51
|
Bordignon E, Grote M, Schneider E. The maltose ATP-binding cassette transporter in the 21st century - towards a structural dynamic perspective on its mode of action. Mol Microbiol 2010; 77:1354-66. [PMID: 20659291 DOI: 10.1111/j.1365-2958.2010.07319.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Enrica Bordignon
- ETH Zurich, Laboratory of Physical Chemistry, Wolfgang-Pauli-Str. 10. CH-8093 Zurich, Switzerland.
| | | | | |
Collapse
|
52
|
Tsai MF, Li M, Hwang TC. Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel. ACTA ACUST UNITED AC 2010; 135:399-414. [PMID: 20421370 PMCID: PMC2860585 DOI: 10.1085/jgp.201010399] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), a member of the adenosine triphosphate (ATP) binding cassette (ABC) superfamily, is an ATP-gated chloride channel. Like other ABC proteins, CFTR encompasses two nucleotide binding domains (NBDs), NBD1 and NBD2, each accommodating an ATP binding site. It is generally accepted that CFTR's opening-closing cycles, each completed within 1 s, are driven by rapid ATP binding and hydrolysis events in NBD2. Here, by recording CFTR currents in real time with a ligand exchange protocol, we demonstrated that during many of these gating cycles, NBD1 is constantly occupied by a stably bound ATP or 8-N(3)-ATP molecule for tens of seconds. We provided evidence that this tightly bound ATP or 8-N(3)-ATP also interacts with residues in the signature sequence of NBD2, a telltale sign for an event occurring at the NBD1-NBD2 interface. The open state of CFTR has been shown to represent a two-ATP-bound NBD dimer. Our results indicate that upon ATP hydrolysis in NBD2, the channel closes into a "partial NBD dimer" state where the NBD interface remains partially closed, preventing ATP dissociation from NBD1 but allowing the release of hydrolytic products and binding of the next ATP to occur in NBD2. Opening and closing of CFTR can then be coupled to the formation and "partial" separation of the NBD dimer. The tightly bound ATP molecule in NBD1 can occasionally dissociate from the partial dimer state, resulting in a nucleotide-free monomeric state of NBDs. Our data, together with other structural/functional studies of CFTR's NBDs, suggest that this process is poorly reversible, implying that the channel in the partial dimer state or monomeric state enters the open state through different pathways. We therefore proposed a gating model for CFTR with two distinct cycles. The structural and functional significance of our results to other ABC proteins is discussed.
Collapse
Affiliation(s)
- Ming-Feng Tsai
- Department of Medical Pharmacology and Physiology and 2 Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
53
|
Oliveira ASF, Baptista AM, Soares CM. Insights into the molecular mechanism of an ABC transporter: conformational changes in the NBD dimer of MJ0796. J Phys Chem B 2010; 114:5486-96. [PMID: 20369870 DOI: 10.1021/jp905735y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Despite the rapid advances in the study of ABC transporters, many fundamental questions linked to ATP binding/hydrolysis and its relation to the transport cycle remain unanswered. In particular, it is still neither clear nor consensual how the ATP energy is used by the nucleotide binding domains (NBDs) to produce mechanical work and drive the substrate translocation. The major conformational changes in the NBDs following ATP hydrolysis during the transport cycle and the role played by the conserved family motifs in harnessing the energy associated with nucleotide hydrolysis are yet unknown. Additionally, the way energy is transmitted from the catalytic to the membrane domains, in order to drive substrate translocation, is also a fundamental question that remains unanswered. Due to the high structure similarities of the NBD architecture throughout the whole ABC family, it is likely that the mechanism of ATP binding, hydrolysis, and communication with the transmembrane domains is similar in all family members, independently of the nature of the transported substrate. In this work, we focused our attention on the consequences of ATP hydrolysis in the NBDs, especially on the structural changes that occur during this process. For that, we use molecular dynamics simulation techniques taking as a starting point the X-ray structure of the MJ0796 dimer from Methanococcus jannaschii. Several potential intermediate states of the ATP hydrolytic cycle are investigated, each consisting of different combinations of nucleotide-bound forms. The results obtained allowed us to identify the conformational rearrangements induced by hydrolysis on the catalytic subunits, as well as the residues involved in this reorganization. The major changes are localized at specific regions of the protein, namely, involving segments 11-19 and 93-124. Additionally, our results together with the knowledge of complete ABC transporter X-ray structures suggest a possible NBD:TMD signal transmission interface.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | | | | |
Collapse
|
54
|
Aittoniemi J, de Wet H, Ashcroft FM, Sansom MSP. Asymmetric switching in a homodimeric ABC transporter: a simulation study. PLoS Comput Biol 2010; 6:e1000762. [PMID: 20454684 PMCID: PMC2861673 DOI: 10.1371/journal.pcbi.1000762] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 03/24/2010] [Indexed: 12/02/2022] Open
Abstract
ABC transporters are a large family of membrane proteins involved in a variety of cellular processes, including multidrug and tumor resistance and ion channel regulation. Advances in the structural and functional understanding of ABC transporters have revealed that hydrolysis at the two canonical nucleotide-binding sites (NBSs) is co-operative and non-simultaneous. A conserved core architecture of bacterial and eukaryotic ABC exporters has been established, as exemplified by the crystal structure of the homodimeric multidrug exporter Sav1866. Currently, it is unclear how sequential ATP hydrolysis arises in a symmetric homodimeric transporter, since it implies at least transient asymmetry at the NBSs. We show by molecular dynamics simulation that the initially symmetric structure of Sav1866 readily undergoes asymmetric transitions at its NBSs in a pre-hydrolytic nucleotide configuration. MgATP-binding residues and a network of charged residues at the dimer interface are shown to form a sequence of putative molecular switches that allow ATP hydrolysis only at one NBS. We extend our findings to eukaryotic ABC exporters which often consist of two non-identical half-transporters, frequently with degeneracy substitutions at one of their two NBSs. Interestingly, many residues involved in asymmetric conformational switching in Sav1866 are substituted in degenerate eukaryotic NBS. This finding strengthens recent suggestions that the interplay of a consensus and a degenerate NBS in eukaroytic ABC proteins pre-determines the sequence of hydrolysis at the two NBSs. ABC transporters are a large family of membrane proteins present in all organisms. Typically, they utilize ATP hydrolysis, the most prominent biological energy source, to translocate substrates into cells (e.g., bacterial nutritient uptake) or out of cells (e.g., multidrug exporters that contribute to antimicrobial resistance in bacteria and resistance to chemotherapeutic drugs in cancer). Also clinically relevant non-transport roles have been identified among ABC proteins. ABC transporters bind two molecules of ATP but do not hydrolyze them simultaneously. Therefore, an ABC transporter that consists of two symmetric halves must temporarily adopt asymmetric conformations at the two ATP-binding sites. Such transient conformational changes are difficult to address biochemically, but may be amenable to study by simulation methods, leading to future experiments. We employ molecular dynamics simulations to study how asymmetric switching might occur in the homodimeric bacterial ABC multidrug exporter Sav1866. The simulations suggest a mechanism of conformational switching that encompasses the ATP-binding sites and their interface towards the substrate-binding site. We extend our findings to show how asymmetric residue substitutions may render the switching process non-stochastic in mammalian Sav1866-like ABC exporters. This contributes to ongoing discussions about the role of two dissimilar ATP-binding sites in clinically relevant ABC proteins.
Collapse
Affiliation(s)
- Jussi Aittoniemi
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Heidi de Wet
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M. Ashcroft
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
55
|
Weng JW, Fan KN, Wang WN. The conformational transition pathway of ATP binding cassette transporter MsbA revealed by atomistic simulations. J Biol Chem 2010; 285:3053-63. [PMID: 19996093 PMCID: PMC2823423 DOI: 10.1074/jbc.m109.056432] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 12/05/2009] [Indexed: 12/14/2022] Open
Abstract
ATP binding cassette transporters are integral membrane proteins that use the energy released from ATP hydrolysis at the two nucleotide binding domains (NBDs) to translocate a wide variety of substrates through a channel at the two transmembrane domains (TMDs) across the cell membranes. MsbA from Gram-negative bacteria is a lipid and multidrug resistance ATP binding cassette exporter that can undergo large scale conformational changes between the outward-facing and the inward-facing conformations revealed by crystal structures in different states. Here, we use targeted molecular dynamics simulation methods to explore the atomic details of the conformational transition from the outward-facing to the inward-facing states of MsbA. The molecular dynamics trajectories revealed a clear spatiotemporal order of the conformational movements. The disruption of the nucleotide binding sites at the NBD dimer interface is the very first event that initiates the following conformational changes, verifying the assumption that the conformational conversion is triggered by ATP hydrolysis. The conserved x-loops of the NBDs were identified to participate in the interaction network that stabilizes the cytoplasmic tetrahelix bundle of the TMDs and play an important role in mediating the cross-talk between the NBD and TMD. The movement of the NBD dimer is transmitted through x-loops to break the tetrahelix bundle, inducing the packing rearrangements of the transmembrane helices at the cytoplasmic side and the periplasmic side sequentially. The packing rearrangement within each periplasmic wing of TMD that results in exposure of the substrate binding sites occurred at the end stage of the trajectory, preventing the wrong timing of the binding site accessibility.
Collapse
Affiliation(s)
- Jing-Wei Weng
- From the Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and
| | - Kang-Nian Fan
- From the Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and
| | - Wen-Ning Wang
- From the Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and
- Institute of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
56
|
Kubala M, Grycova L, Lansky Z, Sklenovsky P, Janovska M, Otyepka M, Teisinger J. Changes in electrostatic surface potential of Na+/K+-ATPase cytoplasmic headpiece induced by cytoplasmic ligand(s) binding. Biophys J 2009; 97:1756-64. [PMID: 19751681 DOI: 10.1016/j.bpj.2009.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/23/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022] Open
Abstract
A set of single-tryptophan mutants of the Na(+)/K(+)-ATPase isolated, large cytoplasmic loop connecting transmembrane helices M4 and M5 (C45) was prepared to monitor effects of the natural cytoplasmic ligands (i.e., Mg(2+) and/or ATP) binding. We introduced a novel method for the monitoring of the changes in the electrostatic surface potential (ESP) induced by ligand binding, using the quenching of the intrinsic tryptophan fluorescence by acrylamide or iodide. This approach opens a new way to understanding the interactions within the proteins. Our experiments revealed that the C45 conformation in the presence of the ATP (without magnesium) substantially differed from the conformation in the presence of Mg(2+) or MgATP or in the absence of any ligand not only in the sense of geometry but also in the sense of the ESP. Notably, the set of ESP-sensitive residues was different from the set of geometry-sensitive residues. Moreover, our data indicate that the effect of the ligand binding is not restricted only to the close environment of the binding site and that the information is in fact transmitted also to the distal parts of the molecule. This property could be important for the communication between the cytoplasmic headpiece and the cation binding sites located within the transmembrane domain.
Collapse
Affiliation(s)
- Martin Kubala
- Laboratory of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
57
|
Newstead S, Fowler PW, Bilton P, Carpenter EP, Sadler PJ, Campopiano DJ, Sansom MS, Iwata S. Insights into how nucleotide-binding domains power ABC transport. Structure 2009; 17:1213-22. [PMID: 19748342 PMCID: PMC2896483 DOI: 10.1016/j.str.2009.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 07/10/2009] [Accepted: 07/10/2009] [Indexed: 12/21/2022]
Abstract
The mechanism by which nucleotide-binding domains (NBDs) of ABC transporters power the transport of substrates across cell membranes is currently unclear. Here we report the crystal structure of an NBD, FbpC, from the Neisseria gonorrhoeae ferric iron uptake transporter with an unusual and substantial domain swap in the C-terminal regulatory domain. This entanglement suggests that FbpC is unable to open to the same extent as the homologous protein MalK. Using molecular dynamics we demonstrate that this is not the case: both NBDs open rapidly once ATP is removed. We conclude from this result that the closed structures of FbpC and MalK have higher free energies than their respective open states. This result has important implications for our understanding of the mechanism of power generation in ABC transporters, because the unwinding of this free energy ensures that the opening of these two NBDs is also powered.
Collapse
Affiliation(s)
- Simon Newstead
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Philip W. Fowler
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Paul Bilton
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK
| | - Elisabeth P. Carpenter
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College London, Exhibition Road, London SW7 2AZ, UK
- Membrane Protein Laboratory, Diamond Light Source Ltd, Harwell Science and Innovation Campus, Chilton, Didcot OX11 ODE, UK
| | - Peter J. Sadler
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK
| | | | - Mark S.P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - So Iwata
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College London, Exhibition Road, London SW7 2AZ, UK
- Membrane Protein Laboratory, Diamond Light Source Ltd, Harwell Science and Innovation Campus, Chilton, Didcot OX11 ODE, UK
| |
Collapse
|
58
|
Gumbart J, Wiener MC, Tajkhorshid E. Coupling of calcium and substrate binding through loop alignment in the outer-membrane transporter BtuB. J Mol Biol 2009; 393:1129-42. [PMID: 19747487 DOI: 10.1016/j.jmb.2009.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 11/29/2022]
Abstract
In Gram-negative bacteria, TonB-dependent outer-membrane transporters bind large, scarce organometallic substrates with high affinity preceding active transport. The cobalamin transporter BtuB requires the additional binding of two Ca(2+) ions before substrate binding can occur, but the underlying molecular mechanism is unknown. Using the crystallographic structures available for different bound states of BtuB, we have carried out extended molecular dynamics simulations of multiple functional states of BtuB to address the role of Ca(2+) in substrate recruitment. We find that Ca(2+) binding both stabilizes and repositions key extracellular loops of BtuB, optimizing interactions with the substrate. Interestingly, replacement by Mg(2+) abolishes this effect, in accordance with experiments. Using a set of new force-field parameters developed for cyanocobalamin, we also simulated the substrate-bound form of BtuB, where we observed interactions not seen in the crystal structure between the substrate and loops previously found to be important for binding and transport. Based on our results, we suggest that the large size of cobalamin compared to other TonB-dependent transporter substrates explains the requirement of Ca(2+) binding for high-affinity substrate recruitment in BtuB.
Collapse
Affiliation(s)
- James Gumbart
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
59
|
Khalili-Araghi F, Gumbart J, Wen PC, Sotomayor M, Tajkhorshid E, Schulten K. Molecular dynamics simulations of membrane channels and transporters. Curr Opin Struct Biol 2009; 19:128-37. [PMID: 19345092 DOI: 10.1016/j.sbi.2009.02.011] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/22/2009] [Accepted: 02/24/2009] [Indexed: 11/27/2022]
Abstract
Membrane transport constitutes one of the most fundamental processes in all living cells with proteins as major players. Proteins as channels provide highly selective diffusive pathways gated by environmental factors, and as transporters furnish directed, energetically uphill transport consuming energy. X-ray crystallography of channels and transporters furnishes a rapidly growing number of atomic resolution structures, permitting molecular dynamics (MD) simulations to reveal the physical mechanisms underlying channel and transporter function. Ever increasing computational power today permits simulations stretching up to 1 micros, that is, to physiologically relevant time scales. Membrane protein simulations presently focus on ion channels, on aquaporins, on protein-conducting channels, as well as on various transporters. In this review we summarize recent developments in this rapidly evolving field.
Collapse
Affiliation(s)
- Fatemeh Khalili-Araghi
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
60
|
Holo-BtuF stabilizes the open conformation of the vitamin B12 ABC transporter BtuCD. Proteins 2009; 78:738-53. [DOI: 10.1002/prot.22606] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|