51
|
In silico analysis of Shiga toxins (Stxs) to identify new potential vaccine targets for Shiga toxin-producing Escherichia coli. In Silico Pharmacol 2017; 5:2. [PMID: 28534196 DOI: 10.1007/s40203-017-0022-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/14/2017] [Indexed: 02/04/2023] Open
Abstract
Shiga toxins belong to a family of structurally and functionally related toxins serving as the main virulence factors for pathogenicity of the Shiga toxin-producing Escherichia coli (STEC) associating with Hemolytic uremic syndrome (HUS). At present, there is no effective treatment or prevention for HUS. The aim of the present study was to find conserved regions within the amino acid sequences of Stx1, Stx2 (Shiga toxin) and their variants. In this regard, In-silico identification of conformational continuous B cell and T-cell epitopes was performed in order to introduce new potential vaccine candidates. 93-100% Homology was observed in Stx1 and its variants. In Stx2 and its variants, 69-100% homology was shown. By sequence alignment with Stx1 and Stx2, 54% homology was detected. T-cell epitope identification in Stx1A and Stx2A epitopes with highest binding affinity for each HLA (human leukocyte antigen) was demonstrated with 100% identity among all Stxs. B-cell epitope prediction was resulted in finding of four common epitopes between Stxs. In silico analysis of Stxs was resulted to identification of new peptide targets that could be used in development of new epitope vaccine candidates or in immunodiagnostic tests.
Collapse
|
52
|
Hermans SM, Pfleger C, Nutschel C, Hanke CA, Gohlke H. Rigidity theory for biomolecules: concepts, software, and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1311] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Susanne M.A. Hermans
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Christopher Pfleger
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Christina Nutschel
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Christian A. Hanke
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| |
Collapse
|
53
|
Mallik S, Kundu S. Modular Organization of Residue-Level Contacts Shapes the Selection Pressure on Individual Amino Acid Sites of Ribosomal Proteins. Genome Biol Evol 2017; 9:916-931. [PMID: 28338825 PMCID: PMC5388290 DOI: 10.1093/gbe/evx036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2017] [Indexed: 12/26/2022] Open
Abstract
Understanding the molecular evolution of macromolecular complexes in the light of their structure, assembly, and stability is of central importance. Here, we address how the modular organization of native molecular contacts shapes the selection pressure on individual residue sites of ribosomal complexes. The bacterial ribosomal complex is represented as a residue contact network where nodes represent amino acid/nucleotide residues and edges represent their van der Waals interactions. We find statistically overrepresented native amino acid-nucleotide contacts (OaantC, one amino acid contacts one or multiple nucleotides, internucleotide contacts are disregarded). Contact number is defined as the number of nucleotides contacted. Involvement of individual amino acids in OaantCs with smaller contact numbers is more random, whereas only a few amino acids significantly contribute to OaantCs with higher contact numbers. An investigation of structure, stability, and assembly of bacterial ribosome depicts the involvement of these OaantCs in diverse biophysical interactions stabilizing the complex, including high-affinity protein-RNA contacts, interprotein cooperativity, intersubunit bridge, packing of multiple ribosomal RNA domains, etc. Amino acid-nucleotide constituents of OaantCs with higher contact numbers are generally associated with significantly slower substitution rates compared with that of OaantCs with smaller contact numbers. This evolutionary rate heterogeneity emerges from the strong purifying selection pressure that conserves the respective amino acid physicochemical properties relevant to the stabilizing interaction with OaantC nucleotides. An analysis of relative molecular orientations of OaantC residues and their interaction energetics provides the biophysical ground of purifying selection conserving OaantC amino acid physicochemical properties.
Collapse
Affiliation(s)
- Saurav Mallik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
- Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-II), University of Calcutta, Kolkata, India
| | - Sudip Kundu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
- Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-II), University of Calcutta, Kolkata, India
| |
Collapse
|
54
|
Chakrabarty B, Parekh N. NAPS: Network Analysis of Protein Structures. Nucleic Acids Res 2016; 44:W375-82. [PMID: 27151201 PMCID: PMC4987928 DOI: 10.1093/nar/gkw383] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/25/2016] [Indexed: 12/29/2022] Open
Abstract
Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue-residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein-protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/.
Collapse
Affiliation(s)
- Broto Chakrabarty
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Nita Parekh
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| |
Collapse
|
55
|
Souza VP, Ikegami CM, Arantes GM, Marana SR. Protein thermal denaturation is modulated by central residues in the protein structure network. FEBS J 2016; 283:1124-38. [DOI: 10.1111/febs.13659] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/03/2015] [Accepted: 01/13/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Valquiria P. Souza
- Departamento de Bioquímica; Instituto de Química; Universidade de São Paulo; Brazil
| | - Cecília M. Ikegami
- Departamento de Bioquímica; Instituto de Química; Universidade de São Paulo; Brazil
| | - Guilherme M. Arantes
- Departamento de Bioquímica; Instituto de Química; Universidade de São Paulo; Brazil
| | - Sandro R. Marana
- Departamento de Bioquímica; Instituto de Química; Universidade de São Paulo; Brazil
| |
Collapse
|
56
|
Mallik S, Das S, Kundu S. Predicting protein folding rate change upon point mutation using residue-level coevolutionary information. Proteins 2015; 84:3-8. [DOI: 10.1002/prot.24960] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/11/2015] [Accepted: 11/11/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Saurav Mallik
- Department of Biophysics; Molecular Biology and Bioinformatics, University of Calcutta; Kolkata 700009 India
- Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-II), University of Calcutta; Kolkata 700009 India
| | - Smita Das
- Department of Biophysics; Molecular Biology and Bioinformatics, University of Calcutta; Kolkata 700009 India
| | - Sudip Kundu
- Department of Biophysics; Molecular Biology and Bioinformatics, University of Calcutta; Kolkata 700009 India
- Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-II), University of Calcutta; Kolkata 700009 India
| |
Collapse
|
57
|
Deb A, Kundu S. Deciphering Cis-Regulatory Element Mediated Combinatorial Regulation in Rice under Blast Infected Condition. PLoS One 2015; 10:e0137295. [PMID: 26327607 PMCID: PMC4556519 DOI: 10.1371/journal.pone.0137295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/14/2015] [Indexed: 01/15/2023] Open
Abstract
Combinations of cis-regulatory elements (CREs) present at the promoters facilitate the binding of several transcription factors (TFs), thereby altering the consequent gene expressions. Due to the eminent complexity of the regulatory mechanism, the combinatorics of CRE-mediated transcriptional regulation has been elusive. In this work, we have developed a new methodology that quantifies the co-occurrence tendencies of CREs present in a set of promoter sequences; these co-occurrence scores are filtered in three consecutive steps to test their statistical significance; and the significantly co-occurring CRE pairs are presented as networks. These networks of co-occurring CREs are further transformed to derive higher order of regulatory combinatorics. We have further applied this methodology on the differentially up-regulated gene-sets of rice tissues under fungal (Magnaporthe) infected conditions to demonstrate how it helps to understand the CRE-mediated combinatorial gene regulation. Our analysis includes a wide spectrum of biologically important results. The CRE pairs having a strong tendency to co-occur often exhibit very similar joint distribution patterns at the promoters of rice. We couple the network approach with experimental results of plant gene regulation and defense mechanisms and find evidences of auto and cross regulation among TF families, cross-talk among multiple hormone signaling pathways, similarities and dissimilarities in regulatory combinatorics between different tissues, etc. Our analyses have pointed a highly distributed nature of the combinatorial gene regulation facilitating an efficient alteration in response to fungal attack. All together, our proposed methodology could be an important approach in understanding the combinatorial gene regulation. It can be further applied to unravel the tissue and/or condition specific combinatorial gene regulation in other eukaryotic systems with the availability of annotated genomic sequences and suitable experimental data.
Collapse
Affiliation(s)
- Arindam Deb
- Department of Biophysics Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India
| | - Sudip Kundu
- Department of Biophysics Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India
- Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase II), University of Calcutta, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
58
|
Cheng S, Fu HL, Cui DX. Characteristics Analyses and Comparisons of the Protein Structure Networks Constructed by Different Methods. Interdiscip Sci 2015; 8:65-74. [PMID: 26297308 DOI: 10.1007/s12539-015-0106-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/21/2014] [Accepted: 05/21/2014] [Indexed: 10/23/2022]
Abstract
Protein structure networks (PSNs) were widely used in analyses of protein structure and function. In this work, we analyzed and compared the characters of PSNs by different methods. The degrees of the different types of the nodes were found to be associated with the amino acid characters, including SAS, secondary structure, hydropathy and the volume of amino acids. It showed that PSNs by the methods of CA10, SC10 and AT5 inherited more amino acid characters and had higher correlations with the original protein structures. And PSNs by these three methods would be powerful tools in understanding the characters of protein structures.
Collapse
Affiliation(s)
- Shangli Cheng
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Chinese National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Hua-Lin Fu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Chinese National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Da-Xiang Cui
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Chinese National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
59
|
Ding Y, Wang X, Mou Z. Communities in the iron superoxide dismutase amino acid network. J Theor Biol 2015; 367:278-285. [PMID: 25500180 DOI: 10.1016/j.jtbi.2014.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 11/24/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
Abstract
Amino acid networks (AANs) analysis is a new way to reveal the relationship between protein structure and function. We constructed six different types of AANs based on iron superoxide dismutase (Fe-SOD) three-dimensional structure information. These Fe-SOD AANs have clear community structures when they were modularized by different methods. Especially, detected communities are related to Fe-SOD secondary structures. Regular structures show better correlations with detected communities than irregular structures, and loops weaken these correlations, which suggest that secondary structure is the unit element in Fe-SOD folding process. In addition, a comparative analysis of mesophilic and thermophilic Fe-SOD AANs' communities revealed that thermostable Fe-SOD AANs had more highly associated community structures than mesophilic one. Thermophilic Fe-SOD AANs also had more high similarity between communities and secondary structures than mesophilic Fe-SOD AANs. The communities in Fe-SOD AANs show that dense interactions in modules can help to stabilize thermophilic Fe-SOD.
Collapse
Affiliation(s)
- Yanrui Ding
- School of Digital Media, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China; Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
| | - Xueqin Wang
- School of Digital Media, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Zhaolin Mou
- School of Digital Media, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
60
|
Blacklock K, Verkhivker GM. Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications. PLoS Comput Biol 2014; 10:e1003679. [PMID: 24922508 PMCID: PMC4055421 DOI: 10.1371/journal.pcbi.1003679] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/05/2014] [Indexed: 01/18/2023] Open
Abstract
A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple communication routes. This may be a universal requirement encoded in protein structures to balance the inherent tension between resilience and efficiency of the residue interaction networks. Functional versatility and structural adaptability of the Hsp90 chaperones are regulated by allosteric interactions that allow for diverse functions including modulation of ATP hydrolysis and binding with cochaperones and client proteins. By integrating molecular simulations and network-based approaches we have characterized conformational dynamics and allosteric interactions in different functional forms of Hsp90. The network centrality analysis and structural mapping of allosteric communications have revealed a small-world organization of the interaction network that is mediated by functionally important residues of the Hsp90 activity. We have found that effective allosteric communications in the Hsp90 chaperone may be provided by structurally stable residues that exhibit high centrality properties. Nucleotide-specific rewiring of the network topology and assortative organization of functional residues may protect the active form of the chaperone from random perturbations and detrimental mutations. These results have confirmed that allosteric interactions in the Hsp90 chaperone may be determined by a small-world network of functional residues that can regulate the network efficiency and resiliency by modulating the statistical ensemble of communication pathways in response to functional requirements of the ATPase cycle.
Collapse
Affiliation(s)
- Kristin Blacklock
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M Verkhivker
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America; Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
61
|
Tiberti M, Invernizzi G, Lambrughi M, Inbar Y, Schreiber G, Papaleo E. PyInteraph: a framework for the analysis of interaction networks in structural ensembles of proteins. J Chem Inf Model 2014; 54:1537-51. [PMID: 24702124 DOI: 10.1021/ci400639r] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the last years, a growing interest has been gathering around the ability of Molecular Dynamics (MD) to provide insight into the paths of long-range structural communication in biomolecules. The knowledge of the mechanisms related to structural communication helps in the rationalization in atomistic details of the effects induced by mutations, ligand binding, and the intrinsic dynamics of proteins. We here present PyInteraph, a tool for the analysis of structural ensembles inspired by graph theory. PyInteraph is a software suite designed to analyze MD and structural ensembles with attention to binary interactions between residues, such as hydrogen bonds, salt bridges, and hydrophobic interactions. PyInteraph also allows the different classes of intra- and intermolecular interactions to be represented, combined or alone, in the form of interaction graphs, along with performing network analysis on the resulting interaction graphs. The program also integrates the network description with a knowledge-based force field to estimate the interaction energies between side chains in the protein. It can be used alone or together with the recently developed xPyder PyMOL plugin through an xPyder-compatible format. The software capabilities and associated protocols are here illustrated by biologically relevant cases of study. The program is available free of charge as Open Source software via the GPL v3 license at http://linux.btbs.unimib.it/pyinteraph/.
Collapse
Affiliation(s)
- Matteo Tiberti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | | | | | | | | | | |
Collapse
|
62
|
Yan W, Zhou J, Sun M, Chen J, Hu G, Shen B. The construction of an amino acid network for understanding protein structure and function. Amino Acids 2014; 46:1419-39. [PMID: 24623120 DOI: 10.1007/s00726-014-1710-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 02/21/2014] [Indexed: 01/08/2023]
Abstract
Amino acid networks (AANs) are undirected networks consisting of amino acid residues and their interactions in three-dimensional protein structures. The analysis of AANs provides novel insight into protein science, and several common amino acid network properties have revealed diverse classes of proteins. In this review, we first summarize methods for the construction and characterization of AANs. We then compare software tools for the construction and analysis of AANs. Finally, we review the application of AANs for understanding protein structure and function, including the identification of functional residues, the prediction of protein folding, analyzing protein stability and protein-protein interactions, and for understanding communication within and between proteins.
Collapse
Affiliation(s)
- Wenying Yan
- Center for Systems Biology, Soochow University, Suzhou, 215006, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
63
|
Verkhivker GM. Computational Studies of Allosteric Regulation in the Hsp90 Molecular Chaperone: From Functional Dynamics and Protein Structure Networks to Allosteric Communications and Targeted Anti-Cancer Modulators. Isr J Chem 2014. [DOI: 10.1002/ijch.201300143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
64
|
Blacklock K, Verkhivker GM. Allosteric regulation of the Hsp90 dynamics and stability by client recruiter cochaperones: protein structure network modeling. PLoS One 2014; 9:e86547. [PMID: 24466147 PMCID: PMC3896489 DOI: 10.1371/journal.pone.0086547] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/06/2013] [Indexed: 12/29/2022] Open
Abstract
The fundamental role of the Hsp90 chaperone in supporting functional activity of diverse protein clients is anchored by specific cochaperones. A family of immune sensing client proteins is delivered to the Hsp90 system with the aid of cochaperones Sgt1 and Rar1 that act cooperatively with Hsp90 to form allosterically regulated dynamic complexes. In this work, functional dynamics and protein structure network modeling are combined to dissect molecular mechanisms of Hsp90 regulation by the client recruiter cochaperones. Dynamic signatures of the Hsp90-cochaperone complexes are manifested in differential modulation of the conformational mobility in the Hsp90 lid motif. Consistent with the experiments, we have determined that targeted reorganization of the lid dynamics is a unifying characteristic of the client recruiter cochaperones. Protein network analysis of the essential conformational space of the Hsp90-cochaperone motions has identified structurally stable interaction communities, interfacial hubs and key mediating residues of allosteric communication pathways that act concertedly with the shifts in conformational equilibrium. The results have shown that client recruiter cochaperones can orchestrate global changes in the dynamics and stability of the interaction networks that could enhance the ATPase activity and assist in the client recruitment. The network analysis has recapitulated a broad range of structural and mutagenesis experiments, particularly clarifying the elusive role of Rar1 as a regulator of the Hsp90 interactions and a stability enhancer of the Hsp90-cochaperone complexes. Small-world organization of the interaction networks in the Hsp90 regulatory complexes gives rise to a strong correspondence between highly connected local interfacial hubs, global mediator residues of allosteric interactions and key functional hot spots of the Hsp90 activity. We have found that cochaperone-induced conformational changes in Hsp90 may be determined by specific interaction networks that can inhibit or promote progression of the ATPase cycle and thus control the recruitment of client proteins.
Collapse
Affiliation(s)
- Kristin Blacklock
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
65
|
Chakraborty C, S.Roy S, J.Hsu M, Agoramoorthy G. Network analysis of transcription factors for nuclear reprogramming into induced pluripotent stem cell using bioinformatics. CELL JOURNAL 2014; 15:332-9. [PMID: 24381858 PMCID: PMC3866537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Research related to induce pluripotent stem (iPS) cell generation has increased rapidly in recent years. Six transcription factors, namely OCT4, SOX2, C-MYC, KLF4, NANOG, and LIN28 have been widely used for iPS cell generation. As there is a lack of data on intra- and inter-networking among these six different transcription factors, the objective of this study is to analyze the intra- and inter-networks between them using bioinformatics. MATERIALS AND METHODS In this computational biology study, we used AminoNet, MATLAB to examine networking between the six different transcription factors. The directed network was constructed using MATLAB programming and the distance between nodes was estimated using a phylogram. The protein-protein interactions between the nuclear reprogramming factors was performed using the software STRING. RESULTS The relationship between C-MYC and NANOG was depicted using a phylogenetic tree and the sequence analysis showed OCT4, C-MYC, NANOG, and SOX2 together share a common evolutionary origin. CONCLUSION This study has shown an innovative rapid method for the analysis of intra and inter-networking among nuclear reprogramming factors. Data presented may aid researchers to understand the complex regulatory networks involving iPS cell generation.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Bio-Informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, India
| | - Sanjiban S.Roy
- School of Computing Science and Engineering, VIT University, Vellore, India
| | - Minna J.Hsu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Govindasamy Agoramoorthy
- College of Pharmacy and Health Care, Tajen University, Yanpu, Taiwan,
* Corresponding Address:
College of Pharmacy and Health CareTajen UniversityYanpuPingtung 907Taiwan
| |
Collapse
|
66
|
Analysis of Unweighted Amino Acids Network. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:350276. [PMID: 27355050 PMCID: PMC4897464 DOI: 10.1155/2014/350276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 11/17/2022]
Abstract
The analysis of amino acids network is very important to studying the various physicochemical properties of amino acids. In this paper we consider the amino acid network based on mutation of the codons. To analyze the relative importance of the amino acids we have discussed different measures of centrality. The measure of centrality is a powerful tool of graph theory for ranking the vertices and analysis of biological network. We have also investigated the correlation coefficients between various measures of centrality. Also we have discussed clustering coefficient as well as average clustering coefficient of the network. Finally we have discussed the degree of distribution as well as skewness.
Collapse
|
67
|
Palanisamy B, Ekambaram R, Heese K. Thymine distribution in genes provides novel insight into the functional significance of the proteome of the malaria parasite Plasmodium falciparum 3D7. Bioinformatics 2013; 30:597-600. [DOI: 10.1093/bioinformatics/btt587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
68
|
Eren D, Alakent B. Frequency response of a protein to local conformational perturbations. PLoS Comput Biol 2013; 9:e1003238. [PMID: 24086121 PMCID: PMC3784495 DOI: 10.1371/journal.pcbi.1003238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/11/2013] [Indexed: 11/18/2022] Open
Abstract
Signals created by local perturbations are known to propagate long distances through proteins via backbone connectivity and nonbonded interactions. In the current study, signal propagation from the flexible ligand binding loop to the rest of Protein Tyrosine Phosphatase 1B (PTP1B) was investigated using frequency response techniques. Using restrained Targeted Molecular Dynamics (TMD) potential on WPD and R loops, PTP1B was driven between its crystal structure conformations at different frequencies. Propagation of the local perturbation signal was manifested via peaks at the fundamental frequency and upper harmonics of 1/f distributed spectral density of atomic variables, such as Cα atoms, dihedral angles, or polar interaction distances. Frequency of perturbation was adjusted high enough (simulation length >∼10×period of a perturbation cycle) not to be clouded by random diffusional fluctuations, and low enough (<∼0.8 ns(-1)) not to attenuate the propagating signal and enhance the contribution of the side-chains to the dissipation of the signals. Employing Discrete Fourier Transform (DFT) to TMD simulation trajectories of 16 cycles of conformational transitions at periods of 1.2 to 5 ns yielded Cα displacements consistent with those obtained from crystal structures. Identification of the perturbed atomic variables by statistical t-tests on log-log scale spectral densities revealed the extent of signal propagation in PTP1B, while phase angles of the filtered trajectories at the fundamental frequency were used to cluster collectively fluctuating elements. Hydrophobic interactions were found to have a higher contribution to signal transduction between side-chains compared to the role of polar interactions. Most of in-phase fluctuating residues on the signaling pathway were found to have high identity among PTP domains, and located over a wide region of PTP1B including the allosteric site. Due to its simplicity and efficiency, the suggested technique may find wide applications in identification of signaling pathways of different proteins.
Collapse
Affiliation(s)
- Dilek Eren
- Department of Chemical Engineering, Bogazici University, Bebek, Istanbul, Turkey
| | - Burak Alakent
- Department of Chemical Engineering, Bogazici University, Bebek, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
69
|
Taylor NR. Small world network strategies for studying protein structures and binding. Comput Struct Biotechnol J 2013; 5:e201302006. [PMID: 24688699 PMCID: PMC3962176 DOI: 10.5936/csbj.201302006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/16/2013] [Accepted: 01/23/2013] [Indexed: 11/22/2022] Open
Abstract
Small world network concepts provide many new opportunities to investigate the complex three dimensional structures of protein molecules. This mini-review explores the published literature on using small-world network approaches to study protein structure, with emphasis on the different combinations of descriptors that have been tested, on studies involving ligand binding in protein-ligand complexes, and on protein-protein complexes. The benefits and success of small world network approaches, which change the focus from specific interactions to the local environment, even to non-local phenomenon, are described. The purpose is to show the different ways that small world network concepts have been used for building new computational models for studying protein structure and function, and for extending and improving existing modelling approaches.
Collapse
Affiliation(s)
- Neil R Taylor
- Desert Scientific Software Pty Ltd, Level 5 Nexus Building, Norwest Business Park, 4 Columbia Court, Norwest, NSW, 2153, Australia
| |
Collapse
|
70
|
Senthilkumar B, Sailo S, Guruswami G, Nachimuthu S. Prot-Prop: J-tool to predict the subcellular location of proteins based on physiochemical characterization. Interdiscip Sci 2013; 4:296-301. [PMID: 23354819 DOI: 10.1007/s12539-012-0143-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/28/2012] [Accepted: 06/07/2012] [Indexed: 10/27/2022]
Abstract
PROT-PROP is a computational tool to characterize 27 physicochemical properties of a protein along with its subcellular location (intra or extra) in a single-window application. Other significant features of this software include calculation of numerical values for hydrophobicity, hydrophilicity; composition of small and large amino acids; net hydrophobic content in terms of low/high; and Navie's algorithm to calculate theoretical pI. PROT-PROP is an easy-to-install platform independent implementation of JAVA under a user-friendly interface. It is a standalone version as a virtual appliance and source code for platforms supporting Java 1.5.0 and higher versions, and downloadable from the web http://www.mzu.edu.in/schools/biotechnology.html . PROT-PROP can run under Windows and Macintosh Operating Systems. PROT-PROP is distributed with its source code so that it may be adapted or customized, if desired.
Collapse
Affiliation(s)
- Brindha Senthilkumar
- Bioinformatics Infrastructure Facility, Department of Biotechnology, Mizoram University, Aizawl, Mizoram, India
| | | | | | | |
Collapse
|
71
|
Sengupta D, Kundu S. Role of long- and short-range hydrophobic, hydrophilic and charged residues contact network in protein's structural organization. BMC Bioinformatics 2012; 13:142. [PMID: 22720789 PMCID: PMC3464617 DOI: 10.1186/1471-2105-13-142] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 06/21/2012] [Indexed: 11/10/2022] Open
Abstract
Background The three-dimensional structure of a protein can be described as a graph where nodes represent residues and the strength of non-covalent interactions between them are edges. These protein contact networks can be separated into long and short-range interactions networks depending on the positions of amino acids in primary structure. Long-range interactions play a distinct role in determining the tertiary structure of a protein while short-range interactions could largely contribute to the secondary structure formations. In addition, physico chemical properties and the linear arrangement of amino acids of the primary structure of a protein determines its three dimensional structure. Here, we present an extensive analysis of protein contact subnetworks based on the London van der Waals interactions of amino acids at different length scales. We further subdivided those networks in hydrophobic, hydrophilic and charged residues networks and have tried to correlate their influence in the overall topology and organization of a protein. Results The largest connected component (LCC) of long (LRN)-, short (SRN)- and all-range (ARN) networks within proteins exhibit a transition behaviour when plotted against different interaction strengths of edges among amino acid nodes. While short-range networks having chain like structures exhibit highly cooperative transition; long- and all-range networks, which are more similar to each other, have non-chain like structures and show less cooperativity. Further, the hydrophobic residues subnetworks in long- and all-range networks have similar transition behaviours with all residues all-range networks, but the hydrophilic and charged residues networks don’t. While the nature of transitions of LCC’s sizes is same in SRNs for thermophiles and mesophiles, there exists a clear difference in LRNs. The presence of larger size of interconnected long-range interactions in thermophiles than mesophiles, even at higher interaction strength between amino acids, give extra stability to the tertiary structure of the thermophiles. All the subnetworks at different length scales (ARNs, LRNs and SRNs) show assortativity mixing property of their participating amino acids. While there exists a significant higher percentage of hydrophobic subclusters over others in ARNs and LRNs; we do not find the assortative mixing behaviour of any the subclusters in SRNs. The clustering coefficient of hydrophobic subclusters in long-range network is the highest among types of subnetworks. There exist highly cliquish hydrophobic nodes followed by charged nodes in LRNs and ARNs; on the other hand, we observe the highest dominance of charged residues cliques in short-range networks. Studies on the perimeter of the cliques also show higher occurrences of hydrophobic and charged residues’ cliques. Conclusions The simple framework of protein contact networks and their subnetworks based on London van der Waals force is able to capture several known properties of protein structure as well as can unravel several new features. The thermophiles do not only have the higher number of long-range interactions; they also have larger cluster of connected residues at higher interaction strengths among amino acids, than their mesophilic counterparts. It can reestablish the significant role of long-range hydrophobic clusters in protein folding and stabilization; at the same time, it shed light on the higher communication ability of hydrophobic subnetworks over the others. The results give an indication of the controlling role of hydrophobic subclusters in determining protein’s folding rate. The occurrences of higher perimeters of hydrophobic and charged cliques imply the role of charged residues as well as hydrophobic residues in stabilizing the distant part of primary structure of a protein through London van der Waals interaction.
Collapse
Affiliation(s)
- Dhriti Sengupta
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, 92 APC Road, Kolkata-700009, India
| | | |
Collapse
|
72
|
Arnold Emerson I, Gothandam KM. Residue centrality in alpha helical polytopic transmembrane protein structures. J Theor Biol 2012; 309:78-87. [PMID: 22721996 DOI: 10.1016/j.jtbi.2012.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/16/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
Abstract
Transmembrane proteins serve as receptors, transporters or as enzymes. They mediate a broad range of fundamental cellular activities including signal transduction, cell trafficking and photosynthesis. In this study, we analyzed the significance of central residues in the polytopic transmembrane proteins. Each protein is represented as an undirected graph, where residues represent nodes and inter-residue interactions as the edges. Residue centrality was calculated by removing the nodes and its corresponding edges from the protein contact network. Results revealed that 80% of the predicted central residues had normalized conservation values below the mean since they were slowly evolving conserved sites. We also found that 56% of amino acids were interacting with the ligand molecules and metal ions. Predicted central residues in the polytopic transmembrane proteins were found to account for 84% of binding and active site amino acids. From mutation sensitivity analysis, it was observed that 89% of central residues had deleterious mutations whose probabilities were greater than their mean value. Interestingly, we find that z-score values of each amino acid positively correlate with the conservation scores and also with the degrees of each node. Results show that 87% of central residues are hub residues.
Collapse
Affiliation(s)
- I Arnold Emerson
- School of Bio Sciences and Technology, VIT University, Vellore-632014, Tamil Nadu, India
| | | |
Collapse
|
73
|
Atilgan C, Okan OB, Atilgan AR. Network-based models as tools hinting at nonevident protein functionality. Annu Rev Biophys 2012; 41:205-25. [PMID: 22404685 DOI: 10.1146/annurev-biophys-050511-102305] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Network-based models of proteins are popular tools employed to determine dynamic features related to the folded structure. They encompass all topological and geometric computational approaches idealizing proteins as directly interacting nodes. Topology makes use of neighborhood information of residues, and geometry includes relative placement of neighbors. Coarse-grained approaches efficiently predict alternative conformations because of inherent collectivity in the protein structure. Such collectivity is moderated by topological characteristics that also tune neighborhood structure: That rich residues have richer neighbors secures robustness toward random loss of interactions/nodes due to environmental fluctuations/mutations. Geometry conveys the additional information of force balance to network models, establishing the local shape of the energy landscape. Here, residue and/or bond perturbations are critically evaluated to suggest new experiments, as network-based computational techniques prove useful in capturing domain movements and conformational shifts resulting from environmental alterations. Evolutionarily conserved residues are optimally connected, defining a subnetwork that may be utilized for further coarsening.
Collapse
Affiliation(s)
- Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | | | | |
Collapse
|
74
|
Khor S. Towards an integrated understanding of the structural characteristics of protein residue networks. Theory Biosci 2011; 131:61-75. [DOI: 10.1007/s12064-011-0135-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 09/12/2011] [Indexed: 11/29/2022]
|
75
|
Mapping the distribution of packing topologies within protein interiors shows predominant preference for specific packing motifs. BMC Bioinformatics 2011; 12:195. [PMID: 21605466 PMCID: PMC3123238 DOI: 10.1186/1471-2105-12-195] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 05/24/2011] [Indexed: 11/24/2022] Open
Abstract
Background Mapping protein primary sequences to their three dimensional folds referred to as the 'second genetic code' remains an unsolved scientific problem. A crucial part of the problem concerns the geometrical specificity in side chain association leading to densely packed protein cores, a hallmark of correctly folded native structures. Thus, any model of packing within proteins should constitute an indispensable component of protein folding and design. Results In this study an attempt has been made to find, characterize and classify recurring patterns in the packing of side chain atoms within a protein which sustains its native fold. The interaction of side chain atoms within the protein core has been represented as a contact network based on the surface complementarity and overlap between associating side chain surfaces. Some network topologies definitely appear to be preferred and they have been termed 'packing motifs', analogous to super secondary structures in proteins. Study of the distribution of these motifs reveals the ubiquitous presence of typical smaller graphs, which appear to get linked or coalesce to give larger graphs, reminiscent of the nucleation-condensation model in protein folding. One such frequently occurring motif, also envisaged as the unit of clustering, the three residue clique was invariably found in regions of dense packing. Finally, topological measures based on surface contact networks appeared to be effective in discriminating sequences native to a specific fold amongst a set of decoys. Conclusions Out of innumerable topological possibilities, only a finite number of specific packing motifs are actually realized in proteins. This small number of motifs could serve as a basis set in the construction of larger networks. Of these, the triplet clique exhibits distinct preference both in terms of composition and geometry.
Collapse
|
76
|
Turgut D, Atilgan AR, Atilgan C. Assortative mixing in close-packed spatial networks. PLoS One 2010; 5:e15551. [PMID: 21179578 PMCID: PMC3002975 DOI: 10.1371/journal.pone.0015551] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 11/11/2010] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND In recent years, there is aroused interest in expressing complex systems as networks of interacting nodes. Using descriptors from graph theory, it has been possible to classify many diverse systems derived from social and physical sciences alike. In particular, folded proteins as examples of self-assembled complex molecules have also been investigated intensely using these tools. However, we need to develop additional measures to classify different systems, in order to dissect the underlying hierarchy. METHODOLOGY AND PRINCIPAL FINDINGS In this study, a general analytical relation for the dependence of nearest neighbor degree correlations on degree is derived. Dependence of local clustering on degree is shown to be the sole determining factor of assortative versus disassortative mixing in networks. The characteristics of networks constructed from spatial atomic/molecular systems exemplified by self-organized residue networks built from folded protein structures and block copolymers, atomic clusters and well-compressed polymeric melts are studied. Distributions of statistical properties of the networks are presented. For these densely-packed systems, assortative mixing in the network construction is found to apply, and conditions are derived for a simple linear dependence. CONCLUSIONS Our analyses (i) reveal patterns that are common to close-packed clusters of atoms/molecules, (ii) identify the type of surface effects prominent in different close-packed systems, and (iii) associate fingerprints that may be used to classify networks with varying types of correlations.
Collapse
Affiliation(s)
- Deniz Turgut
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Ali Rana Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| |
Collapse
|
77
|
Lee Y, Zhou T, Tartaglia GG, Vendruscolo M, Wilke CO. Translationally optimal codons associate with aggregation-prone sites in proteins. Proteomics 2010; 10:4163-71. [PMID: 21046618 PMCID: PMC3037288 DOI: 10.1002/pmic.201000229] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/15/2010] [Indexed: 01/02/2023]
Abstract
We analyze the relationship between codon usage bias and residue aggregation propensity in the genomes of four model organisms, Escherichia coli, yeast, fly, and mouse, as well as the archaeon Halobacterium species NRC-1. Using the Mantel-Haenszel procedure, we find that translationally optimal codons associate with aggregation-prone residues. Our results are qualitatively and quantitatively similar to those of an earlier study where we found an association between translationally optimal codons and buried residues. We also combine the aggregation-propensity data with solvent-accessibility data. Although the resulting data set is small, and hence statistical power low, results indicate that the association between optimal codons and aggregation-prone residues exists both at buried and at exposed sites. By comparing codon usage at different combinations of sites (exposed, aggregation-prone sites versus buried, non-aggregation-prone sites; buried, aggregation-prone sites versus exposed, non-aggregation-prone sites), we find that aggregation propensity and solvent accessibility seem to have independent effects of (on average) comparable magnitude on codon usage. Finally, in fly, we assess whether optimal codons associate with sites at which amino acid substitutions lead to an increase in aggregation propensity, and find only a very weak effect. These results suggest that optimal codons may be required to reduce the frequency of translation errors at aggregation-prone sites that coincide with certain functional sites, such as protein-protein interfaces. Alternatively, optimal codons may be required for rapid translation of aggregation-prone regions.
Collapse
Affiliation(s)
- Yaelim Lee
- Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, TX 78731, USA
| | - Tong Zhou
- Section of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW
| | - Claus O. Wilke
- Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, TX 78731, USA
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78731, USA
- Section of Integrative Biology, The University of Texas at Austin, Austin, TX 78731, USA
| |
Collapse
|
78
|
Chang S, Gong X, Jiao X, Li C, Chen W, Wang C. Network analysis of protein-protein interaction. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-009-0742-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
79
|
Aftabuddin M, Kundu S. AMINONET– a tool to construct and visualize amino acid networks, and to calculate topological parameters. J Appl Crystallogr 2010. [DOI: 10.1107/s002188981000110x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AMINONETis a Java-based software tool to construct different protein contact networks (unweighted and weighted; long range, short range and any range; hydrophobic, hydrophilic, charged or all-amino-acid networks). The networks thus constructed can be visualized. The software will also help in the calculation of the values of the different topological parameters of the constructed networks. The user can either provide a PDB ID or upload a structure file in PDB format as input. If necessary, the user can also do the same for a large number of proteins, uploading a batch file as input (details described in the document available online).
Collapse
|
80
|
Abstract
The phenomenon of intra-protein communication is fundamental to such processes as allostery and signaling, yet comparatively little is understood about its physical origins despite notable progress in recent years. This review introduces contemporary but distinct frameworks for understanding intra-protein communication by presenting both the ideas behind them and a discussion of their successes and shortcomings. The first framework holds that intra-protein communication is accomplished by the sequential mechanical linkage of residues spanning a gap between distal sites. According to the second framework, proteins are best viewed as ensembles of distinct structural microstates, the dynamical and thermodynamic properties of which contribute to the experimentally observable macroscale properties. Nuclear magnetic resonance (NMR) spectroscopy is a powerful method for studying intra-protein communication, and the insights into both frameworks it provides are presented through a discussion of numerous examples from the literature. Distinct from mechanical and thermodynamic considerations of intra-protein communication are recently applied graph and network theoretic analyses. These computational methods reduce complex three dimensional protein architectures to simple maps comprised of nodes (residues) connected by edges (inter-residue "interactions"). Analysis of these graphs yields a characterization of the protein's topology and network characteristics. These methods have shown proteins to be "small world" networks with moderately high local residue connectivities existing concurrently with a small but significant number of long range connectivities. However, experimental studies of the tantalizing idea that these putative long range interaction pathways facilitate one or several macroscopic protein characteristics are unfortunately lacking at present. This review concludes by comparing and contrasting the presented frameworks and methodologies for studying intra-protein communication and suggests a manner in which they can be brought to bear simultaneously to further enhance our understanding of this important fundamental phenomenon.
Collapse
Affiliation(s)
- Matthew J Whitley
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
81
|
Hills RD, Brooks CL. Insights from coarse-grained Gō models for protein folding and dynamics. Int J Mol Sci 2009; 10:889-905. [PMID: 19399227 PMCID: PMC2672008 DOI: 10.3390/ijms10030889] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 02/23/2009] [Accepted: 02/26/2009] [Indexed: 12/17/2022] Open
Abstract
Exploring the landscape of large scale conformational changes such as protein folding at atomistic detail poses a considerable computational challenge. Coarse-grained representations of the peptide chain have therefore been developed and over the last decade have proved extremely valuable. These include topology-based Gō models, which constitute a smooth and funnel-like approximation to the folding landscape. We review the many variations of the Gō model that have been employed to yield insight into folding mechanisms. Their success has been interpreted as a consequence of the dominant role of the native topology in folding. The role of local contact density in determining protein dynamics is also discussed and is used to explain the ability of Gō-like models to capture sequence effects in folding and elucidate conformational transitions.
Collapse
Affiliation(s)
- Ronald D. Hills
- Department of Molecular Biology and Kellogg School of Science and Technology, The Scripps Research Institute, 10550 N. Torrey Pines Rd. TPC6 La Jolla, CA 92037, USA
| | - Charles L. Brooks
- Department of Molecular Biology and Kellogg School of Science and Technology, The Scripps Research Institute, 10550 N. Torrey Pines Rd. TPC6 La Jolla, CA 92037, USA
- Department of Chemistry and Biophysics Program, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109, USA
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +1-734-647-6682; Fax: +1-734-647-1604
| |
Collapse
|
82
|
Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A. Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 2008; 28:9239-48. [PMID: 18784304 PMCID: PMC2878961 DOI: 10.1523/jneurosci.1929-08.2008] [Citation(s) in RCA: 925] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 06/27/2008] [Accepted: 07/21/2008] [Indexed: 01/07/2023] Open
Abstract
The complex organization of connectivity in the human brain is incompletely understood. Recently, topological measures based on graph theory have provided a new approach to quantify large-scale cortical networks. These methods have been applied to anatomical connectivity data on nonhuman species, and cortical networks have been shown to have small-world topology, associated with high local and global efficiency of information transfer. Anatomical networks derived from cortical thickness measurements have shown the same organizational properties of the healthy human brain, consistent with similar results reported in functional networks derived from resting state functional magnetic resonance imaging (MRI) and magnetoencephalographic data. Here we show, using anatomical networks derived from analysis of inter-regional covariation of gray matter volume in MRI data on 259 healthy volunteers, that classical divisions of cortex (multimodal, unimodal, and transmodal) have some distinct topological attributes. Although all cortical divisions shared nonrandom properties of small-worldness and efficient wiring (short mean Euclidean distance between connected regions), the multimodal network had a hierarchical organization, dominated by frontal hubs with low clustering, whereas the transmodal network was assortative. Moreover, in a sample of 203 people with schizophrenia, multimodal network organization was abnormal, as indicated by reduced hierarchy, the loss of frontal and the emergence of nonfrontal hubs, and increased connection distance. We propose that the topological differences between divisions of normal cortex may represent the outcome of different growth processes for multimodal and transmodal networks and that neurodevelopmental abnormalities in schizophrenia specifically impact multimodal cortical organization.
Collapse
Affiliation(s)
- Danielle S. Bassett
- Clinical Brain Disorders Branch, Genes Cognition and Psychosis Program and
- Brain Mapping Unit, Department of Psychiatry, Addenbrooke's Hospital
- Biological Soft Systems Sector, Department of Physics, and
| | - Edward Bullmore
- Brain Mapping Unit, Department of Psychiatry, Addenbrooke's Hospital
- Behavioral and Clinical Neurosciences Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom, and
| | - Beth A. Verchinski
- Neuroimaging Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Venkata S. Mattay
- Neuroimaging Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Andreas Meyer-Lindenberg
- Clinical Brain Disorders Branch, Genes Cognition and Psychosis Program and
- Central Institute for Mental Health, D-68072 Mannheim, Germany
| |
Collapse
|