51
|
Bouvier JW, Emms DM, Rhodes T, Bolton JS, Brasnett A, Eddershaw A, Nielsen JR, Unitt A, Whitney SM, Kelly S. Rubisco Adaptation Is More Limited by Phylogenetic Constraint Than by Catalytic Trade-off. Mol Biol Evol 2021; 38:2880-2896. [PMID: 33739416 PMCID: PMC8233502 DOI: 10.1093/molbev/msab079] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rubisco assimilates CO2 to form the sugars that fuel life on earth. Correlations between rubisco kinetic traits across species have led to the proposition that rubisco adaptation is highly constrained by catalytic trade-offs. However, these analyses did not consider the phylogenetic context of the enzymes that were analyzed. Thus, it is possible that the correlations observed were an artefact of the presence of phylogenetic signal in rubisco kinetics and the phylogenetic relationship between the species that were sampled. Here, we conducted a phylogenetically resolved analysis of rubisco kinetics and show that there is a significant phylogenetic signal in rubisco kinetic traits. We re-evaluated the extent of catalytic trade-offs accounting for this phylogenetic signal and found that all were attenuated. Following phylogenetic correction, the largest catalytic trade-offs were observed between the Michaelis constant for CO2 and carboxylase turnover (∼21-37%), and between the Michaelis constants for CO2 and O2 (∼9-19%), respectively. All other catalytic trade-offs were substantially attenuated such that they were marginal (<9%) or non-significant. This phylogenetically resolved analysis of rubisco kinetic evolution also identified kinetic changes that occur concomitant with the evolution of C4 photosynthesis. Finally, we show that phylogenetic constraints have played a larger role than catalytic trade-offs in limiting the evolution of rubisco kinetics. Thus, although there is strong evidence for some catalytic trade-offs, rubisco adaptation has been more limited by phylogenetic constraint than by the combined action of all catalytic trade-offs.
Collapse
Affiliation(s)
- Jacques W Bouvier
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - David M Emms
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Timothy Rhodes
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Jai S Bolton
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Amelia Brasnett
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Alice Eddershaw
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Jochem R Nielsen
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Anastasia Unitt
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Spencer M Whitney
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
52
|
Brewster JL, Pachl P, McKellar JLO, Selmer M, Squire CJ, Patrick WM. Structures and kinetics of Thermotoga maritima MetY reveal new insights into the predominant sulfurylation enzyme of bacterial methionine biosynthesis. J Biol Chem 2021; 296:100797. [PMID: 34019879 PMCID: PMC8191291 DOI: 10.1016/j.jbc.2021.100797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial methionine biosynthesis can take place by either the trans-sulfurylation route or direct sulfurylation. The enzymes responsible for trans-sulfurylation have been characterized extensively because they occur in model organisms such as Escherichia coli. However, direct sulfurylation is actually the predominant route for methionine biosynthesis across the phylogenetic tree. In this pathway, most bacteria use an O-acetylhomoserine aminocarboxypropyltransferase (MetY) to catalyze the formation of homocysteine from O-acetylhomoserine and bisulfide. Despite the widespread distribution of MetY, this pyridoxal 5'-phosphate-dependent enzyme remains comparatively understudied. To address this knowledge gap, we have characterized the MetY from Thermotoga maritima (TmMetY). At its optimal temperature of 70 °C, TmMetY has a turnover number (apparent kcat = 900 s-1) that is 10- to 700-fold higher than the three other MetY enzymes for which data are available. We also present crystal structures of TmMetY in the internal aldimine form and, fortuitously, with a β,γ-unsaturated ketimine reaction intermediate. This intermediate is identical to that found in the catalytic cycle of cystathionine γ-synthase (MetB), which is a homologous enzyme from the trans-sulfurylation pathway. By comparing the TmMetY and MetB structures, we have identified Arg270 as a critical determinant of specificity. It helps to wall off the active site of TmMetY, disfavoring the binding of the first MetB substrate, O-succinylhomoserine. It also ensures a strict specificity for bisulfide as the second substrate of MetY by occluding the larger MetB substrate, cysteine. Overall, this work illuminates the subtle structural mechanisms by which homologous pyridoxal 5'-phosphate-dependent enzymes can effect different catalytic, and therefore metabolic, outcomes.
Collapse
Affiliation(s)
- Jodi L Brewster
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Maria Selmer
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Wayne M Patrick
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
53
|
Yang F, Zhang J, Cai Z, Zhou J, Li Y. Exploring the oxygenase function of Form II Rubisco for production of glycolate from CO 2. AMB Express 2021; 11:65. [PMID: 33963929 PMCID: PMC8106553 DOI: 10.1186/s13568-021-01224-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
The oxygenase activity of Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) converts ribulose-1,5-bisphosphate (RuBP) into 2-phosphoglycolate, which in turn channels into photorespiration, resulting in carbon and energy loss in higher plants. We observed that glycolate can be accumulated extracellularly when two genes encoding the glycolate dehydrogenase of cyanobacteria Synechocystis sp. PCC 6803 were inactivated. This inspired us to explore the oxygenase function of Rubisco for production of glycolate, an important industrial chemical, from CO2 by engineered cyanobacteria. Since the oxygenase activity of Rubisco is generally low in CO2-rich carboxysome of cyanobacteria, we introduced Form II Rubisco, which cannot be assembled in carboxysome, into the cytoplasm of cyanobacteria. Heterologous expression of a Form II Rubisco from endosymbiont of tubeworm Riftia pachyptila (RPE Rubisco) significantly increased glycolate production. We show that the RPE Rubisco is expressed in the cytoplasm. Glycolate production increased upon addition of NaHCO3 but decreased upon supplying CO2. The titer of glycolate reached 2.8 g/L in 18 days, a 14-fold increase compared with the initial strain with glycolate dehydrogenase inactivated. This is also the highest glycolate titer biotechnologically produced from CO2 ever reported. Photosynthetic production of glycolate demonstrated the oxygenase activity of Form II Rubisco can be explored for production of chemicals from CO2.
Collapse
|
54
|
Moore CE, Meacham-Hensold K, Lemonnier P, Slattery RA, Benjamin C, Bernacchi CJ, Lawson T, Cavanagh AP. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2822-2844. [PMID: 33619527 PMCID: PMC8023210 DOI: 10.1093/jxb/erab090] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/19/2021] [Indexed: 05/03/2023]
Abstract
As global land surface temperature continues to rise and heatwave events increase in frequency, duration, and/or intensity, our key food and fuel cropping systems will likely face increased heat-related stress. A large volume of literature exists on exploring measured and modelled impacts of rising temperature on crop photosynthesis, from enzymatic responses within the leaf up to larger ecosystem-scale responses that reflect seasonal and interannual crop responses to heat. This review discusses (i) how crop photosynthesis changes with temperature at the enzymatic scale within the leaf; (ii) how stomata and plant transport systems are affected by temperature; (iii) what features make a plant susceptible or tolerant to elevated temperature and heat stress; and (iv) how these temperature and heat effects compound at the ecosystem scale to affect crop yields. Throughout the review, we identify current advancements and future research trajectories that are needed to make our cropping systems more resilient to rising temperature and heat stress, which are both projected to occur due to current global fossil fuel emissions.
Collapse
Affiliation(s)
- Caitlin E Moore
- School of Agriculture and Environment, The University of Western Australia, Crawley, Australia
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Katherine Meacham-Hensold
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | | | - Rebecca A Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Claire Benjamin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Carl J Bernacchi
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture–Agricultural Research Service, Urbana, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Amanda P Cavanagh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
- School of Life Sciences, University of Essex, Colchester, UK
| |
Collapse
|
55
|
Griffiths M, Roy S, Guo H, Seethepalli A, Huhman D, Ge Y, Sharp RE, Fritschi FB, York LM. A multiple ion-uptake phenotyping platform reveals shared mechanisms affecting nutrient uptake by roots. PLANT PHYSIOLOGY 2021; 185:781-795. [PMID: 33793942 PMCID: PMC8133564 DOI: 10.1093/plphys/kiaa080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/30/2020] [Indexed: 05/04/2023]
Abstract
Nutrient uptake is critical for crop growth and is determined by root foraging in soil. Growth and branching of roots lead to effective root placement to acquire nutrients, but relatively little is known about absorption of nutrients at the root surface from the soil solution. This knowledge gap could be alleviated by understanding sources of genetic variation for short-term nutrient uptake on a root length basis. A modular platform called RhizoFlux was developed for high-throughput phenotyping of multiple ion-uptake rates in maize (Zea mays L.). Using this system, uptake rates were characterized for the crop macronutrients nitrate, ammonium, potassium, phosphate, and sulfate among the Nested Association Mapping (NAM) population founder lines. The data revealed substantial genetic variation for multiple ion-uptake rates in maize. Interestingly, specific nutrient uptake rates (nutrient uptake rate per length of root) were found to be both heritable and distinct from total uptake and plant size. The specific uptake rates of each nutrient were positively correlated with one another and with specific root respiration (root respiration rate per length of root), indicating that uptake is governed by shared mechanisms. We selected maize lines with high and low specific uptake rates and performed an RNA-seq analysis, which identified key regulatory components involved in nutrient uptake. The high-throughput multiple ion-uptake kinetics pipeline will help further our understanding of nutrient uptake, parameterize holistic plant models, and identify breeding targets for crops with more efficient nutrient acquisition.
Collapse
Affiliation(s)
- Marcus Griffiths
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Sonali Roy
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Haichao Guo
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Anand Seethepalli
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - David Huhman
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Yaxin Ge
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Robert E Sharp
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Felix B Fritschi
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Larry M York
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
- Author for communication:
| |
Collapse
|
56
|
Borden JS, Savage DF. New discoveries expand possibilities for carboxysome engineering. Curr Opin Microbiol 2021; 61:58-66. [PMID: 33798818 DOI: 10.1016/j.mib.2021.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022]
Abstract
Carboxysomes are CO2-fixing protein compartments present in all cyanobacteria and some proteobacteria. These structures are attractive candidates for carbon assimilation bioengineering because they concentrate carbon, allowing the fixation reaction to occur near its maximum rate, and because they self-assemble in diverse organisms with a set of standard biological parts. Recent discoveries have expanded our understanding of how the carboxysome assembles, distributes itself, and sustains its metabolism. These studies have already led to substantial advances in engineering the carboxysome and carbon concentrating mechanism into recombinant organisms, with an eye towards establishing the system in industrial microbes and plants. Future studies may also consider the potential of in vitro carboxysomes for both discovery and applied science.
Collapse
Affiliation(s)
- Julia S Borden
- Department of Molecular & Cellular Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - David F Savage
- Department of Molecular & Cellular Biology, UC Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
57
|
Vickers CJ, Fraga D, Patrick WM. Quantifying the taxonomic bias in enzymology. Protein Sci 2021; 30:914-921. [PMID: 33583070 PMCID: PMC7980516 DOI: 10.1002/pro.4041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/31/2022]
Abstract
The ongoing biotechnological revolution is rooted in our knowledge of enzymes. However, metagenomics is showing how little we know about Earth's enzyme repertoire. Deep sequencing has revolutionized our view of the tree of life. The genomes of newly‐discovered organisms are replete with novel sequences, emphasizing the trove of enzyme structures and functions waiting to be explored by biochemists. Here, we sought to draw attention to the vastness of the “enzymatic dark matter” within the tree of life by placing enzymological knowledge in the context of phylogeny. We used kinetic parameters from the BRaunschweig ENzyme DAtabase (BRENDA) as our proxy for enzymological knowledge. Mapping 12,677 BRENDA entries onto the phylogenetic tree revealed that 55% of these data were from eukaryotes, even though they are the least diverse part of the tree. At the next taxonomic level, only four of 18 archaeal phyla and 24 of 111 bacterial phyla are represented in the BRENDA dataset. One phylum, the Proteobacteria, accounts for over half of all bacterial entries. Similarly, the supergroup Amorphea, which includes animals and fungi, contains over half the data on eukaryotes. Many major taxonomic groups are notable for their complete absence from BRENDA, including the ultra‐diverse bacterial Candidate Phyla Radiation. At the species level, five mammals (including human) contribute 15% of BRENDA entries. The taxonomic bias in enzymology is strong, but in the era of gene synthesis we now have the tools to address it. Doing so promises to enrich our biochemical understanding of life and uncover powerful new biocatalysts.
Collapse
Affiliation(s)
- Chelsea J Vickers
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Dean Fraga
- Department of Biology, The College of Wooster, Wooster, Ohio, USA
| | - Wayne M Patrick
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
58
|
Synthetic Biology Approaches To Enhance Microalgal Productivity. Trends Biotechnol 2021; 39:1019-1036. [PMID: 33541719 DOI: 10.1016/j.tibtech.2020.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
The major bottleneck in commercializing biofuels and other commodities produced by microalgae is the high cost associated with phototrophic cultivation. Improving microalgal productivities could be a solution to this problem. Synthetic biology methods have recently been used to engineer the downstream production pathways in several microalgal strains. However, engineering upstream photosynthetic and carbon fixation metabolism to enhance growth, productivity, and yield has barely been explored in microalgae. We describe strategies to improve the generation of reducing power from light, as well as to improve the assimilation of CO2 by either the native Calvin cycle or synthetic alternatives. Overall, we are optimistic that recent technological advances will prompt long-awaited breakthroughs in microalgal research.
Collapse
|
59
|
Panich J, Fong B, Singer SW. Metabolic Engineering of Cupriavidus necator H16 for Sustainable Biofuels from CO 2. Trends Biotechnol 2021; 39:412-424. [PMID: 33518389 DOI: 10.1016/j.tibtech.2021.01.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/08/2023]
Abstract
Decelerating global warming is one of the predominant challenges of our time and will require conversion of CO2 to usable products and commodity chemicals. Of particular interest is the production of fuels, because the transportation sector is a major source of CO2 emissions. Here, we review recent technological advances in metabolic engineering of the hydrogen-oxidizing bacterium Cupriavidus necator H16, a chemolithotroph that naturally consumes CO2 to generate biomass. We discuss recent successes in biofuel production using this organism, and the implementation of electrolysis/artificial photosynthesis approaches that enable growth of C. necator using renewable electricity and CO2. Last, we discuss prospects of improving the nonoptimal growth of C. necator in ambient concentrations of CO2.
Collapse
Affiliation(s)
- Justin Panich
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Bonnie Fong
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Steven W Singer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
60
|
Cummins PL. The Coevolution of RuBisCO, Photorespiration, and Carbon Concentrating Mechanisms in Higher Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:662425. [PMID: 34539685 PMCID: PMC8440988 DOI: 10.3389/fpls.2021.662425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/26/2021] [Indexed: 05/20/2023]
Abstract
Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBisCO) is the carbon-fixing enzyme present in most photosynthetic organisms, converting CO2 into organic matter. Globally, photosynthetic efficiency in terrestrial plants has become increasingly challenged in recent decades due to a rapid increase in atmospheric CO2 and associated changes toward warmer and dryer environments. Well adapted for these new climatic conditions, the C4 photosynthetic pathway utilizes carbon concentrating mechanisms to increase CO2 concentrations surrounding RuBisCO, suppressing photorespiration from the oxygenase catalyzed reaction with O2. The energy efficiency of C3 photosynthesis, from which the C4 pathway evolved, is thought to rely critically on an uninterrupted supply of chloroplast CO2. Part of the homeostatic mechanism that maintains this constancy of supply involves the CO2 produced as a byproduct of photorespiration in a negative feedback loop. Analyzing the database of RuBisCO kinetic parameters, we suggest that in genera (Flaveria and Panicum) for which both C3 and C4 examples are available, the C4 pathway evolved only from C3 ancestors possessing much lower than the average carboxylase specificity relative to that of the oxygenase reaction (S C/O=S C/S O), and hence, the higher CO2 levels required for development of the photorespiratory CO2 pump (C2 photosynthesis) essential in the initial stages of C4 evolution, while in the later stage (final optimization phase in the Flaveria model) increased CO2 turnover may have occurred, which would have been supported by the higher CO2 levels. Otherwise, C4 RuBisCO kinetic traits remain little changed from the ancestral C3 species. At the opposite end of the spectrum, C3 plants (from Limonium) with higher than average S C/O, which may be associated with the ability of increased CO2, relative to O2, affinity to offset reduced photorespiration and chloroplast CO2 levels, can tolerate high stress environments. It is suggested that, instead of inherently constrained by its kinetic mechanism, RuBisCO possesses the extensive kinetic plasticity necessary for adaptation to changes in photorespiration that occur in the homeostatic regulation of CO2 supply under a broad range of abiotic environmental conditions.
Collapse
|
61
|
Orr DJ, Parry MAJ. Overcoming the limitations of Rubisco: fantasy or realistic prospect? JOURNAL OF PLANT PHYSIOLOGY 2020; 254:153285. [PMID: 32987325 DOI: 10.1016/j.jplph.2020.153285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Martin A J Parry
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK.
| |
Collapse
|
62
|
Flamholz AI, Dugan E, Blikstad C, Gleizer S, Ben-Nissan R, Amram S, Antonovsky N, Ravishankar S, Noor E, Bar-Even A, Milo R, Savage DF. Functional reconstitution of a bacterial CO 2 concentrating mechanism in Escherichia coli. eLife 2020; 9:59882. [PMID: 33084575 PMCID: PMC7714395 DOI: 10.7554/elife.59882] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Many photosynthetic organisms employ a CO2 concentrating mechanism (CCM) to increase the rate of CO2 fixation via the Calvin cycle. CCMs catalyze ≈50% of global photosynthesis, yet it remains unclear which genes and proteins are required to produce this complex adaptation. We describe the construction of a functional CCM in a non-native host, achieved by expressing genes from an autotrophic bacterium in an Escherichia coli strain engineered to depend on rubisco carboxylation for growth. Expression of 20 CCM genes enabled E. coli to grow by fixing CO2 from ambient air into biomass, with growth in ambient air depending on the components of the CCM. Bacterial CCMs are therefore genetically compact and readily transplanted, rationalizing their presence in diverse bacteria. Reconstitution enabled genetic experiments refining our understanding of the CCM, thereby laying the groundwork for deeper study and engineering of the cell biology supporting CO2 assimilation in diverse organisms.
Collapse
Affiliation(s)
- Avi I Flamholz
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Eli Dugan
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Cecilia Blikstad
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Shmuel Gleizer
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Roee Ben-Nissan
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Shira Amram
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Niv Antonovsky
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Sumedha Ravishankar
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Elad Noor
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Ron Milo
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - David F Savage
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
63
|
Lin MT, Stone WD, Chaudhari V, Hanson MR. Small subunits can determine enzyme kinetics of tobacco Rubisco expressed in Escherichia coli. NATURE PLANTS 2020; 6:1289-1299. [PMID: 32929197 DOI: 10.1038/s41477-020-00761-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/28/2020] [Indexed: 05/19/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) catalyses the first step in carbon fixation and is a strategic target for improving photosynthetic efficiency. In plants, Rubisco is composed of eight large and eight small subunits, and its biogenesis requires multiple chaperones. Here, we optimized a system to produce tobacco Rubisco in Escherichia coli by coexpressing chaperones in autoinduction medium. We successfully assembled tobacco Rubisco in E. coli with each small subunit that is normally encoded by the nuclear genome. Even though each enzyme carries only a single type of small subunit in E. coli, the enzymes exhibit carboxylation kinetics that are very similar to the carboxylation kinetics of the native Rubisco. Tobacco Rubisco assembled with a recently discovered trichome small subunit has a higher catalytic rate and a lower CO2 affinity compared with Rubisco complexes that are assembled with other small subunits. Our E. coli expression system will enable the analysis of features of both subunits of Rubisco that affect its kinetic properties.
Collapse
Affiliation(s)
- Myat T Lin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - William D Stone
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | | | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
64
|
Davidi D, Shamshoum M, Guo Z, Bar‐On YM, Prywes N, Oz A, Jablonska J, Flamholz A, Wernick DG, Antonovsky N, de Pins B, Shachar L, Hochhauser D, Peleg Y, Albeck S, Sharon I, Mueller‐Cajar O, Milo R. Highly active rubiscos discovered by systematic interrogation of natural sequence diversity. EMBO J 2020; 39:e104081. [PMID: 32500941 PMCID: PMC7507306 DOI: 10.15252/embj.2019104081] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 11/09/2022] Open
Abstract
CO2 is converted into biomass almost solely by the enzyme rubisco. The poor carboxylation properties of plant rubiscos have led to efforts that made it the most kinetically characterized enzyme, yet these studies focused on < 5% of its natural diversity. Here, we searched for fast-carboxylating variants by systematically mining genomic and metagenomic data. Approximately 33,000 unique rubisco sequences were identified and clustered into ≈ 1,000 similarity groups. We then synthesized, purified, and biochemically tested the carboxylation rates of 143 representatives, spanning all clusters of form-II and form-II/III rubiscos. Most variants (> 100) were active in vitro, with the fastest having a turnover number of 22 ± 1 s-1 -sixfold faster than the median plant rubisco and nearly twofold faster than the fastest measured rubisco to date. Unlike rubiscos from plants and cyanobacteria, the fastest variants discovered here are homodimers and exhibit a much simpler folding and activation kinetics. Our pipeline can be utilized to explore the kinetic space of other enzymes of interest, allowing us to get a better view of the biosynthetic potential of the biosphere.
Collapse
Affiliation(s)
- Dan Davidi
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
- Present address:
Department of GeneticsHarvard Medical SchoolBostonMAUSA
| | - Melina Shamshoum
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Zhijun Guo
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Yinon M Bar‐On
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Noam Prywes
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Aia Oz
- Migal Galilee Research InstituteKiryat ShmonaIsrael
- Tel Hai CollegeUpper GalileeIsrael
| | - Jagoda Jablonska
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Avi Flamholz
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - David G Wernick
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
- Present address:
BASF Enzymes LLCSan DiegoCAUSA
| | - Niv Antonovsky
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
- Present address:
Laboratory of Genetically Encoded Small MoleculesThe Rockefeller UniversityNew YorkNYUSA
| | - Benoit de Pins
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Lior Shachar
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Dina Hochhauser
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Yoav Peleg
- Department of Life Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | - Shira Albeck
- Department of Life Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | - Itai Sharon
- Migal Galilee Research InstituteKiryat ShmonaIsrael
- Tel Hai CollegeUpper GalileeIsrael
| | | | - Ron Milo
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|