1 that feature a unique tripartite structure: an exchanger domain, a VSD, and a CNBD. Voltage-clamp fluorimetry shows that SLC9C1 is a genuine Na+/H+ exchanger gated by voltage. The cellular messenger cAMP shifts the voltage range of activation. Mutations in the transport domain, the VSD, or the CNBD strongly affect Na+/H+ exchange, voltage gating, or cAMP sensitivity, respectively. Our results establish SLC9C1 as a phylogenetic chimaera that combines the ion-exchange mechanism of solute carriers with the gating mechanism of ion channels. Classic SLCs slowly readjust changes in the intra- and extracellular milieu, whereas voltage gating endows the Na+/H+ exchanger with the ability to produce a rapid pH response that enables downstream signaling events. The sperm-specific solute carrier SLC9C1 is a phylogenetic chimaera that carries a voltage-sensing (VSD) and a cyclic nucleotide-binding domain (CNBD). Here authors show by electrophysiology and fluorimetry that SLC9C1 is a genuine Na+/H+ exchanger gated by voltage and cAMP.
Collapse
Affiliation(s)
- F Windler
- Center of Advanced European Studies and Research (caesar), Department Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.,Marine Biological Laboratory, 7 MBL Street, Woods Hole, 02543, MA, USA
| | - W Bönigk
- Center of Advanced European Studies and Research (caesar), Department Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - H G Körschen
- Center of Advanced European Studies and Research (caesar), Department Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - E Grahn
- Center of Advanced European Studies and Research (caesar), Department Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - T Strünker
- Center of Advanced European Studies and Research (caesar), Department Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.,Marine Biological Laboratory, 7 MBL Street, Woods Hole, 02543, MA, USA.,University Hospital Münster, Center of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Geb. D11, 48149, Münster, Germany
| | - R Seifert
- Center of Advanced European Studies and Research (caesar), Department Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany. .,Marine Biological Laboratory, 7 MBL Street, Woods Hole, 02543, MA, USA.
| | - U B Kaupp
- Center of Advanced European Studies and Research (caesar), Department Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany. .,Marine Biological Laboratory, 7 MBL Street, Woods Hole, 02543, MA, USA. .,University of Bonn, Life & Medical Sciences Institute (LIMES), Carl-Troll-Str. 31, 53115, Bonn, Germany.
| |
Collapse
|
56
|
Lishko PV, Mannowetz N. CatSper: A Unique Calcium Channel of the Sperm Flagellum. CURRENT OPINION IN PHYSIOLOGY 2018; 2:109-113. [PMID: 29707693 DOI: 10.1016/j.cophys.2018.02.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To overcome egg protective vestments and ensure successful fertilization, mammalian spermatozoa switch symmetrical progressive motility to a powerful, whip-like flagellar motion, known as hyperactivation. The latter is triggered by a calcium influx through the sperm-specific, voltage-dependent, and alkalization-activated calcium channel of sperm - CatSper. The channel comprises nine subunits which together form a heteromeric complex. CatSper-deficient male mice and men with mutations in CatSper genes are infertile. This calcium channel is regulated by various endogenous compounds, such as steroids, prostaglandins, endocannabinoids, and intracellular pH. Being a sperm-specific ion channel that is not expressed anywhere else in the body, CatSper represents an ideal target for the development of female and even male contraceptives. In this review, we discuss the recent advances in studying CatSper functional properties and discuss future steps that are required to take in order to achieve a deep understanding of the molecular basis of CatSper function.
Collapse
|
57
|
Arima H, Tsutsui H, Sakamoto A, Yoshida M, Okamura Y. Induction of divalent cation permeability by heterologous expression of a voltage sensor domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:981-990. [PMID: 29317195 DOI: 10.1016/j.bbamem.2018.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/21/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022]
Abstract
The voltage sensor domain (VSD) is a protein domain that confers sensitivity to membrane potential in voltage-gated ion channels as well as the voltage-sensing phosphatase. Although VSDs have long been considered to function as regulatory units acting on adjacent effectors, recent studies have revealed the existence of direct ion permeation paths in some mutated VSDs and in the voltage-gated proton channel. In this study, we show that calcium currents are evoked upon membrane hyperpolarization in cells expressing a VSD derived from an ascidian voltage-gated ion channel superfamily. Unlike the previously reported omega-pore in the Shaker K+ channel and rNav1.4, mutations are not required. From electrophysiological experiments in heterologous expression systems, we found that the conductance is directly mediated by the VSD itself and is carried by both monovalent and divalent cations. This is the first report of divalent cation permeation through a VSD-like structure.
Collapse
Affiliation(s)
- Hiroki Arima
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidekazu Tsutsui
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Department of Material Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan.
| | - Ayako Sakamoto
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Yasushi Okamura
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
58
|
Sun XH, Zhu YY, Wang L, Liu HL, Ling Y, Li ZL, Sun LB. The Catsper channel and its roles in male fertility: a systematic review. Reprod Biol Endocrinol 2017; 15:65. [PMID: 28810916 PMCID: PMC5558725 DOI: 10.1186/s12958-017-0281-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
The Catsper channel is a sperm-specific, Ca2+-permeable, pH-dependent, and low voltage-dependent channel that is essential for the hyperactivity of sperm flagellum, chemotaxis towards the egg, capacitation and acrosome reaction. All of these physiological events require calcium entry into sperm cells. Remarkably, Catsper genes are exclusively expressed in the testis during spermatogenesis, and are sensitive to ion channel-induced pH change, such as NHEs, Ca2+ATPase, K+ channel, Hv1 channel and HCO3- transporters. Furthermore, the Catsper channel is regulated by some physiological stimulants, such as progesterone, cyclic nucleotides (e.g., cAMP, cGMP), zona pellucida (ZP) glycoproteins and bovine serum albumin (BSA). All of these factors normally stimulate Ca2+ entry into sperm through the Catsper channel. In addition, the Catsper channel may be a potential target for male infertility treatment or contraception. This review will focus on the structure, functions, regulation mechanisms and medicinal targets of the Catsper channel.
Collapse
Affiliation(s)
- Xiang-hong Sun
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Ying-ying Zhu
- 0000 0001 0455 0905grid.410645.2Department of pharmacy, College of pharmacy of Qingdao University, Qingdao, China
| | - Lin Wang
- grid.412521.1Department of clinical laboratory, the affiliated hospital of Qingdao University Medical College, Qingdao, China
| | - Hong-ling Liu
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Yong Ling
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Zong-li Li
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Li-bo Sun
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| |
Collapse
|
59
|
Abstract
Fertilization is exceptionally complex and, depending on the species, happens in entirely different environments. External fertilizers in aquatic habitats, like marine invertebrates or fish, release their gametes into the seawater or freshwater, whereas sperm from most internal fertilizers like mammals cross the female genital tract to make their way to the egg. Various chemical and physical cues guide sperm to the egg. Quite generally, these cues enable signaling pathways that ultimately evoke a cellular Ca2+ response that modulates the waveform of the flagellar beat and, hence, the swimming path. To cope with the panoply of challenges to reach and fertilize the egg, sperm from different species have developed their own unique repertoire of signaling molecules and mechanisms. Here, we review the differences and commonalities for sperm sensory signaling in marine invertebrates (sea urchin), fish (zebrafish), and mammals (mouse, human).
Collapse
Affiliation(s)
- Dagmar Wachten
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| | - Jan F Jikeli
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| | - U Benjamin Kaupp
- Department Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| |
Collapse
|
60
|
Network model predicts that CatSper is the main Ca 2+ channel in the regulation of sea urchin sperm motility. Sci Rep 2017; 7:4236. [PMID: 28652586 PMCID: PMC5484689 DOI: 10.1038/s41598-017-03857-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 05/08/2017] [Indexed: 12/27/2022] Open
Abstract
Spermatozoa sea urchin swimming behaviour is regulated by small peptides from the egg outer envelope. Speract, such a peptide, after binding to its receptor in Strongylocentrotus purpuratus sperm flagella, triggers a signaling pathway that culminates with a train of intracellular calcium oscillations, correlated with changes in sperm swimming pattern. This pathway has been widely studied but not fully characterized. Recent work on Arbacia punctulata sea urchin spermatozoa has documented the presence of the Ca2+ CatSper channel in their flagella and its involvement in chemotaxis. However, if other calcium channels participate in chemotaxis remains unclear. Here, based on an experimentally-backed logical network model, we conclude that CatSper is fundamental in the S. purpuratus speract-activated sea urchin sperm signaling cascade, although other Ca2+ channels could still be relevant. We also present for the first time experimental corroboration of its active presence in S. purpuratus sperm flagella. We argue, prompted by in silico knock-out calculations, that CatSper is the main generator of calcium oscillations in the signaling pathway and that other calcium channels, if present, have a complementary role. The approach adopted here allows us to unveil processes, which are hard to detect exclusively by experimental procedures.
Collapse
|
61
|
Alvarez L. The tailored sperm cell. JOURNAL OF PLANT RESEARCH 2017; 130:455-464. [PMID: 28357612 PMCID: PMC5406480 DOI: 10.1007/s10265-017-0936-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 05/28/2023]
Abstract
Sperm are ubiquitous and yet unique. Genes involved in sexual reproduction are more divergent than most genes expressed in non-reproductive tissues. It has been argued that sperm have been altered during evolution more than any somatic cell. Profound variations are found at the level of morphology, motility, search strategy for the egg, and the underlying signalling mechanisms. Sperm evolutionary adaptation may have arisen from sperm competition (sperm from rival males compete within the female's body to fertilize eggs), cryptic female choice (the female's ability to choose among different stored sperm), social cues tuning sperm quality or from the site of fertilization (internal vs. external fertilization), to name a few. Unquestionably, sperm represent an invaluable source for the exploration of biological diversity at the level of signalling, motility, and evolution. Despite the richness in sperm variations, only a few model systems for signalling and motility have been studied in detail. Using fast kinetic techniques, electrophysiological recordings, and optogenetics, the molecular players and the sequence of signalling events of sperm from a few marine invertebrates, mammals, and fish are being elucidated. Furthermore, recent technological advances allow studying sperm motility with unprecedented precision; these studies provide new insights into flagellar motility and navigation in three dimensions (3D). The scope of this review is to highlight variations in motile sperm across species, and discuss the great promise that 3D imaging techniques offer into unravelling sperm mysteries.
Collapse
Affiliation(s)
- Luis Alvarez
- Center of Advanced European Studies and Research (caesar). Institute affiliated with the Max Planck Society, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
62
|
Yanagimachi R, Harumi T, Matsubara H, Yan W, Yuan S, Hirohashi N, Iida T, Yamaha E, Arai K, Matsubara T, Andoh T, Vines C, Cherr GN. Chemical and physical guidance of fish spermatozoa into the egg through the micropyle†,‡. Biol Reprod 2017; 96:780-799. [PMID: 28371886 PMCID: PMC6355103 DOI: 10.1093/biolre/iox015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 02/06/2023] Open
Abstract
Eggs of teleost fish, unlike those of many other animals, allow sperm entry only at a single site, a narrow canal in the egg's chorion called the micropyle. In some fish (e.g., flounder, herring, and Alaska pollock), the micropyle is a narrow channel in the chorion, with or without a shallow depression around the outer opening of micropyle. In some other fish (e.g., salmon, pufferfish, cod, and medaka), the micropyle is like a funnel with a conical opening. Eggs of all the above fish have a glycoprotein tightly bound to the chorion surface around the micropyle. This glycoprotein directs spermatozoa into the micropylar canal in a Ca2+-dependent manner. This substance, called the micropylar sperm attractant or MISA, increases fertilization efficiency and is essential in herring. In flounder, salmon, and perhaps medaka, fertilization is possible without MISA, but its absence makes fertilization inefficient because most spermatozoa swim over the micropyle without entering it. The mechanism underlying sperm-MISA interactions is yet to be determined, but at least in herring the involvement of Ca2+ and K+ channel proteins, as well as CatSper and adenylyl cyclase, is very likely. In some other fish (e.g., zebrafish, loach, and goldfish), the chorion around the micropyle is deeply indented (e.g., zebrafish and loach) or it has radially or spirally arranged grooves around the outer opening of the micropyle (e.g., goldfish). MISA is absent from the eggs of these fish and sperm entry into micropylar canal seems to be purely physical.
Collapse
Affiliation(s)
- Ryuzo Yanagimachi
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis
Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii,
USA
| | - Tatsuo Harumi
- Department of Anatomy, Asahikawa Medical University, Asahikawa, Hokkaido,
Japan
| | - Hajime Matsubara
- Department of Aquatic Biology, Tokyo University of Agriculture, Abashiri,
Hokkaido, Japan
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of
Medicine, Reno, Nevada, USA
| | - Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada School of
Medicine, Reno, Nevada, USA
| | - Noritaka Hirohashi
- Oki Marine Biological Station, Shimane University, Okino-shima, Shimane,
Japan
| | - Tomohiro Iida
- Oki Marine Biological Station, Shimane University, Okino-shima, Shimane,
Japan
| | - Etsuro Yamaha
- Nanae Fresh-water Laboratory, Field Science Center for Northern Biosphere,
Hokkaido University, Nanae, Hokkaido, Japan
| | - Katsutoshi Arai
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido,
Japan
| | - Takahiro Matsubara
- South Ehime Fishery Research Center, Ehime University, Ainan, Ehime,
Japan
| | - Tadashi Andoh
- Seikai National Fisheries Research Institute, Japan Fisheries Research and
Education Agency, Taira-machi, Nagasaki, Japan
| | - Carol Vines
- Bodega Marine Laboratory, University of California Davis, Bodega Bay,
California, USA
| | - Gary N. Cherr
- Bodega Marine Laboratory, University of California Davis, Bodega Bay,
California, USA
| |
Collapse
|
63
|
Vicens A, Andrade‐López K, Cortez D, Gutiérrez RM, Treviño CL. Premammalian origin of the sperm-specific Slo3 channel. FEBS Open Bio 2017; 7:382-390. [PMID: 28286733 PMCID: PMC5337896 DOI: 10.1002/2211-5463.12186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/01/2016] [Accepted: 12/16/2016] [Indexed: 01/05/2023] Open
Abstract
Slo3 is a sperm-specific potassium (K+) channel essential for male fertility. Slo3 channels have so far been considered to be specific to mammals. Through exploratory genomics, we identified the Slo3 gene in the genome of terrestrial (birds and reptiles) and aquatic (fish) vertebrates. In the case of fish, Slo3 has undergone several episodes of gene loss. Transcriptomic analysis showed that vertebrate Slo3 transcript orthologues are predominantly expressed in testis, in concordance with the mammalian Slo3. We conclude that the Slo3 gene arose during the radiation of early vertebrates, much earlier than previously thought. Our findings add to the growing evidence indicating that the phylogenetic profiles of sperm-specific channels are intermittent throughout metazoan evolution, which probably reflects the adaptation of sperm to different ionic milieus and fertilization environments.
Collapse
Affiliation(s)
- Alberto Vicens
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavaca MorelosMéxico
| | - Karla Andrade‐López
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavaca MorelosMéxico
| | - Diego Cortez
- Centro de Ciencias GenómicasUniversidad Nacional Autónoma de MéxicoCuernavaca MorelosMéxico
| | - Rosa María Gutiérrez
- Departamento de Microbiología MolecularInstituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavaca MorelosMéxico
| | - Claudia L. Treviño
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavaca MorelosMéxico
| |
Collapse
|
64
|
Wozniak KL, Mayfield BL, Duray AM, Tembo M, Beleny DO, Napolitano MA, Sauer ML, Wisner BW, Carlson AE. Extracellular Ca2+ Is Required for Fertilization in the African Clawed Frog, Xenopus laevis. PLoS One 2017; 12:e0170405. [PMID: 28114360 PMCID: PMC5256882 DOI: 10.1371/journal.pone.0170405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/04/2017] [Indexed: 11/19/2022] Open
Abstract
Background The necessity of extracellular Ca2+ for fertilization and early embryonic development in the African clawed frog, Xenopus laevis, is controversial. Ca2+ entry into X. laevis sperm is reportedly required for the acrosome reaction, yet fertilization and embryonic development have been documented to occur in high concentrations of the Ca2+ chelator BAPTA. Here we sought to resolve this controversy. Methodology/principal finding Using the appearance of cleavage furrows as an indicator of embryonic development, we found that X. laevis eggs inseminated in a solution lacking added divalent cations developed normally. By contrast, eggs inseminated in millimolar concentrations of BAPTA or EGTA failed to develop. Transferring embryos to varying solutions after sperm addition, we found that extracellular Ca2+ is specifically required for events occurring within the first 30 minutes after sperm addition, but not after. We found that the fluorescently stained sperm were not able to penetrate the envelope of eggs inseminated in high BAPTA, whereas several had penetrated the vitelline envelope of eggs inseminated without a Ca2+ chelator, or with BAPTA and saturating CaCl2. Together these results indicate that fertilization does not occur in high concentrations of Ca2+ chelators. Finally, we found that the jelly coat includes >5 mM of readily diffusible Ca2+. Conclusions/Significance Taken together, these data are consistent with requirement of extracellular Ca2+ for fertilization. Based on our findings, we hypothesize that the jelly coat surrounding the egg acts as a reserve of readily available Ca2+ ions to foster fertilization in changing extracellular milieu.
Collapse
Affiliation(s)
- Katherine L. Wozniak
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Brianna L. Mayfield
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alexis M. Duray
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Maiwase Tembo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - David O. Beleny
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Marc A. Napolitano
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Monica L. Sauer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bennett W. Wisner
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anne E. Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
65
|
Vicente-Carrillo A, Álvarez-Rodríguez M, Rodríguez-Martínez H. The CatSper channel modulates boar sperm motility during capacitation. Reprod Biol 2017; 17:69-78. [PMID: 28077244 DOI: 10.1016/j.repbio.2017.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/12/2016] [Accepted: 01/02/2017] [Indexed: 12/11/2022]
Abstract
The cation channel of sperm (CatSper) comprises four transmembrane subunits specifically expressed in human, equine, murine and ovine spermatozoa, apparently implicated in capacitation, hyperactivation and acrosome exocytosis. Western blotting and immunocytochemistry showed hereby that CatSper subunits are also present in boar spermatozoa, primarily over the sperm neck, tail and cytoplasmic droplets; albeit CatSper -1 presented in addition some distribution over the membrane of the acrosome and CatSper -2 and -4 over the membrane of the post-acrosome. The role of the Catsper channel in boar spermatozoa was investigated by extending the spermatozoa in media containing different calcium (Ca2+) availability and exposure to the capacitation-trigger bicarbonate, to progesterone or CatSper inhibitors (Mibefradil and NNC 55-0396), separately or sequentially, at physiological and toxicological doses. Extracellular Ca2+ availability, combined with bicarbonate exposure (capacitation-inducing conditions) decreased sperm motility, similarly to when spermatozoa incubated in capacitation-inducing conditions was exposed to Mibefradil and NNC 55-0396. Exposure of these spermatozoa to progesterone did not cause significant changes in sperm motility and nor did it revert its decrease induced by CatSper antagonists. In conclusion, the CatSper channel regulates sperm motility during porcine capacitation-related events in vitro.
Collapse
|
66
|
Abstract
Fertilization, the union of an oocyte and a sperm, is a fundamental process that restores the diploid genome and initiates embryonic development. For the sperm, fertilization is the end of a long journey, one that starts in the male testis before transitioning to the female reproductive tract's convoluted tubule architecture. Historically, motile sperm were thought to complete this journey using luck and numbers. A different picture of sperm has emerged recently as cells that integrate complex sensory information for navigation. Chemical, physical, and thermal cues have been proposed to help guide sperm to the waiting oocyte. Molecular mechanisms are being delineated in animal models and humans, revealing common features, as well as important differences. Exposure to pheromones and nutritional signals can modulate guidance mechanisms, indirectly impacting sperm motility performance and fertility. These studies highlight the importance of sensory information and signal transduction in fertilization.
Collapse
Affiliation(s)
- Hieu D Hoang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Michael A Miller
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
67
|
Kaupp UB, Strünker T. Signaling in Sperm: More Different than Similar. Trends Cell Biol 2016; 27:101-109. [PMID: 27825709 DOI: 10.1016/j.tcb.2016.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 11/30/2022]
Abstract
For a given sensory cell type, signaling motifs are rather uniform across phyla. By contrast, sperm from different species use diverse repertoires of sperm-specific signaling molecules and even closely related protein isoforms feature different properties and serve different functions. This surprising diversity has consequences for strategies in fertilization research and it will take some time to get the big picture. We discuss the function of receptors, ion channels, and exchangers embedded in cellular pathways from different sperm species.
Collapse
Affiliation(s)
- U B Kaupp
- Center of Advanced European Studies and Research (CAESAR), Department of Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| | - T Strünker
- University Hospital Münster, Center of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Geb. D11, 48149 Münster, Germany
| |
Collapse
|
68
|
Cd(2+) sensitivity and permeability of a low voltage-activated Ca(2+) channel with CatSper-like selectivity filter. Cell Calcium 2016; 60:41-50. [PMID: 27134080 DOI: 10.1016/j.ceca.2016.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/21/2016] [Accepted: 03/30/2016] [Indexed: 11/22/2022]
Abstract
CatSper is a sperm-specific Ca(2+) channel that plays an essential role in the male fertility. However, its biophysical properties have been poorly characterized mainly due to its deficient heterologous expression. As other voltage-gated Ca(2+) channels (CaVs), CatSper possesses a conserved Ca(2+)-selective filter motif ([T/S]x[D/E]xW) in the pore region. Interestingly, CatSper conserves four aspartic acids (DDDD) as the negatively charged residues in this motif while high voltage-activated CaVs have four glutamic acids (EEEE) and low voltage-activated CaVs possess two glutamic acids and two aspartic acids (EEDD). Previous studies based on site-directed mutagenesis of L- and T-type channels showed that the number of D seems to have a negative correlation with their cadmium (Cd(2+)) sensitivity. These results suggest that CatSper (DDDD) would have low sensitivity to Cd(2+). To explore Cd(2+)-sensitivity and -permeability of CatSper, we performed two types of experiments: 1) Electrophysiological analysis of heterologously expressed human CaV3.1 channel and three pore mutants (DEDD, EDDD and DDDD), 2) Cd(2+) imaging of human spermatozoa with FluoZin-1. Electrophysiological studies showed a significant increase in Cd(2+) and manganese (Mn(2+)) currents through the CaV3.1 mutants as well as a reduction in the inhibitory effect of Cd(2+) on the Ca(2+) current. In fluorescence imaging with human sperm, we observed an increase in Cd(2+) influx potentiated by progesterone, a potent activator of CatSper. These results support our hypothesis, namely that Cd(2+)-sensitivity and -permeability are related to the absolute number of D in the Ca(2+)-selective filter independently to the type of the Cav channels.
Collapse
|
69
|
Arcos-Hernández C, Romero F, Sánchez-Guevara Y, Beltrán C, Nishigaki T. FRET analysis using sperm-activating peptides tagged with fluorescent proteins reveals that ligand-binding sites exist as clusters. ACTA ACUST UNITED AC 2016; 219:508-15. [PMID: 26889001 DOI: 10.1242/jeb.127662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Long-range cellular communication between the sperm and egg is critical for external fertilization. Sperm-activating peptides (SAPs) are diffusible components of the outer layer of eggs in echinoderms, and function as chemoattractants for spermatozoa. The decapeptide named speract is the best-characterized sea urchin SAP. Biochemical and physiological actions of speract have been studied with purified or chemically synthesized peptides. In this work, we prepared recombinant speract fused to a fluorescent protein (FP; FP-speract) using three color variants: a cyan (eCFP), a yellow (mVenus) and a large Stokes shift yellow (mAmetrine) FP. Although these fluorescence tags are 20 times larger than speract, competitive binding experiments using mAmetrine-speract revealed that this FP-speract has binding affinity to the receptor that is comparable (7.6-fold less) to that of non-labeled speract. Indeed, 10 nmol l(-1) eCFP-speract induces physiological sperm responses such as membrane potential changes and increases in intracellular pH and Ca(2+) concentrations similar to those triggered by 10 nmol l(-1) speract. Furthermore, FP-speract maintains its fluorescence upon binding to its receptor. Using this property, we performed fluorescence resonance energy transfer (FRET) measurements with eCFP-speract and mVenus-speract as probes and obtained a positive FRET signal upon binding to the receptor, which suggests that the speract receptor exists as an oligomer, at least as a dimer, or alternatively that a single speract receptor protein possesses multiple binding sites. This property could partially account for the positive and/or negative cooperative binding of speract to the receptor.
Collapse
Affiliation(s)
- César Arcos-Hernández
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (IBT-UNAM), Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor. 62210, Mexico
| | - Francisco Romero
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (IBT-UNAM), Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor. 62210, Mexico
| | - Yoloxochitl Sánchez-Guevara
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (IBT-UNAM), Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor. 62210, Mexico
| | - Carmen Beltrán
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (IBT-UNAM), Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor. 62210, Mexico
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (IBT-UNAM), Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor. 62210, Mexico
| |
Collapse
|
70
|
Linck RW, Chemes H, Albertini DF. The axoneme: the propulsive engine of spermatozoa and cilia and associated ciliopathies leading to infertility. J Assist Reprod Genet 2016; 33:141-56. [PMID: 26825807 PMCID: PMC4759005 DOI: 10.1007/s10815-016-0652-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/03/2016] [Indexed: 01/08/2023] Open
Affiliation(s)
- Richard W Linck
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Hector Chemes
- Center for Research in Endocrinology, National Research Council, CEDIE-CONICET, Endocrinology Division, Buenos Aires Children's Hospital, Gallo 1330, C1425SEFD, Buenos Aires, Argentina.
| | - David F Albertini
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,The Center for Human Reproduction, New York, NY, USA.
| |
Collapse
|
71
|
Speract, a sea urchin egg peptide that regulates sperm motility, also stimulates sperm mitochondrial metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:415-26. [PMID: 26772728 DOI: 10.1016/j.bbabio.2016.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022]
Abstract
Sea urchin sperm have only one mitochondrion, that in addition to being the main source of energy, may modulate intracellular Ca(2+) concentration ([Ca(2+)]i) to regulate their motility and possibly the acrosome reaction. Speract is a decapeptide from the outer jelly layer of the Strongylocentrotus purpuratus egg that upon binding to its receptor in the sperm, stimulates sperm motility, respiration and ion fluxes, among other physiological events. Altering the sea urchin sperm mitochondrial function with specific inhibitors of this organelle, increases [Ca(2+)]i in an external Ca(2+) concentration ([Ca(2+)]ext)-dependent manner (Ardón, et al., 2009. BBActa 1787: 15), suggesting that the mitochondrion is involved in sperm [Ca(2+)]i homeostasis. To further understand the interrelationship between the mitochondrion and the speract responses, we measured mitochondrial membrane potential (ΔΨ) and NADH levels. We found that the stimulation of sperm with speract depolarizes the mitochondrion and increases the levels of NADH. Surprisingly, these responses are independent of external Ca(2+) and are due to the increase in intracellular pH (pHi) induced by speract. Our findings indicate that speract, by regulating pHi, in addition to [Ca(2+)]i, may finely modulate mitochondrial metabolism to control motility and ensure that sperm reach the egg and fertilize it.
Collapse
|
72
|
Fechner S, Alvarez L, Bönigk W, Müller A, Berger TK, Pascal R, Trötschel C, Poetsch A, Stölting G, Siegfried KR, Kremmer E, Seifert R, Kaupp UB. A K(+)-selective CNG channel orchestrates Ca(2+) signalling in zebrafish sperm. eLife 2015; 4:e07624. [PMID: 26650356 PMCID: PMC4749565 DOI: 10.7554/elife.07624] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 12/09/2015] [Indexed: 01/03/2023] Open
Abstract
Calcium in the flagellum controls sperm navigation. In sperm of marine invertebrates and mammals, Ca(2+) signalling has been intensely studied, whereas for fish little is known. In sea urchin sperm, a cyclic nucleotide-gated K(+) channel (CNGK) mediates a cGMP-induced hyperpolarization that evokes Ca(2+) influx. Here, we identify in sperm of the freshwater fish Danio rerio a novel CNGK family member featuring non-canonical properties. It is located in the sperm head rather than the flagellum and is controlled by intracellular pH, but not cyclic nucleotides. Alkalization hyperpolarizes sperm and produces Ca(2+) entry. Ca(2+) induces spinning-like swimming, different from swimming of sperm from other species. The "spinning" mode probably guides sperm into the micropyle, a narrow entrance on the surface of fish eggs. A picture is emerging of sperm channel orthologues that employ different activation mechanisms and serve different functions. The channel inventories probably reflect adaptations to species-specific challenges during fertilization.
Collapse
Affiliation(s)
- Sylvia Fechner
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - Luis Alvarez
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - Wolfgang Bönigk
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - Astrid Müller
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - Thomas K Berger
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - Rene Pascal
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | | | - Ansgar Poetsch
- Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität Bochum, Bochum, Germany
| | - Gabriel Stölting
- Institute of Complex Systems 4, Forschungszentrum Jülich, Jülich, Germany
| | - Kellee R Siegfried
- Biology Department, University of Massachusetts Boston, Boston, United States
| | - Elisabeth Kremmer
- Institut für Molekulare Immunologie, Helmholtz-Zentrum München, München, Germany
| | - Reinhard Seifert
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - U Benjamin Kaupp
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| |
Collapse
|
73
|
Jikeli JF, Alvarez L, Friedrich BM, Wilson LG, Pascal R, Colin R, Pichlo M, Rennhack A, Brenker C, Kaupp UB. Sperm navigation along helical paths in 3D chemoattractant landscapes. Nat Commun 2015; 6:7985. [PMID: 26278469 PMCID: PMC4557273 DOI: 10.1038/ncomms8985] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/02/2015] [Indexed: 12/17/2022] Open
Abstract
Sperm require a sense of direction to locate the egg for fertilization. They follow gradients of chemical and physical cues provided by the egg or the oviduct. However, the principles underlying three-dimensional (3D) navigation in chemical landscapes are unknown. Here using holographic microscopy and optochemical techniques, we track sea urchin sperm navigating in 3D chemoattractant gradients. Sperm sense gradients on two timescales, which produces two different steering responses. A periodic component, resulting from the helical swimming, gradually aligns the helix towards the gradient. When incremental path corrections fail and sperm get off course, a sharp turning manoeuvre puts sperm back on track. Turning results from an ‘off' Ca2+ response signifying a chemoattractant stimulation decrease and, thereby, a drop in cyclic GMP concentration and membrane voltage. These findings highlight the computational sophistication by which sperm sample gradients for deterministic klinotaxis. We provide a conceptual and technical framework for studying microswimmers in 3D chemical landscapes. Sperm use external cues to find the egg using ill-defined principles. Here the authors use holographic microscopy and optochemical tools to study sperm swimming in light-sculpted chemical 3D landscapes; they show that sperm translate the temporal stimulation pattern into multiple swimming behaviours to orient deterministically in a gradient.
Collapse
Affiliation(s)
- Jan F Jikeli
- Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Luis Alvarez
- Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Benjamin M Friedrich
- Biological Physics, Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - Laurence G Wilson
- Department of Physics, University of York, YO10 5DD Heslington, York, UK
| | - René Pascal
- Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Remy Colin
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 16, 35043 Marburg, Germany
| | - Magdalena Pichlo
- Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Andreas Rennhack
- Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Christoph Brenker
- Centre of Reproductive Medicine and Andrology, University of Muenster, 48149 Muenster, Germany
| | - U Benjamin Kaupp
- Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
74
|
Strünker T, Alvarez L, Kaupp UB. At the physical limit - chemosensation in sperm. Curr Opin Neurobiol 2015; 34:110-6. [PMID: 25768273 DOI: 10.1016/j.conb.2015.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 12/15/2022]
Abstract
Many cells probe their environment for chemical cues. Some cells respond to picomolar concentrations of neuropeptides, hormones, pheromones, or chemoattractants. At such low concentrations, cells encounter only a few molecules. The mechanistic underpinnings of single-molecule sensitivity are not known for any eukaryotic cell. Sea urchin sperm offer a unique model to unveil in quantitative terms the principles underlying chemosensation at the physical limit. Here, we discuss the mechanisms of such exquisite sensitivity and the computational operations performed by sperm during chemotactic steering. Moreover, we highlight commonalities and differences between signalling in sperm and photoreceptors and among sperm from different species.
Collapse
Affiliation(s)
- T Strünker
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, Bonn 53175, Germany
| | - L Alvarez
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, Bonn 53175, Germany
| | - U B Kaupp
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, Bonn 53175, Germany.
| |
Collapse
|