51
|
Nishimura K, Yamauchi N, Chowdhury VS, Torii M, Hattori MA, Kaneto M. Expression of peroxisome proliferator-activated receptor isoforms in the rat uterus during early pregnancy. Cell Tissue Res 2011; 345:275-84. [PMID: 21773887 DOI: 10.1007/s00441-011-1208-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/21/2011] [Indexed: 12/22/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) play an important role in different compartments of the female reproductive system in rodents and humans. However, expressional profiles and physiological functions of PPARs in the endometrium prior to the placentation are not well understood. In this study, we determined expressional profiles of the PPARs during early pregnancy. Immunocytochemistry revealed that both PPARα and PPARβ/δ were strongly detected in the endometrial stroma on days 4.5-6.5 of pregnancy, which is just a starting time of implantation. Delayed implantation animal model showed that the expressions of PPARα and PPARβ/δ occurred after the initiation of implantation in the endometrial stroma. Moreover, an in vitro decidualization model further revealed that the expression of PPARα increased in the cultured rat endometrial stromal cells at 24 h after the decidualization treatment, but the expression of PPARβ/δ was delayed and increased at 48 h after the treatment. PPARγ was expressed in the endometrial stroma and its expression decreased significantly at 2.5 days post-coitum and maintained a low level of expression during the period of implantation. These results indicate that PPARα is expressed and induced by the initiation of implantation, prior to the expression of PPARβ/δ in decidualized endometrium. Increasing expression of PPARγ during fertilization and its decline during the period of implantation further suggest that PPARs may play important roles during early pregnancy.
Collapse
Affiliation(s)
- Kyohei Nishimura
- Drug Safely Evaluation, Developmental Research Laboratories, Shionogi & Co., Ltd, Toyonaka, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
52
|
PPARs and Female Reproduction: Evidence from Genetically Manipulated Mice. PPAR Res 2011; 2008:723243. [PMID: 18401459 PMCID: PMC2288756 DOI: 10.1155/2008/723243] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 12/06/2007] [Indexed: 12/16/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear receptors controlling many important physiological processes, including lipid and glucose metabolism, energy homeostasis, inflammation, as well as cell proliferation and differentiation. In the past decade, intensive study of PPARs has shed novel insight into prevention and treatment of dyslipidemia, insulin resistance, and type 2 diabetes. Recently, a large body of research revealed that PPARs are also functionally expressed in reproductive organs and various parts of placenta during pregnancy, which strongly suggests that PPARs might play a critical role in reproduction and development, in addition to their central actions in energy homeostasis. In this review, we summarize recent findings elucidating the role of PPARs in female reproduction, with particular focus on evidence from gene knockout and transgenic animal model study.
Collapse
|
53
|
Waclawik A. Novel insights into the mechanisms of pregnancy establishment: regulation of prostaglandin synthesis and signaling in the pig. Reproduction 2011; 142:389-99. [PMID: 21677026 DOI: 10.1530/rep-11-0033] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ovarian progesterone induces essential changes leading to a temporary state of uterine receptivity for conceptus implantation. Estrogens secreted by the porcine conceptus on days 11 and 12 of pregnancy provide the initial signal for maternal recognition of pregnancy and maintenance of a functional corpus luteum (CL) for continued production of progesterone. As prostaglandins F(2)(α) (PGF(2)(α)) and E(2) (PGE(2)) exert opposing actions on the CL, a tight control over their synthesis and secretion is critical either for the initiation of luteolysis or maintenance of pregnancy. One of the supportive mechanisms by which conceptus inhibits luteolysis is changing PG synthesis in favor of luteoprotective PGE(2). Conceptus PGE(2) could be amplified by PGE(2) feedback loop in the endometrium. In pigs, as in other species, implantation and establishment of pregnancy is associated with upregulation of expression of proinflammatory factors, which include cytokines, growth factors, and lipid mediators. The conceptus produces inflammatory mediators: interferon γ and interferon δ, interleukins IL1B and IL6, and PGs, which probably activate inflammatory pathways in the endometrium. The endometrium responds to these embryonic signals by enhancing further progesterone-induced uterine receptivity. Understanding the mechanisms of pregnancy establishment is required for translational research to increase reproductive efficiencies and fertility in humans and animals.
Collapse
Affiliation(s)
- Agnieszka Waclawik
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland.
| |
Collapse
|
54
|
Dorniak P, Bazer FW, Spencer TE. Prostaglandins Regulate Conceptus Elongation and Mediate Effects of Interferon Tau on the Ovine Uterine Endometrium1. Biol Reprod 2011; 84:1119-27. [DOI: 10.1095/biolreprod.110.089979] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
55
|
Grazul-Bilska AT, Borowicz PP, Johnson ML, Minten MA, Bilski JJ, Wroblewski R, Redmer DA, Reynolds LP. Placental development during early pregnancy in sheep: vascular growth and expression of angiogenic factors in maternal placenta. Reproduction 2010; 140:165-74. [DOI: 10.1530/rep-09-0548] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Placental vascular development (angiogenesis) is critical for placental function and thus for normal embryonic/fetal growth and development. Specific environmental factors or use of assisted reproductive techniques may result in poor placental angiogenesis, which may contribute to embryonic losses and/or fetal growth retardation. Uterine tissues were collected on days 14, 16, 18, 20, 22, 24, 26, 28, and 30 after mating and on day 10 after estrus (nonpregnant controls) to determine vascular development and expression of several factors involved in the regulation of angiogenesis in the endometrium. Compared with controls, several measurements of endometrial vascularity increased (P<0.001) including vascular labeling index (LI; proportion of proliferating cells), the tissue area occupied by capillaries, area per capillary (capillary size), total capillary circumference per unit of tissue area, and expression of factor VIII (marker of endothelial cells), but capillary number decreased (P<0.001). Compared with controls, mRNA for placental growth factor, vascular endothelial growth factor receptors, angiopoietins (ANGPT) 1 and 2, ANGPT receptorTEK, endothelial nitric oxide synthase, and hypoxia-inducible factor 1α increased (P<0.05) during early pregnancy. Vascular LI was positively correlated (P<0.05) with several measurements of vascularity and with mRNA expression of angiogenic factors. These data indicate that endometrial angiogenesis, manifested by increased vascularity and increased expression of several factors involved in the regulation of angiogenesis, is initiated very early in pregnancy. This more complete description of early placental angiogenesis may provide the foundation for determining whether placental vascular development is altered in compromised pregnancies.
Collapse
|
56
|
Abnormal Expression of the Imprinted Gene Phlda2 in Cloned Bovine Placenta. Placenta 2010; 31:482-90. [DOI: 10.1016/j.placenta.2010.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 12/29/2022]
|
57
|
Ulbrich SE, Schulke K, Groebner AE, Reichenbach HD, Angioni C, Geisslinger G, Meyer HHD. Quantitative characterization of prostaglandins in the uterus of early pregnant cattle. Reproduction 2009; 138:371-82. [DOI: 10.1530/rep-09-0081] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Prostaglandins (PGs) are important regulators of reproductive processes including early embryonic development. We analyzed the most relevant PG in bovine uteri at different preimplantation pregnancy stages when compared with non-pregnant controls. Additionally, endometrium and trophoblast tissues were examined regarding specific enzymes and receptors involved in PG generation and function. Simmental heifers were artificially inseminated or received seminal plasma only. At days 12, 15, or 18, post-estrus uteri were flushed for PG determination by liquid chromatography–tandem mass spectrometry. Endometrium and trophoblast tissues were sampled for RNA extraction and quantitative real-time PCR analysis. At all days and points of time examined, the concentration of 6-keto PGF1α (stable metabolite of PGI2) was predominant followed by PGF2α>PGE2>PGD2≈TXB2 (stable metabolite of TXA2). At days 15 and 18, PG increased from overall low levels at day 12, with a much more pronounced increase during pregnancy. The PGF2α/PGE2 ratio was not influenced by status. The highest PG concentration was measured at day 15 with 6-keto PGF1α (6.4 ng/ml) followed by PGF2α (1.1 ng/ml) and PGE2 (0.3 ng/ml). Minor changes in endometrial PG biosynthesis enzymes occurred due to pregnancy. Trophoblasts revealed high transcript abundance of general and specific PG synthases contributing to uterine PG. As PGI2 and PGF2α receptors were abundantly expressed by the trophoblast, abundant amounts of PGI2 and PGF2α in the uterine lumen point towards an essential role of PG for the developing embryo. High amounts of PG other than PGE2 in the preimplantation uterus may be essential rather than detrimental for successful reproduction.
Collapse
|
58
|
Liszewska E, Reinaud P, Billon-Denis E, Dubois O, Robin P, Charpigny G. Lysophosphatidic acid signaling during embryo development in sheep: involvement in prostaglandin synthesis. Endocrinology 2009; 150:422-34. [PMID: 18772233 DOI: 10.1210/en.2008-0749] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We investigated the lysophosphatidic acid (LPA) pathway during early pregnancy in sheep. LPA was detected in the uteri of early-stage pregnant ewes. Using quantitative RT-PCR, the expression of autotaxin, the LPA-generating enzyme, was found in the endometrium and conceptus. In the latter autotaxin, transcript levels were low on d 12-14 and increased on d 15-16, in parallel with the level of LPA. Autotaxin was localized in the luminal epithelium and superficial glands of the endometrium and in trophectoderm cells of the conceptus. The expression of G protein-coupled receptors for LPA was also examined in the ovine conceptus. LPA receptor LPAR1 and LPAR3 transcripts were expressed during early pregnancy and displayed a peak on d 14, whereas the highest level of protein for both receptors was observed at d 17. LPAR1 was localized in cellular membranes and nuclear compartments of the trophectoderm cells, whereas LPAR3 was revealed only in membranes. LPA activated phosphorylation of the MAPK ERK1/2 in ovine trophectoderm-derived cells. Moreover, the bioactive lipid increased the proliferation of trophectoderm cells in culture, as shown by thymidine and bromodeoxyuridine incorporation. Furthermore, LPA induced changes to the organization of beta-actin and alpha-tubulin, suggesting a role for it in rearrangement of trophectoderm cells cytoskeleton. Because a link had previously been established between prostaglandin and LPA pathways, we analyzed the effect of LPA on prostaglandin synthesis. LPA induced an increase in the release of prostaglandin F2alpha and prostaglandin E2, with no significant modifications to cytosolic phospholipase A2alpha and prostaglandin synthase-2 expression. Taken together, our results suggest a new role for LPA-mediated signaling in the ovine conceptus at the time of implantation.
Collapse
Affiliation(s)
- Ewa Liszewska
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1198 Biologie du Développement et Reproduction, F-78350 Jouy en Josas, France
| | | | | | | | | | | |
Collapse
|
59
|
Coyne GS, Kenny DA, Childs S, Sreenan JM, Waters SM. Dietary n-3 polyunsaturated fatty acids alter the expression of genes involved in prostaglandin biosynthesis in the bovine uterus. Theriogenology 2008; 70:772-82. [PMID: 18582926 DOI: 10.1016/j.theriogenology.2008.05.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/25/2008] [Accepted: 05/04/2008] [Indexed: 10/21/2022]
Abstract
Nutrition plays a critical role in the regulation of cow fertility. There is emerging evidence that dietary long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) may act as specific regulators of some reproductive processes. In vitro studies suggest that the n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may play pivotal roles by suppressing the synthesis of uterine prostaglandin F(2alpha) (PGF(2alpha)) which is centrally involved in the control of the bovine oestrous cycle and in early embryo survival. The objective of the current study was to determine the effect of dietary inclusion of n-3 PUFA on uterine endometrial mRNA expression of key genes regulating PGF(2alpha) biosynthesis. Beef heifers were fed either a low (CON; n=10) or high (HIGH PUFA; n=10) n-3 PUFA diet for 45 days and endometrial tissues were harvested following slaughter. Following analysis, tissues within each dietary group were ranked on the basis of their PUFA concentrations and the highest (n=7) and lowest (n=7) within each of HIGH PUFA and CON, respectively, were used in gene expression studies. Endometrial n-3 PUFA concentrations were more than two-fold higher (P<0.05) and EPA concentrations alone more than seven-fold higher (P<0.01) in the HIGH PUFA than the CON group. Endometrial concentrations of arachidonic acid, were lower (P<0.001) in the tissues from HIGH PUFA than those from the CON group. Total RNA was isolated from all endometrial tissues and real-time reverse transcription (RT) PCR conducted to compare the relative expression of 11 genes with known involvement in uterine biosynthesis of 2-series prostaglandins. Expression of mRNA for prostaglandin E synthase (PGES) and peroxisome proliferator-activated receptors, PPAR alpha and delta was increased (P<0.05) while mRNA expression of phospholipase A(2) (PLA(2)) was decreased (P=0.06) in the HIGH PUFA endometrial tissues. Expression of genes coding for the oxytocin receptor (OTR), phospholipase C (PLC), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), PGE(2) 9-ketoreductase (9-KPR), prostaglandin F synthase (PGFS), and the nuclear transcription factor, PPAR gamma was not different (P>0.05) between HIGH PUFA and CON tissues. Overall the results indicate that key genes regulating uterine PGF(2alpha) biosynthesis can be regulated by dietary inclusion of LC n-3 PUFA which may influence uterine function and embryo survival.
Collapse
Affiliation(s)
- G S Coyne
- Teagasc, Animal Production Research Centre, Mellows Campus, Athenry, Co. Galway, Ireland
| | | | | | | | | |
Collapse
|
60
|
Spencer TE, Sandra O, Wolf E. Genes involved in conceptus–endometrial interactions in ruminants: insights from reductionism and thoughts on holistic approaches. Reproduction 2008; 135:165-79. [DOI: 10.1530/rep-07-0327] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review summarizes new knowledge on expression of genes and provides insights into approaches for study of conceptus–endometrial interactions in ruminants with emphasis on the peri-implantation stage of pregnancy. Conceptus–endometrial interactions in ruminants are complex and involve carefully orchestrated temporal and spatial alterations in gene expression regulated by hormones from the ovary and conceptus. Progesterone is the hormone of pregnancy and acts on the uterus to stimulate blastocyst survival, growth, and development. Inadequate progesterone levels or a delayed rise in progesterone is associated with pregnancy loss. The mononuclear trophectoderm cells of the elongating blastocyst synthesize and secrete interferon-τ (IFNT), the pregnancy recognition signal. Trophoblast giant binucleate cells begin to differentiate and produce hormones including chorionic somatomammotropin 1 (CSH1 or placental lactogen). A number of genes, induced or stimulated by progesterone, IFNT, and/or CSH1 in a cell-specific manner, are implicated in trophectoderm adhesion to the endometrial luminal epithelium and regulation of conceptus growth and differentiation. Transcriptional profiling experiments are beginning to unravel the complex dynamics of conceptus–endometrial interactions in cattle and sheep. Future experiments should incorporate physiological models of pregnancy loss and be complemented by metabolomic studies of uterine lumen contents to more completely define factors required for blastocyst survival, growth, and implantation. Both reduction and holistic approaches will be important to understand the multifactorial phenomenon of recurrent pregnancy loss and provide a basis for new strategies to improve pregnancy outcome and reproductive efficiency in cattle and other domestic animals.
Collapse
|
61
|
Current World Literature. Curr Opin Obstet Gynecol 2007; 19:289-96. [PMID: 17495648 DOI: 10.1097/gco.0b013e3281fc29db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|