51
|
Ma J, Flemr M, Strnad H, Svoboda P, Schultz RM. Maternally recruited DCP1A and DCP2 contribute to messenger RNA degradation during oocyte maturation and genome activation in mouse. Biol Reprod 2013; 88:11. [PMID: 23136299 DOI: 10.1095/biolreprod.112.105312] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The oocyte-to-zygote transition entails transforming a highly differentiated oocyte into totipotent blastomeres and represents one of the earliest obstacles that must be successfully hurdled for continued development. Degradation of maternal mRNAs, which likely lies at the heart of this transition, is characterized by a transition from mRNA stability to instability during oocyte maturation. Although phosphorylation of the oocyte-specific RNA-binding protein MSY2 during maturation is implicated in making maternal mRNAs more susceptible to degradation, mechanisms underlying mRNA degradation during oocyte maturation remain poorly understood. We report that DCP1A and DCP2, proteins responsible for decapping mRNA, are encoded by maternal mRNAs recruited for translation during maturation via cytoplasmic polyadenylation elements located in their 3' untranslated regions. Both DCP1A and DCP2 are phosphorylated during maturation, with CDC2A being the kinase likely responsible for both, although MAPK may be involved in DCP1A phosphorylation. Inhibiting accumulation of DCP1A and DCP2 by RNA interference or morpholinos decreases not only degradation of mRNAs during meiotic maturation but also transcription of the zygotic genome. The results indicate that maternally recruited DCP1A and DCP2 are critical players in the transition from mRNA stability to instability during meiotic maturation and that proper maternal mRNA degradation must be successful to execute the oocyte-to-zygote transition.
Collapse
Affiliation(s)
- Jun Ma
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
52
|
The discovery and analysis of P Bodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:23-43. [PMID: 23224963 DOI: 10.1007/978-1-4614-5107-5_3] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
53
|
Chuang TW, Chang WL, Lee KM, Tarn WY. The RNA-binding protein Y14 inhibits mRNA decapping and modulates processing body formation. Mol Biol Cell 2013; 24:1-13. [PMID: 23115303 PMCID: PMC3530774 DOI: 10.1091/mbc.e12-03-0217] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 10/22/2012] [Accepted: 10/24/2012] [Indexed: 01/12/2023] Open
Abstract
The exon-junction complex (EJC) deposited on a newly spliced mRNA plays an important role in subsequent mRNA metabolic events. Here we show that an EJC core heterodimer, Y14/Magoh, specifically associates with mRNA-degradation factors, including the mRNA-decapping complex and exoribonucleases, whereas another core factor, eIF4AIII/MLN51, does not. We also demonstrate that Y14 interacts directly with the decapping factor Dcp2 and the 5' cap structure of mRNAs via different but overlapping domains and that Y14 inhibits the mRNA-decapping activity of Dcp2 in vitro. Accordingly, overexpression of Y14 prolongs the half-life of a reporter mRNA. Therefore Y14 may function independently of the EJC in preventing mRNA decapping and decay. Furthermore, we observe that depletion of Y14 disrupts the formation of processing bodies, whereas overexpression of a phosphomimetic Y14 considerably increases the number of processing bodies, perhaps by sequestering the mRNA-degradation factors. In conclusion, this report provides unprecedented evidence for a role of Y14 in regulating mRNA degradation and processing body formation and reinforces the influence of phosphorylation of Y14 on its activity in postsplicing mRNA metabolism.
Collapse
Affiliation(s)
- Tzu-Wei Chuang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Wei-Lun Chang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Kuo-Ming Lee
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
54
|
Arribas-Layton M, Wu D, Lykke-Andersen J, Song H. Structural and functional control of the eukaryotic mRNA decapping machinery. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:580-9. [PMID: 23287066 DOI: 10.1016/j.bbagrm.2012.12.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/15/2012] [Accepted: 12/17/2012] [Indexed: 01/12/2023]
Abstract
The regulation of mRNA degradation is critical for proper gene expression. Many major pathways for mRNA decay involve the removal of the 5' 7-methyl guanosine (m(7)G) cap in the cytoplasm to allow for 5'-to-3' exonucleolytic decay. The most well studied and conserved eukaryotic decapping enzyme is Dcp2, and its function is aided by co-factors and decapping enhancers. A subset of these factors can act to enhance the catalytic activity of Dcp2, while others might stimulate the remodeling of proteins bound to the mRNA substrate that may otherwise inhibit decapping. Structural studies have provided major insights into the mechanisms by which Dcp2 and decapping co-factors activate decapping. Additional mRNA decay factors can function by recruiting components of the decapping machinery to target mRNAs. mRNA decay factors, decapping factors, and mRNA substrates can be found in cytoplasmic foci named P bodies that are conserved in eukaryotes, though their function remains unknown. In addition to Dcp2, other decapping enzymes have been identified, which may serve to supplement the function of Dcp2 or act in independent decay or quality control pathways. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
55
|
Decker CJ, Parker R. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol 2012; 4:a012286. [PMID: 22763747 DOI: 10.1101/cshperspect.a012286] [Citation(s) in RCA: 538] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The control of translation and mRNA degradation is important in the regulation of eukaryotic gene expression. In general, translation and steps in the major pathway of mRNA decay are in competition with each other. mRNAs that are not engaged in translation can aggregate into cytoplasmic mRNP granules referred to as processing bodies (P-bodies) and stress granules, which are related to mRNP particles that control translation in early development and neurons. Analyses of P-bodies and stress granules suggest a dynamic process, referred to as the mRNA Cycle, wherein mRNPs can move between polysomes, P-bodies and stress granules although the functional roles of mRNP assembly into higher order structures remain poorly understood. In this article, we review what is known about the coupling of translation and mRNA degradation, the properties of P-bodies and stress granules, and how assembly of mRNPs into larger structures might influence cellular function.
Collapse
Affiliation(s)
- Carolyn J Decker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona 85721-0206, USA
| | | |
Collapse
|
56
|
Rajyaguru P, Parker R. RGG motif proteins: modulators of mRNA functional states. Cell Cycle 2012; 11:2594-9. [PMID: 22767211 PMCID: PMC3873214 DOI: 10.4161/cc.20716] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A recent report demonstrates that a subset of RGG-motif proteins can bind translation initiation factor eIF4G and repress mRNA translation. This adds to the growing number of roles RGG-motif proteins play in modulating transcription, splicing, mRNA export and now translation. Herein, we review the nature and breadth of functions of RGG-motif proteins. In addition, the interaction of some RGG-motif proteins and other translation repressors with eIF4G highlights the role of eIF4G as a general modulator of mRNA function and not solely as a translation initiation factor.
Collapse
Affiliation(s)
- Purusharth Rajyaguru
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, The University of Arizona, Tucson, Tucson, AZ, USA
| | | |
Collapse
|
57
|
Abstract
All RNA species in yeast cells are subject to turnover. Work over the past 20 years has defined degradation mechanisms for messenger RNAs, transfer RNAs, ribosomal RNAs, and noncoding RNAs. In addition, numerous quality control mechanisms that target aberrant RNAs have been identified. Generally, each decay mechanism contains factors that funnel RNA substrates to abundant exo- and/or endonucleases. Key issues for future work include determining the mechanisms that control the specificity of RNA degradation and how RNA degradation processes interact with translation, RNA transport, and other cellular processes.
Collapse
Affiliation(s)
- Roy Parker
- Department of Molecular and Cellular Biology, University of Arizona and Howard Hughes Medical Institute, Tucson, AZ 85721, USA.
| |
Collapse
|
58
|
Balagopal V, Fluch L, Nissan T. Ways and means of eukaryotic mRNA decay. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:593-603. [DOI: 10.1016/j.bbagrm.2012.01.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/29/2011] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
|
59
|
Dehydration stress activates Arabidopsis MPK6 to signal DCP1 phosphorylation. EMBO J 2012; 31:1975-84. [PMID: 22407295 DOI: 10.1038/emboj.2012.56] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 02/14/2012] [Indexed: 11/08/2022] Open
Abstract
Eukaryotic mRNA decapping proteins are essential for normal turnover of mRNA. Yet, the mechanism of bulk mRNA turnover during stress responses and its importance to stress tolerance are poorly understood. Here, we showed that dehydration stress activated MPK6 to phosphorylate serine 237 of Arabidopsis DCP1 and phospho-DCP1 preferentially associated with DCP5 to promote mRNA decapping in vivo. This process was essential for stress adaption as dcp5-1 and DCP1-S237A plants were hypersensitive to stress compared with wild-type (WT) plants. Microarray analysis revealed that dehydration-induced expression of many stress responsive genes was compromised in dcp5-1, whereas a subset of transcripts was over-represented in this mutant. Further analysis revealed that this subset of transcripts was likely the direct targets of stress-triggered mRNA decapping in WT. Our results suggest that mRNA decapping through MPK6-DCP1-DCP5 pathway serves as a rapid response to dehydration stress in Arabidopsis.
Collapse
|
60
|
Lavut A, Raveh D. Sequestration of highly expressed mRNAs in cytoplasmic granules, P-bodies, and stress granules enhances cell viability. PLoS Genet 2012; 8:e1002527. [PMID: 22383896 PMCID: PMC3285586 DOI: 10.1371/journal.pgen.1002527] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 12/21/2011] [Indexed: 02/07/2023] Open
Abstract
Transcriptome analyses indicate that a core 10%–15% of the yeast genome is modulated by a variety of different stresses. However, not all the induced genes undergo translation, and null mutants of many induced genes do not show elevated sensitivity to the particular stress. Elucidation of the RNA lifecycle reveals accumulation of non-translating mRNAs in cytoplasmic granules, P-bodies, and stress granules for future regulation. P-bodies contain enzymes for mRNA degradation; under stress conditions mRNAs may be transferred to stress granules for storage and return to translation. Protein degradation by the ubiquitin-proteasome system is elevated by stress; and here we analyzed the steady state levels, decay, and subcellular localization of the mRNA of the gene encoding the F-box protein, UFO1, that is induced by stress. Using the MS2L mRNA reporter system UFO1 mRNA was observed in granules that colocalized with P-bodies and stress granules. These P-bodies stored diverse mRNAs. Granules of two mRNAs transported prior to translation, ASH1-MS2L and OXA1-MS2L, docked with P-bodies. HSP12 mRNA that gave rise to highly elevated protein levels was not observed in granules under these stress conditions. ecd3, pat1 double mutants that are defective in P-body formation were sensitive to mRNAs expressed ectopically from strong promoters. These highly expressed mRNAs showed elevated translation compared with wild-type cells, and the viability of the mutants was strongly reduced. ecd3, pat1 mutants also exhibited increased sensitivity to different stresses. Our interpretation is that sequestration of highly expressed mRNAs in P-bodies is essential for viability. Storage of mRNAs for future regulation may contribute to the discrepancy between the steady state levels of many stress-induced mRNAs and their proteins. Sorting of mRNAs for future translation or decay by individual cells could generate potentially different phenotypes in a genetically identical population and enhance its ability to withstand stress. 10%–15% of the yeast genome is modulated by stress; however, there is a discrepancy between the genes that are upregulated and the sensitivity of the null mutants of those genes to the stress. The question is: what happens to these highly expressed mRNAs? mRNAs have a complex lifecycle and non-translating mRNAs can be stored in cytoplasmic granules, processing P-bodies, and stress granules for decay or future translation, respectively. UFO1 encodes a component of the regulated protein degradation system, and its transcription is elevated by stress; however, the deletion mutants do not show enhanced sensitivity. UFO1 mRNA is stored in P-bodies and stress granules. Storage of mRNAs may contribute to the discrepancy between the steady state levels of stress-induced mRNAs and their proteins. To test this hypothesis, we expressed high levels of mRNA in cells unable to form P-bodies. We found that translation of these mRNAs was 3–8 fold higher than in wild-type cells. Furthermore high level expression of mRNA affected the viability of the mutants. The ability to store mRNAs for future translation or decay would generate different phenotypes in a genetically identical population and enhance its ability to withstand stress.
Collapse
Affiliation(s)
- Anna Lavut
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheba, Israel
| | - Dina Raveh
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheba, Israel
- * E-mail:
| |
Collapse
|
61
|
Jung JH, Kim J. Accumulation of P-bodies in Candida albicans under different stress and filamentous growth conditions. Fungal Genet Biol 2011; 48:1116-23. [DOI: 10.1016/j.fgb.2011.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 01/11/2023]
|
62
|
Fromm SA, Truffault V, Kamenz J, Braun JE, Hoffmann NA, Izaurralde E, Sprangers R. The structural basis of Edc3- and Scd6-mediated activation of the Dcp1:Dcp2 mRNA decapping complex. EMBO J 2011; 31:279-90. [PMID: 22085934 DOI: 10.1038/emboj.2011.408] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 10/12/2011] [Indexed: 01/01/2023] Open
Abstract
The Dcp1:Dcp2 decapping complex catalyses the removal of the mRNA 5' cap structure. Activator proteins, including Edc3 (enhancer of decapping 3), modulate its activity. Here, we solved the structure of the yeast Edc3 LSm domain in complex with a short helical leucine-rich motif (HLM) from Dcp2. The motif interacts with the monomeric Edc3 LSm domain in an unprecedented manner and recognizes a noncanonical binding surface. Based on the structure, we identified additional HLMs in the disordered C-terminal extension of Dcp2 that can interact with Edc3. Moreover, the LSm domain of the Edc3-related protein Scd6 competes with Edc3 for the interaction with these HLMs. We show that both Edc3 and Scd6 stimulate decapping in vitro, presumably by preventing the Dcp1:Dcp2 complex from adopting an inactive conformation. In addition, we show that the C-terminal HLMs in Dcp2 are necessary for the localization of the Dcp1:Dcp2 decapping complex to P-bodies in vivo. Unexpectedly, in contrast to yeast, in metazoans the HLM is found in Dcp1, suggesting that details underlying the regulation of mRNA decapping changed throughout evolution.
Collapse
Affiliation(s)
- Simon A Fromm
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
63
|
Swisher KD, Parker R. Interactions between Upf1 and the decapping factors Edc3 and Pat1 in Saccharomyces cerevisiae. PLoS One 2011; 6:e26547. [PMID: 22065998 PMCID: PMC3204985 DOI: 10.1371/journal.pone.0026547] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/28/2011] [Indexed: 11/18/2022] Open
Abstract
In Saccharomyces cerevisiae, mRNA transcripts with premature termination codons are targeted for deadenylation independent decapping and 5′ to 3′ decay in a quality control pathway termed nonsense-mediated decay (NMD). Critical factors in NMD include Upf1, Upf2, and Upf3, as well as the decapping enzyme, Dcp2/Dcp1. Loss of Upf2 or Upf3 leads to the accumulation of not only Upf1 and Dcp2 in P-bodies, but also of the decapping-activators Pat1, Dhh1, and Lsm1. An interaction between Upf1 and Dcp2 has been identified, which might recruit Dcp2 to the NMD decapping complex. To determine the nature and significance of the Dcp2-Upf1 interaction, we utilized the yeast two-hybrid assay to assess Upf1 interactions with various mRNA decapping factors. We find that although Dcp2 can interact with Upf1, this interaction is indirect and is largely dependent on the Edc3 protein, which interacts with the N-terminal domain of Upf1 at an overlapping, but not identical, site as Upf2. We also found that Pat1 has an independent two-hybrid interaction with the N-terminus of Upf1. Assessment of both reporter and endogenous NMD transcripts suggest that the decapping stimulators, including Edc3 and Pat1, as well as Edc1 and Edc2, are not essential for NMD under normal conditions. This work defines a larger decapping complex involved in NMD, but indicates that components of that complex are not required for general NMD and might either regulate a subset of NMD transcripts or be essential for proper NMD under different environmental conditions.
Collapse
Affiliation(s)
- Kylie D. Swisher
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Roy Parker
- Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
64
|
Borja MS, Piotukh K, Freund C, Gross JD. Dcp1 links coactivators of mRNA decapping to Dcp2 by proline recognition. RNA (NEW YORK, N.Y.) 2011; 17:278-90. [PMID: 21148770 PMCID: PMC3022277 DOI: 10.1261/rna.2382011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 11/08/2010] [Indexed: 05/20/2023]
Abstract
Cap hydrolysis is a critical step in several eukaryotic mRNA decay pathways and is carried out by the evolutionarily conserved decapping complex containing Dcp2 at the catalytic core. In yeast, Dcp1 is an essential activator of decapping and coactivators such as Edc1 and Edc2 are thought to enhance activity, though their mechanism remains elusive. Using kinetic analysis we show that a crucial function of Dcp1 is to couple the binding of coactivators of decapping to activation of Dcp2. Edc1 and Edc2 bind Dcp1 via its EVH1 proline recognition site and stimulate decapping by 1000-fold, affecting both the K(M) for mRNA and rate of the catalytic step. The C-terminus of Edc1 is necessary and sufficient to enhance the catalytic step, while the remainder of the protein likely increases mRNA binding to the decapping complex. Lesions in the Dcp1 EVH1 domain or the Edc1 proline-rich sequence are sufficient to block stimulation. These results identify a new role of Dcp1, which is to link the binding of coactivators to substrate recognition and activation of Dcp2.
Collapse
Affiliation(s)
- Mark S Borja
- Program in Chemistry and Chemical Biology, University of California, San Francisco, California 94158, USA
| | | | | | | |
Collapse
|
65
|
Takahashi S, Sakurai K, Ebihara A, Kajiho H, Saito K, Kontani K, Nishina H, Katada T. RhoA activation participates in rearrangement of processing bodies and release of nucleated AU-rich mRNAs. Nucleic Acids Res 2011; 39:3446-57. [PMID: 21212127 PMCID: PMC3082882 DOI: 10.1093/nar/gkq1302] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytoplasmic ribonucleoprotein granules, known as processing bodies (P-bodies), contain a common set of conserved RNA-processing enzymes, and mRNAs with AU-rich elements (AREs) are delivered to P-bodies for translational silencing. Although the dynamics of P-bodies is physically linked to cytoskeletal network, it is unclear how small GTPases are involved in the P-body regulation and the ARE-mRNA metabolism. We found here that glucose depletion activates RhoA GTPase and alters the P-body dynamics in HeLa cells. These glucose-depleted effects are reproduced by the overexpression of the RhoA-subfamily GTPases and conversely abolished by the inhibition of RhoA activation. Interestingly, both RhoA activation and glucose depletion inhibit the mRNA accumulation and degradation. These findings indicate that RhoA participates in the stress-induced rearrangement of P-bodies and the release of nucleated ARE-mRNAs for their stabilization.
Collapse
Affiliation(s)
- Shinya Takahashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Nissan T, Rajyaguru P, She M, Song H, Parker R. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol Cell 2010; 39:773-83. [PMID: 20832728 PMCID: PMC2946179 DOI: 10.1016/j.molcel.2010.08.025] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 04/30/2010] [Accepted: 07/01/2010] [Indexed: 11/23/2022]
Abstract
Eukaryotic mRNA degradation often occurs in a process whereby translation initiation is inhibited and the mRNA is targeted for decapping. In yeast cells, Pat1, Scd6, Edc3, and Dhh1 all function to promote decapping by an unknown mechanism(s). We demonstrate that purified Scd6 and a region of Pat1 directly repress translation in vitro by limiting the formation of a stable 48S preinitiation complex. Moreover, while Pat1, Edc3, Dhh1, and Scd6 all bind the decapping enzyme, only Pat1 and Edc3 enhance its activity. We also identify numerous direct interactions between Pat1, Dcp1, Dcp2, Dhh1, Scd6, Edc3, Xrn1, and the Lsm1-7 complex. These observations identify three classes of decapping activators that function to directly repress translation initiation and/or stimulate Dcp1/2. Moreover, Pat1 is identified as critical in mRNA decay by first inhibiting translation initiation, then serving as a scaffold to recruit components of the decapping complex, and finally activating Dcp2.
Collapse
Affiliation(s)
- Tracy Nissan
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Purusharth Rajyaguru
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona, 85721-0106, USA
| | - Meipei She
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona, 85721-0106, USA
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
| | - Haiwei Song
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
| | - Roy Parker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona, 85721-0106, USA
| |
Collapse
|
67
|
Ling SHM, Qamra R, Song H. Structural and functional insights into eukaryotic mRNA decapping. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:193-208. [PMID: 21957006 DOI: 10.1002/wrna.44] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The control of messenger RNA (mRNA) translation and degradation is important in regulation of eukaryotic gene expression. In the general and specialized mRNA decay pathways which involve 5(') →3(') decay, decapping is the central step because it is the controlling gate preceding the actual degradation of mRNA and is a site of numerous control inputs. Removal of the cap structure is catalyzed by a decapping holoenzyme composed of the catalytic Dcp2 subunit and the coactivator Dcp1. Decapping is regulated by decapping activators and inhibitors. Recent structural and kinetics studies indicated that Dcp1 and the substrate RNA promote the closed form of the enzyme and the catalytic step of decapping is rate limiting and accelerated by Dcp1. The conformational change between the open and closed decapping enzyme is important for controlling decapping, and regulation of this transition has been proposed to be a checkpoint for determining the fate of mRNAs. Here we summarize the past and recent advances on the structural and functional studies of protein factors involved in regulating mRNA decapping.
Collapse
Affiliation(s)
- Sharon H M Ling
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
| | | | | |
Collapse
|
68
|
Inhibition of translation initiation following glucose depletion in yeast facilitates a rationalization of mRNA content. Biochem Soc Trans 2010; 38:1131-6. [DOI: 10.1042/bst0381131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glucose is the preferred carbon source for most eukaryotes and so it is important that cells can sense and react rapidly to fluctuations in glucose levels. It is becoming increasingly clear that the regulation of gene expression at the post-transcriptional level is important in the adaptation to changes in glucose levels, possibly as this could engender more rapid alterations in the concentrations of key proteins, such as metabolic enzymes. Following the removal of glucose from yeast cells a rapid inhibition of translation is observed. As a consequence, mRNPs (messenger ribonucleoproteins) relocalize into cytoplasmic granules known as P-bodies (processing bodies) and EGP-bodies. mRNA decay components localize into P-bodies, and thus these assemblies are likely to represent sites where mRNAs are targeted for degradation. In contrast, EGP-bodies lack any decay components and contain the eukaryotic translation initiation factors eIF4E, eIF4G and Pab1p, as well as other RNA-binding proteins. Therefore EGP-bodies probably constitute sites where mRNAs are earmarked for storage. So, it is possible that cells distinguish between transcripts and target them to either P-bodies or EGP-bodies depending on their functional value. The localization of mRNAs into these granules following glucose starvation may serve to preserve mRNAs that are involved in the diauxic shift to ethanol growth and entry into stationary phase, as well as to degrade mRNAs that are solely involved in glucose fermentation.
Collapse
|
69
|
Li Y, Kiledjian M. Regulation of mRNA decapping. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:253-65. [PMID: 21935889 DOI: 10.1002/wrna.15] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Decapping is a critical step in the control of mRNA stability and the regulation of gene expression. Two major decapping enzymes involved in mRNA turnover have been identified, each functioning in one of the two exonucleolytic mRNA decay pathways in eukaryotic cells. The Dcp2 protein cleaves capped mRNA and initiates 5' to 3' degradation; the scavenger decapping enzyme, DcpS, hydrolyzes the cap structure generated by the 3' to 5' decay pathway. Consistent with the important role of decapping in gene expression, cap hydrolysis is exquisitely controlled by multiple regulators that influence association with the cap and the catalytic step. In this review, we will discuss the functions of the two different decapping enzymes, their regulation by cis-elements and trans-factors, and the potential role of the decapping enzymes in human neurological disorders.
Collapse
Affiliation(s)
- You Li
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854-8082, USA
| | | |
Collapse
|
70
|
Degradation of YRA1 Pre-mRNA in the cytoplasm requires translational repression, multiple modular intronic elements, Edc3p, and Mex67p. PLoS Biol 2010; 8:e1000360. [PMID: 20463951 PMCID: PMC2864733 DOI: 10.1371/journal.pbio.1000360] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 03/18/2010] [Indexed: 01/08/2023] Open
Abstract
The yeast YRA1 pre-mRNA contains multiple intronic elements that regulate transcript decay and translatability via the Edc3p decapping activator and the Mex67p/Mtr2p export receptor. Intron-containing pre-mRNAs are normally retained and processed in the nucleus but are sometimes exported to the cytoplasm and degraded by the nonsense-mediated mRNA decay (NMD) pathway as a consequence of their inclusion of intronic in-frame termination codons. When shunted to the cytoplasm by autoregulated nuclear export, the intron-containing yeast YRA1 pre-mRNA evades NMD and is targeted by a cytoplasmic decay pathway mediated by the decapping activator Edc3p. Here, we have elucidated this transcript-specific decay mechanism, showing that Edc3p-mediated YRA1 pre-mRNA degradation occurs independently of translation and is controlled through five structurally distinct but functionally interdependent modular elements in the YRA1 intron. Two of these elements target the pre-mRNA as an Edc3p substrate and the other three mediate transcript-specific translational repression. Translational repression of YRA1 pre-mRNA also requires the heterodimeric Mex67p/Mtr2p general mRNA export receptor, but not Edc3p, and serves to enhance Edc3p substrate specificity by inhibiting the susceptibility of this pre-mRNA to NMD. Collectively, our data indicate that YRA1 pre-mRNA degradation is a highly regulated process that proceeds through translational repression, substrate recognition by Edc3p, recruitment of the Dcp1p/Dcp2p decapping enzyme, and activation of decapping. Cellular mRNA levels are governed by competing rates of synthesis and decay. At the same time, mRNA decay pathways prevent the expression of defective mRNAs. The molecular mechanisms underlying the regulation of mRNA decay in eukaryotic cells are not well understood. We investigated a yeast transcript-specific decay pathway that targets the intron containing pre-mRNA for the mRNA export factor Yra1p when this pre-mRNA is shunted to the cytoplasm by autoregulated nuclear export. Our experiments demonstrate that the Edc3p decapping activator mediates YRA1 pre-mRNA decay and that this process is independent of translation. Instead, it is controlled through five functionally interdependent modular elements contained in the YRA1 intron. Whereas two of these elements confer Edc3p substrate specificity, the other three mediate translational repression of the YRA1 pre-mRNA. Additionally, we found that translational repression of YRA1 pre-mRNA requires Mex67p/Mtr2p, an mRNA export receptor, and enhances Edc3p substrate specificity by inhibiting the susceptibility of this pre-mRNA to nonsense-mediated mRNA decay. Our data highlight the intrinsic interconnections between different steps in gene expression and suggest that mRNA export factors in general may have important roles in controlling cytoplasmic mRNA translation and decay.
Collapse
|
71
|
Abstract
Eukaryotic cells contain at least two types of cytoplasmic RNA-protein (RNP) granules that contain nontranslating mRNAs. One such RNP granule is a P-body, which contains translationally inactive mRNAs and proteins involved in mRNA degradation and translation repression. A second such RNP granule is a stress granule which also contains mRNAs, some RNA binding proteins and several translation initiation factors, suggesting these granules contain mRNAs stalled in translation initiation. In this chapter, we describe methods to analyze P-bodies and stress granules in Saccharomyces cerevisiae, including procedures to determine if a protein or mRNA can accumulate in either granule, if an environmental perturbation or mutation affects granule size and number, and granule quantification methods.
Collapse
|
72
|
Hu W, Petzold C, Coller J, Baker KE. Nonsense-mediated mRNA decapping occurs on polyribosomes in Saccharomyces cerevisiae. Nat Struct Mol Biol 2010; 17:244-7. [PMID: 20118937 DOI: 10.1038/nsmb.1734] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 11/13/2009] [Indexed: 12/27/2022]
Abstract
Nonsense-mediated decay (NMD) degrades mRNA containing premature translation termination codons. In yeast, NMD substrates are decapped and digested exonucleolytically from the 5' end. Despite the requirement for translation in recognition, degradation of nonsense-containing mRNA is considered to occur in ribosome-free cytoplasmic P bodies. We show decapped nonsense-containing mRNA associate with polyribosomes, indicating that recognition and degradation are tightly coupled and that polyribosomes are major sites for degradation of aberrant mRNAs.
Collapse
Affiliation(s)
- Wenqian Hu
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
73
|
Identification and analysis of the interaction between Edc3 and Dcp2 in Saccharomyces cerevisiae. Mol Cell Biol 2010; 30:1446-56. [PMID: 20086104 DOI: 10.1128/mcb.01305-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cap hydrolysis is a critical control point in the life of eukaryotic mRNAs and is catalyzed by the evolutionarily conserved Dcp1-Dcp2 complex. In Saccharomyces cerevisiae, decapping is modulated by several factors, including the Lsm family protein Edc3, which directly binds to Dcp2. We show that Edc3 binding to Dcp2 is mediated by a short peptide sequence located C terminal to the catalytic domain of Dcp2. This sequence is required for Edc3 to stimulate decapping activity of Dcp2 in vitro, for Dcp2 to efficiently accumulate in P-bodies, and for efficient degradation of the RPS28B mRNA, whose decay is enhanced by Edc3. In contrast, degradation of YRA1 pre-mRNA, another Edc3-regulated transcript, occurs independently from this region, suggesting that the effect of Edc3 on YRA1 is independent of its interaction with Dcp2. Deletion of the sequence also results in a subtle but significant defect in turnover of the MFA2pG reporter transcript, which is not affected by deletion of EDC3, suggesting that the region affects some other aspect of Dcp2 function in addition to binding Edc3. These results raise a model for Dcp2 recruitment to specific mRNAs where regions outside the catalytic core promote the formation of different complexes involved in mRNA decapping.
Collapse
|
74
|
Chowdhury A, Tharun S. Activation of decapping involves binding of the mRNA and facilitation of the post-binding steps by the Lsm1-7-Pat1 complex. RNA (NEW YORK, N.Y.) 2009; 15:1837-1848. [PMID: 19643916 PMCID: PMC2743039 DOI: 10.1261/rna.1650109] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 06/25/2009] [Indexed: 05/28/2023]
Abstract
Decapping is a critical step in the conserved 5'-to-3' mRNA decay pathway of eukaryotes. The hetero-octameric Lsm1-7-Pat1 complex is required for normal rates of decapping in this pathway. This complex also protects the mRNA 3'-ends from trimming in vivo. To elucidate the mechanism of decapping, we analyzed multiple lsm1 mutants, lsm1-6, lsm1-8, lsm1-9, and lsm1-14, all of which are defective in decapping and 3'-end protection but unaffected in Lsm1-7-Pat1 complex integrity. The RNA binding ability of the mutant complex was found to be almost completely lost in the lsm1-8 mutant but only partially impaired in the other mutants. Importantly, overproduction of the Lsm1-9p- or Lsm1-14p-containing (but not Lsm1-8p-containing) mutant complexes in wild-type cells led to a dominant inhibition of mRNA decay. Further, the mRNA 3'-end protection defect of lsm1-9 and lsm1-14 cells, but not the lsm1-8 cells, could be partly suppressed by overproduction of the corresponding mutant complexes in those cells. These results suggest the following: (1) Decapping requires both binding of the Lsm1-7-Pat1 complex to the mRNA and facilitation of the post-binding events, while binding per se is sufficient for 3'-end protection. (2) A major block exists at the post-binding steps in the lsm1-9 and lsm1-14 mutants and at the binding step in the lsm1-8 mutant. Consistent with these ideas, the lsm1-9, 14 allele generated by combining the mutations of lsm1-9 and lsm1-14 alleles had almost fully lost the RNA binding activity of the complex and behaved like the lsm1-8 mutant.
Collapse
Affiliation(s)
- Ashis Chowdhury
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | |
Collapse
|
75
|
Xu J, Chua NH. Arabidopsis decapping 5 is required for mRNA decapping, P-body formation, and translational repression during postembryonic development. THE PLANT CELL 2009; 21:3270-9. [PMID: 19855049 PMCID: PMC2782270 DOI: 10.1105/tpc.109.070078] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/01/2009] [Accepted: 09/28/2009] [Indexed: 05/19/2023]
Abstract
Eukaryotic processing bodies (P-bodies) are implicated in mRNA storage and mRNA decapping. We previously found that a decapping complex comprising Decapping 1 (DCP1), DCP2, and Varicose in Arabidopsis thaliana is essential for postembryonic development, but the underlying mechanism is poorly understood. Here, we characterized Arabidopsis DCP5, a homolog of human RNA-associated protein 55, as an additional P-body constituent. DCP5 associates with DCP1 and DCP2 and is required for mRNA decapping in vivo. In spite of its association with DCP2, DCP5 has no effect on DCP2 decapping activity in vitro, suggesting that the effect on decapping in vivo is indirect. In knockdown mutant dcp5-1, not only is mRNA decapping compromised, but the size of P-bodies is also significantly decreased. These results indicate that DCP5 is required for P-body formation, which likely facilitates efficient decapping. During wild-type seed germination, mRNAs encoding seed storage proteins (SSPs) are translationally repressed and degraded. By contrast, in dcp5-1, SSP mRNAs are translated, leading to accumulation of their products in germinated seedlings. In vitro experiments using wheat germ extracts confirmed that DCP5 is a translational repressor. Our results showed that DCP5 is required for translational repression and P-body formation and plays an indirect role in mRNA decapping.
Collapse
|
76
|
Luhtala N, Parker R. LSM1 over-expression in Saccharomyces cerevisiae depletes U6 snRNA levels. Nucleic Acids Res 2009; 37:5529-36. [PMID: 19596813 PMCID: PMC2760792 DOI: 10.1093/nar/gkp572] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lsm1 is a component of the Lsm1-7 complex involved in cytoplasmic mRNA degradation. Lsm1 is over-expressed in multiple tumor types, including over 80% of pancreatic tumors, and increased levels of Lsm1 protein have been shown to induce carcinogenic effects. Therefore, understanding the perturbations in cell process due to increased Lsm1 protein may help to identify possible therapeutics targeting tumors over-expressing Lsm1. Herein, we show that LSM1 over-expression in the yeast Saccharomyces cerevisiae inhibits growth primarily due to U6 snRNA depletion, thereby altering pre-mRNA splicing. The decrease in U6 snRNA levels causes yeast strains over-expressing Lsm1 to be hypersensitive to loss of other proteins required for production or function of the U6 snRNA, supporting a model wherein excess Lsm1 reduces the availability of the Lsm2-7 proteins, which also assemble with Lsm8 to form a complex that binds and stabilizes the U6 snRNA. Yeast strains over-expressing Lsm1 also display minor alterations in mRNA decay and demonstrate increased susceptibility to mutations inhibiting cytoplasmic deadenylation, a process required for both 5′-to-3′ and 3′-to-5′ pathways of exonucleolytic decay. These results suggest that inhibition of splicing and/or deadenylation may be effective therapies for Lsm1-over-expressing tumors.
Collapse
Affiliation(s)
- Natalie Luhtala
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721-0106, USA
| | | |
Collapse
|
77
|
Stalder L, Mühlemann O. Processing bodies are not required for mammalian nonsense-mediated mRNA decay. RNA (NEW YORK, N.Y.) 2009; 15:1265-73. [PMID: 19474145 PMCID: PMC2704072 DOI: 10.1261/rna.1672509] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 04/22/2009] [Indexed: 05/18/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality-control mechanism that recognizes and degrades mRNAs with premature termination codons (PTCs). In yeast, PTC-containing mRNAs are targeted to processing bodies (P-bodies), and yeast strains expressing an ATPase defective Upf1p mutant accumulate P-bodies. Here we show that in human cells, an ATPase-deficient UPF1 mutant and a fraction of UPF2 and UPF3b accumulate in cytoplasmic foci that co-localize with P-bodies. Depletion of the P-body component Ge-1, which prevents formation of microscopically detectable P-bodies, also impairs the localization of mutant UPF1, UPF2, and UPF3b in cytoplasmic foci. However, the accumulation of the ATPase-deficient UPF1 mutant in P-bodies is independent of UPF2, UPF3b, or SMG1, and the ATPase-deficient UPF1 mutant can localize into the P-bodies independent of its phosphorylation status. Most importantly, disruption of P-bodies by depletion of Ge-1 affects neither the mRNA levels of PTC-containing reporter genes nor endogenous NMD substrates. Consistent with the recently reported decapping-independent SMG6-mediated endonucleolytic decay of human nonsense mRNAs, our results imply that microscopically detectable P-bodies are not required for mammalian NMD.
Collapse
Affiliation(s)
- Lukas Stalder
- Institute of Cell Biology, University of Berne, 3012 Berne, Switzerland
| | | |
Collapse
|
78
|
Franks TM, Lykke-Andersen J. The control of mRNA decapping and P-body formation. Mol Cell 2009; 32:605-15. [PMID: 19061636 DOI: 10.1016/j.molcel.2008.11.001] [Citation(s) in RCA: 321] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Indexed: 01/24/2023]
Abstract
mRNA decapping is a critical step in eukaryotic cytoplasmic mRNA turnover. Cytoplasmic mRNA decapping is catalyzed by Dcp2 in conjunction with its coactivator Dcp1 and is stimulated by decapping enhancer proteins. mRNAs associated with the decapping machinery can assemble into cytoplasmic mRNP granules called processing bodies (PBs). Evidence suggests that PB-associated mRNPs are translationally repressed and can be degraded or stored for subsequent translation. However, whether mRNP assembly into a PB is important for translational repression, decapping, or decay has remained controversial. Here, we discuss the regulation of decapping machinery recruitment to specific mRNPs and how their assembly into PBs is governed by the relative rates of translational repression, mRNP multimerization, and mRNA decay.
Collapse
Affiliation(s)
- Tobias M Franks
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|
79
|
Chowdhury A, Tharun S. lsm1 mutations impairing the ability of the Lsm1p-7p-Pat1p complex to preferentially bind to oligoadenylated RNA affect mRNA decay in vivo. RNA (NEW YORK, N.Y.) 2008; 14:2149-58. [PMID: 18719247 PMCID: PMC2553750 DOI: 10.1261/rna.1094208] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 06/16/2008] [Indexed: 05/23/2023]
Abstract
The poly(A) tail is a crucial determinant in the control of both mRNA translation and decay. Poly(A) tail length dictates the triggering of the degradation of the message body in the major 5' to 3' and 3' to 5' mRNA decay pathways of eukaryotes. In the 5' to 3' pathway oligoadenylated but not polyadenylated mRNAs are selectively decapped in vivo, allowing their subsequent degradation by 5' to 3' exonucleolysis. The conserved Lsm1p-7p-Pat1p complex is required for normal rates of decapping in vivo, and the purified complex exhibits strong binding preference for oligoadenylated RNAs over polyadenylated or unadenylated RNAs in vitro. In the present study, we show that two lsm1 mutants produce mutant complexes that fail to exhibit such higher affinity for oligoadenylated RNA in vitro. Interestingly, these mutant complexes are normal with regard to their integrity and retain the characteristic RNA binding properties of the wild-type complex, namely, binding near the 3'-end of the RNA, having higher affinity for unadenylated RNAs that carry U-tracts near the 3'-end over those that do not and exhibiting similar affinities for unadenylated and polyadenylated RNAs. Yet, these lsm1 mutants exhibit a strong mRNA decay defect in vivo. These results underscore the importance of Lsm1p-7p-Pat1p complex-mRNA interaction for mRNA decay in vivo and imply that the oligo(A) tail mediated enhancement of such interaction is crucial in that process.
Collapse
Affiliation(s)
- Ashis Chowdhury
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | |
Collapse
|
80
|
Similar modes of interaction enable Trailer Hitch and EDC3 to associate with DCP1 and Me31B in distinct protein complexes. Mol Cell Biol 2008; 28:6695-708. [PMID: 18765641 DOI: 10.1128/mcb.00759-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Trailer Hitch (Tral or LSm15) and enhancer of decapping-3 (EDC3 or LSm16) are conserved eukaryotic members of the (L)Sm (Sm and Like-Sm) protein family. They have a similar domain organization, characterized by an N-terminal LSm domain and a central FDF motif; however, in Tral, the FDF motif is flanked by regions rich in charged residues, whereas in EDC3 the FDF motif is followed by a YjeF_N domain. We show that in Drosophila cells, Tral and EDC3 specifically interact with the decapping activator DCP1 and the DEAD-box helicase Me31B. Nevertheless, only Tral associates with the translational repressor CUP, whereas EDC3 associates with the decapping enzyme DCP2. Like EDC3, Tral interacts with DCP1 and localizes to mRNA processing bodies (P bodies) via the LSm domain. This domain remains monomeric in solution and adopts a divergent Sm fold that lacks the characteristic N-terminal alpha-helix, as determined by nuclear magnetic resonance analyses. Mutational analysis revealed that the structural integrity of the LSm domain is required for Tral both to interact with DCP1 and CUP and to localize to P-bodies. Furthermore, both Tral and EDC3 interact with the C-terminal RecA-like domain of Me31B through their FDF motifs. Together with previous studies, our results show that Tral and EDC3 are structurally related and use a similar mode to associate with common partners in distinct protein complexes.
Collapse
|
81
|
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs that can regulate target mRNAs by binding to their 3'-UTRs. A single miRNA can regulate many mRNA targets, and several miRNAs can regulate a single mRNA. These have been reported to be involved in a variety of functions, including developmental transitions, neuronal patterning, apoptosis, adipogenesis metabolism and hematopoiesis in different organisms. Many oncogenes and tumor suppressor genes are regulated by miRNAs. Studies conducted in the past few years have demonstrated the possible association between miRNAs and several human malignancies and infectious diseases. In this article, we have focused on the mechanism of miRNA biogenesis and the role of miRNAs in human health and disease.
Collapse
Affiliation(s)
- Sunit K Singh
- Section of Infectious Diseases and Immunobiology, Centre for Cellular and Molecular Biology, Hyderabad, India.
| | | | | | | |
Collapse
|
82
|
Abstract
Edc3 is an enhancer of decapping and serves as a scaffold that aggregates mRNA ribonucleoproteins together for P-body formation. Edc3 forms a network of interactions with the components of the mRNA decapping machinery and has a modular domain architecture consisting of an N-terminal Lsm domain, a central FDF domain, and a C-terminal YjeF-N domain. We have determined the crystal structure of the N-terminally truncated human Edc3 at a resolution of 2.2 A. The structure reveals that the YjeF-N domain of Edc3 possesses a divergent Rossmann fold topology that forms a dimer, which is supported by sedimentation velocity and sedimentation equilibrium analysis in solution. The dimerization interface of Edc3 is highly conserved in eukaryotes despite the overall low sequence homology across species. Structure-based site-directed mutagenesis revealed dimerization is required for efficient RNA binding, P-body formation, and likely for regulating the yeast Rps28B mRNA as well, suggesting that the dimeric form of Edc3 is a structural and functional unit in mRNA degradation.
Collapse
|
83
|
Linking functionally related genes by sensitive and quantitative characterization of genetic interaction profiles. Proc Natl Acad Sci U S A 2008; 105:5821-6. [PMID: 18408161 DOI: 10.1073/pnas.0710533105] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Describing at a genomic scale how mutations in different genes influence one another is essential to the understanding of how genotype correlates with phenotype and remains a major challenge in biology. Previous studies pointed out the need for accurate measurements of not only synthetic but also buffering interactions in the characterization of genetic networks and functional modules. We developed a sensitive and efficient method that allows such measurements at a genomic scale in yeast. In a pilot experiment (41 genome-wide screens), we quantified the fitness of 140,000 double deletion strains relative to the corresponding single mutants and identified many genetic interactions. In addition to synthetic growth defects (validated experimentally with factors newly identified as genetically interfering with mRNA degradation), most of the identified genetic interactions measured weak epistatic effects. These weak effects, rarely meaningful when considered individually, were crucial to defining specific signatures for many gene deletions and had a major contribution in defining clusters of functionally related genes.
Collapse
|
84
|
Moser JJ, Eystathioy T, Chan EKL, Fritzler MJ. Markers of mRNA stabilization and degradation, and RNAi within astrocytoma GW bodies. J Neurosci Res 2008; 85:3619-31. [PMID: 17663465 DOI: 10.1002/jnr.21439] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
GW bodies (GWBs) are unique cytoplasmic structures that contain the mRNA binding protein GW182 and other proteins involved in mRNA processing pathways. The rationale for this study arose from clinical studies indicating that 33% of patients with GWB autoantibodies have a motor/sensory neuropathy and/or ataxia. The novelty of this study is the identification of GWBs in astrocytes and astrocytoma cells within cell bodies and cytoplasmic projections. Astrocytoma GWBs exhibit complex heterogeneity with combinations of LSm4 and XRN1 as well as Ago2 and Dicer, key proteins involved in mRNA degradation and RNA interference, respectively. GWB subsets contained the mRNA transport and stabilization proteins SYNCRIP, hnRNPA1, and FMRP, not previously described as part of the GWB complex. Immunoprecipitation of astrocytoma GWBs suggested that Dicer, hDcp, LSm4, XRN1, SYNCRIP, and FMRP form a multiprotein complex. GWBs are likely involved in a number of regulatory mRNA pathways in astrocytes and astrocytoma cells.
Collapse
Affiliation(s)
- Joanna J Moser
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
85
|
Tharun S. Roles of eukaryotic Lsm proteins in the regulation of mRNA function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:149-89. [PMID: 19121818 DOI: 10.1016/s1937-6448(08)01604-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The eukaryotic Lsm proteins belong to the large family of Sm-like proteins, which includes members from all organisms ranging from archaebacteria to humans. The Sm and Lsm proteins typically exist as hexameric or heptameric complexes in vivo and carry out RNA-related functions. Multiple complexes made up of different combinations of Sm and Lsm proteins are known in eukaryotes and these complexes are involved in a variety of functions such as mRNA decay in the cytoplasm, mRNA and pre-mRNA decay in the nucleus, pre-mRNA splicing, replication dependent histone mRNA 3'-end processing, etc. While most Lsm proteins function in the form of heteromeric complexes that include other Lsm proteins, some Lsm proteins are also known that do not behave in that manner. Abnormal expression of some Lsm proteins has also been implicated in human diseases. The various roles of eukaryotic Lsm complexes impacting mRNA function are discussed in this review.
Collapse
Affiliation(s)
- Sundaresan Tharun
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
86
|
Decker CJ, Teixeira D, Parker R. Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2007; 179:437-49. [PMID: 17984320 PMCID: PMC2064791 DOI: 10.1083/jcb.200704147] [Citation(s) in RCA: 371] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Processing bodies (P-bodies) are cytoplasmic RNA granules that contain translationally repressed messenger ribonucleoproteins (mRNPs) and messenger RNA (mRNA) decay factors. The physical interactions that form the individual mRNPs within P-bodies and how those mRNPs assemble into larger P-bodies are unresolved. We identify direct protein interactions that could contribute to the formation of an mRNP complex that consists of core P-body components. Additionally, we demonstrate that the formation of P-bodies that are visible by light microscopy occurs either through Edc3p, which acts as a scaffold and cross-bridging protein, or via the “prionlike” domain in Lsm4p. Analysis of cells defective in P-body formation indicates that the concentration of translationally repressed mRNPs and decay factors into microscopically visible P-bodies is not necessary for basal control of translation repression and mRNA decay. These results suggest a stepwise model for P-body assembly with the initial formation of a core mRNA–protein complex that then aggregates through multiple specific mechanisms.
Collapse
Affiliation(s)
- Carolyn J Decker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721
| | | | | |
Collapse
|
87
|
Human immunodeficiency virus type 1 Vif functionally interacts with diverse APOBEC3 cytidine deaminases and moves with them between cytoplasmic sites of mRNA metabolism. J Virol 2007; 82:987-98. [PMID: 17977970 DOI: 10.1128/jvi.01078-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vif(IIIB), which has been a standard model for the viral infectivity factor of human immunodeficiency virus type 1 (HIV-1), binds the cytidine deaminase APOBEC3G (A3G) and induces its degradation, thereby precluding its lethal incorporation into assembling virions. Additionally, Vif(IIIB) less efficiently degrades A3F, another potent anti-HIV-1 cytidine deaminase. Although the APOBEC3 paralogs A3A, A3B, and A3C have weaker anti-HIV-1 activities and are only partially degraded by Vif(IIIB), we found that Vif(IIIB) induces their emigration from the nucleus to the cytosol and thereby causes net increases in the cytosolic concentrations and anti-HIV-1 activities of A3A and A3B. In contrast, some other Vifs, exemplified by Vif(HXB2) and Vif(ELI-1), much more efficiently degrade and thereby neutralize all APOBEC3s. Studies focused mainly on A3F imply that it occurs associated with mRNA-PABP1 in translationally active polysomes and to a lesser extent in mRNA processing bodies (P-bodies). A3F appears to stabilize the P-bodies with which it is associated. A correspondingly small proportion of Vif(IIIB) also localizes in P-bodies in an A3F-dependent manner. Stress causes A3A, A3B, A3C, and A3F to colocalize efficiently with Vif(IIIB) and mRNA-PABP1 complexes in stress granules in a manner that is prevented by cycloheximide, an inhibitor of translational elongation. Coimmunoprecipitation studies suggest that Vifs from different HIV-1 isolates associate with all tested APOBEC3s. Thus, Vifs interact closely with structurally diverse APOBEC3s, with effects on their subcellular localization, degradation rates, and antiviral activities. Cytosolic APOBEC3-Vif complexes are predominantly bound to mRNAs that dynamically move between translationally active and storage or processing pools.
Collapse
|
88
|
A divergent Sm fold in EDC3 proteins mediates DCP1 binding and P-body targeting. Mol Cell Biol 2007; 27:8600-11. [PMID: 17923697 DOI: 10.1128/mcb.01506-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the (L)Sm (Sm and Sm-like) protein family are found across all kingdoms of life and play crucial roles in RNA metabolism. The P-body component EDC3 (enhancer of decapping 3) is a divergent member of this family that functions in mRNA decapping. EDC3 is composed of a N-terminal LSm domain, a central FDF domain, and a C-terminal YjeF-N domain. We show that this modular architecture enables EDC3 to interact with multiple components of the decapping machinery, including DCP1, DCP2, and Me31B. The LSm domain mediates DCP1 binding and P-body localization. We determined the three-dimensional structures of the LSm domains of Drosophila melanogaster and human EDC3 and show that the domain adopts a divergent Sm fold that lacks the characteristic N-terminal alpha-helix and has a disrupted beta4-strand. This domain remains monomeric in solution and lacks several features that canonical (L)Sm domains require for binding RNA. The structures also revealed a conserved patch of surface residues that are required for the interaction with DCP1 but not for P-body localization. The conservation of surface and of critical structural residues indicates that LSm domains in EDC3 proteins adopt a similar fold that has separable novel functions that are absent in canonical (L)Sm proteins.
Collapse
|
89
|
Lotan R, Goler-Baron V, Duek L, Haimovich G, Choder M. The Rpb7p subunit of yeast RNA polymerase II plays roles in the two major cytoplasmic mRNA decay mechanisms. ACTA ACUST UNITED AC 2007; 178:1133-43. [PMID: 17875743 PMCID: PMC2064649 DOI: 10.1083/jcb.200701165] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The steady-state level of mRNAs is determined by the balance between their synthesis by RNA polymerase II (Pol II) and their decay. In the cytoplasm, mRNAs are degraded by two major pathways; one requires decapping and 5′ to 3′ exonuclease activity and the other involves 3′ to 5′ degradation. Rpb7p is a Pol II subunit that shuttles between the nucleus and the cytoplasm. Here, we show that Rpb7p is involved in the two mRNA decay pathways and possibly couples them. Rpb7p stimulates the deadenylation stage required for execution of both pathways. Additionally, Rpb7p is both an active component of the P bodies, where decapping and 5′ to 3′ degradation occur, and is capable of affecting the P bodies function. Moreover, Rpb7p interacts with the decapping regulator Pat1p in a manner important for the mRNA decay machinery. Rpb7p is also involved in the second pathway, as it stimulates 3′ to 5′ degradation. Our genetic analyses suggest that Rpb7p plays two distinct roles in mRNA decay, which can both be uncoupled from Rpb7p's role in transcription. Thus, Rpb7p plays pivotal roles in determining mRNA levels.
Collapse
Affiliation(s)
- Rona Lotan
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | | | |
Collapse
|
90
|
Chowdhury A, Mukhopadhyay J, Tharun S. The decapping activator Lsm1p-7p-Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs. RNA (NEW YORK, N.Y.) 2007; 13:998-1016. [PMID: 17513695 PMCID: PMC1894922 DOI: 10.1261/rna.502507] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Accepted: 04/19/2007] [Indexed: 05/15/2023]
Abstract
Decapping is a critical step in mRNA decay. In the 5'-to-3' mRNA decay pathway conserved in all eukaryotes, decay is initiated by poly(A) shortening, and oligoadenylated mRNAs (but not polyadenylated mRNAs) are selectively decapped allowing their subsequent degradation by 5' to 3' exonucleolysis. The highly conserved heptameric Lsm1p-7p complex (made up of the seven Sm-like proteins, Lsm1p-Lsm7p) and its interacting partner Pat1p activate decapping by an unknown mechanism and localize with other decapping factors to the P-bodies in the cytoplasm. The Lsm1p-7p-Pat1p complex also protects the 3'-ends of mRNAs in vivo from trimming, presumably by binding to the 3'-ends. In order to determine the intrinsic RNA-binding properties of this complex, we have purified it from yeast and carried out in vitro analyses. Our studies revealed that it directly binds RNA at/near the 3'-end. Importantly, it possesses the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs such that the former are bound with much higher affinity than the latter. These results indicate that the intrinsic RNA-binding characteristics of this complex form a critical determinant of its in vivo interactions and functions.
Collapse
Affiliation(s)
- Ashis Chowdhury
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA
| | | | | |
Collapse
|
91
|
Teixeira D, Parker R. Analysis of P-body assembly in Saccharomyces cerevisiae. Mol Biol Cell 2007; 18:2274-87. [PMID: 17429074 PMCID: PMC1877105 DOI: 10.1091/mbc.e07-03-0199] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 03/28/2007] [Accepted: 03/30/2007] [Indexed: 12/20/2022] Open
Abstract
Recent experiments have defined cytoplasmic foci, referred to as processing bodies (P-bodies), that contain untranslating mRNAs in conjunction with proteins involved in translation repression and mRNA decapping and degradation. However, the order of protein assembly into P-bodies and the interactions that promote P-body assembly are unknown. To gain insight into how yeast P-bodies assemble, we examined the P-body accumulation of Dcp1p, Dcp2p, Edc3p, Dhh1p, Pat1p, Lsm1p, Xrn1p, Ccr4p, and Pop2p in deletion mutants lacking one or more P-body component. These experiments revealed that Dcp2p and Pat1p are required for recruitment of Dcp1p and of the Lsm1-7p complex to P-bodies, respectively. We also demonstrate that P-body assembly is redundant and no single known component of P-bodies is required for P-body assembly, although both Dcp2p and Pat1p contribute to P-body assembly. In addition, our results indicate that Pat1p can be a nuclear-cytoplasmic shuttling protein and acts early in P-body assembly. In contrast, the Lsm1-7p complex appears to primarily function in a rate limiting step after P-body assembly in triggering decapping. Taken together, these results provide insight both into the function of individual proteins involved in mRNA degradation and the mechanisms by which yeast P-bodies assemble.
Collapse
Affiliation(s)
- Daniela Teixeira
- *Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4099-003 Porto, Portugal
| | - Roy Parker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721-0106; and
| |
Collapse
|
92
|
Brengues M, Parker R. Accumulation of polyadenylated mRNA, Pab1p, eIF4E, and eIF4G with P-bodies in Saccharomyces cerevisiae. Mol Biol Cell 2007; 18:2592-602. [PMID: 17475768 PMCID: PMC1924816 DOI: 10.1091/mbc.e06-12-1149] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recent experiments have shown that mRNAs can move between polysomes and P-bodies, which are aggregates of nontranslating mRNAs associated with translational repressors and the mRNA decapping machinery. The transitions between polysomes and P-bodies and how the poly(A) tail and the associated poly(A) binding protein 1 (Pab1p) may affect this process are unknown. Herein, we provide evidence that poly(A)(+) mRNAs can enter P-bodies in yeast. First, we show that both poly(A)(-) and poly(A)(+) mRNA become translationally repressed during glucose deprivation, where mRNAs accumulate in P-bodies. In addition, both poly(A)(+) transcripts and/or Pab1p can be detected in P-bodies during glucose deprivation and in stationary phase. Cells lacking Pab1p have enlarged P-bodies, suggesting that Pab1p plays a direct or indirect role in shifting the equilibrium of mRNAs away from P-bodies and into translation, perhaps by aiding in the assembly of a type of mRNP within P-bodies that is poised to reenter translation. Consistent with this latter possibility, we observed the translation initiation factors (eIF)4E and eIF4G in P-bodies at a low level during glucose deprivation and at high levels in stationary phase. Moreover, Pab1p exited P-bodies much faster than Dcp2p when stationary phase cells were given fresh nutrients. Together, these results suggest that polyadenylated mRNAs can enter P-bodies, and an mRNP complex including poly(A)(+) mRNA, Pab1p, eIF4E, and eIF4G2 may represent a transition state during the process of mRNAs exchanging between P-bodies and translation.
Collapse
Affiliation(s)
- Muriel Brengues
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721-0106
| | - Roy Parker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721-0106
| |
Collapse
|
93
|
Abstract
Recent results indicate that many untranslating mRNAs in somatic eukaryotic cells assemble into related mRNPs that accumulate in specific cytoplasmic foci referred to as P bodies. Transcripts associated with P body components can either be degraded or return to translation. Moreover, P bodies are also biochemically and functionally related to some maternal and neuronal mRNA granules. This suggests an emerging model of cytoplasmic mRNA function in which the rates of translation and degradation of mRNAs are influenced by a dynamic equilibrium between polysomes and the mRNPs seen in P bodies. Moreover, some mRNA-specific regulatory factors, including miRNAs and RISC, appear to repress translation and promote decay by recruiting P body components to individual mRNAs.
Collapse
Affiliation(s)
- Roy Parker
- Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
94
|
Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E. P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol 2007; 27:3970-81. [PMID: 17403906 PMCID: PMC1900022 DOI: 10.1128/mcb.00128-07] [Citation(s) in RCA: 517] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
P bodies are cytoplasmic domains that contain proteins involved in diverse posttranscriptional processes, such as mRNA degradation, nonsense-mediated mRNA decay (NMD), translational repression, and RNA-mediated gene silencing. The localization of these proteins and their targets in P bodies raises the question of whether their spatial concentration in discrete cytoplasmic domains is required for posttranscriptional gene regulation. We show that processes such as mRNA decay, NMD, and RNA-mediated gene silencing are functional in cells lacking detectable microscopic P bodies. Although P bodies are not required for silencing, blocking small interfering RNA or microRNA silencing pathways at any step prevents P-body formation, indicating that P bodies arise as a consequence of silencing. Consistently, we show that releasing mRNAs from polysomes is insufficient to trigger P-body assembly: polysome-free mRNAs must enter silencing and/or decapping pathways to nucleate P bodies. Thus, even though P-body components play crucial roles in mRNA silencing and decay, aggregation into P bodies is not required for function but is instead a consequence of their activity.
Collapse
Affiliation(s)
- Ana Eulalio
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
95
|
Sweet TJ, Boyer B, Hu W, Baker KE, Coller J. Microtubule disruption stimulates P-body formation. RNA (NEW YORK, N.Y.) 2007; 13:493-502. [PMID: 17307817 PMCID: PMC1831866 DOI: 10.1261/rna.355807] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Processing bodies (P-bodies) are subcellular ribonucleoprotein (RNP) granules that have been hypothesized to be sites of mRNA degradation, mRNA translational control, and/or mRNA storage. Importantly, P-bodies are conserved from yeast to mammals and contain a common set of evolutionarily conserved protein constituents. P-bodies are dynamic structures and their formation appears to fluctuate in correlation with alterations in mRNA metabolism. Despite these observations, little is understood about how P-body structures are formed within the cell. In this study, we demonstrate a relationship between P-bodies and microtubules in the budding yeast, Saccharomyces cerevisiae. First, we demonstrate that disruption of microtubules by treatment with the drug benomyl leads to aggregation of P-body components. Consistent with this finding, we also demonstrate that disruption of microtubules by a temperature-sensitive allele of the major alpha tubulin, TUB1 (tub1-724) stimulates P-body formation. Second, we find that the alpha-tubulin protein Tub1 colocalizes with P-bodies upon microtubule destabilization. Third, we determine that a putative tubulin tyrosine ligase, encoded by YBR094W, is a protein component of P-bodies, providing additional evidence for a physical connection between P-bodies and microtubules. Finally, we establish that P-bodies formed by microtubule destabilization fail to correlate with global changes in the stability of mRNA or in general mRNA translation. These findings demonstrate that the aggregation of P-body components is linked to the intracellular microtubule network, and, further, that P-bodies formed by disruption of microtubules aggregate independent of broad alterations in either mRNA decay or mRNA translation.
Collapse
Affiliation(s)
- Thomas J Sweet
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
96
|
Abstract
When considering the control of gene expression, the focus has traditionally been on transcriptional regulation. Recently, however, the large contribution made by mRNA decay has become difficult to ignore. Large-scale analyses indicate that as many as half of all changes in the amounts of mRNA in some responses can be attributed to altered rates of decay. In this article, we discuss some of the mechanisms that are used by the cell to mediate and regulate this intriguing process.
Collapse
Affiliation(s)
- Nicole L Garneau
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | |
Collapse
|
97
|
Dong S, Li C, Zenklusen D, Singer RH, Jacobson A, He F. YRA1 autoregulation requires nuclear export and cytoplasmic Edc3p-mediated degradation of its pre-mRNA. Mol Cell 2007; 25:559-73. [PMID: 17317628 PMCID: PMC1858660 DOI: 10.1016/j.molcel.2007.01.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 11/13/2006] [Accepted: 01/10/2007] [Indexed: 11/20/2022]
Abstract
Autoregulatory loops often provide precise control of the level of expression of specific genes that encode key regulatory proteins. Here we have defined a pathway by which Yra1p, a yeast mRNA export factor, controls its own expression. We show that YRA1 exon 1 sequences in cis and Yra1p in trans inhibit YRA1 pre-mRNA splicing and commit the pre-mRNA to nuclear export. Mex67p and Crm1p jointly promote YRA1 pre-mRNA export, and once in the cytoplasm, the pre-mRNA is degraded by a 5' to 3' decay mechanism that is dependent on the decapping activator Edc3p and on specific sequences in the YRA1 intron. These results illustrate how common steps in the nuclear processing, export, and degradation of a transcript can be uniquely combined to control the expression of a specific gene and suggest that Edc3p-mediated decay may have additional regulatory functions in eukaryotic cells.
Collapse
Affiliation(s)
- Shuyun Dong
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
98
|
Eulalio A, Behm-Ansmant I, Izaurralde E. P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 2007; 8:9-22. [PMID: 17183357 DOI: 10.1038/nrm2080] [Citation(s) in RCA: 698] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Post-transcriptional processes have a central role in the regulation of eukaryotic gene expression. Although it has been known for a long time that these processes are functionally linked, often by the use of common protein factors, it has only recently become apparent that many of these processes are also physically connected. Indeed, proteins that are involved in mRNA degradation, translational repression, mRNA surveillance and RNA-mediated gene silencing, together with their mRNA targets, colocalize within discrete cytoplasmic domains known as P bodies. The available evidence indicates that P bodies are sites where mRNAs that are not being translated accumulate, the information carried by associated proteins and regulatory RNAs is integrated, and their fate - either translation, silencing or decay - is decided.
Collapse
Affiliation(s)
- Ana Eulalio
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
99
|
Stribinskis V, Ramos KS. Rpm2p, a protein subunit of mitochondrial RNase P, physically and genetically interacts with cytoplasmic processing bodies. Nucleic Acids Res 2007; 35:1301-11. [PMID: 17267405 PMCID: PMC1851656 DOI: 10.1093/nar/gkm023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The RPM2 gene of Saccharomyces cerevisiae codes for a protein subunit of mitochondrial RNase P and has another unknown essential function. We previously demonstrated that Rpm2p localizes to the nucleus and acts as a transcriptional activator. Rpm2p influences the level of mRNAs that encode components of the mitochondrial import apparatus and essential mitochondrial chaperones. Evidence is presented here that Rpm2p interacts with Dcp2p, a subunit of mRNA decapping enzyme in the two-hybrid assay, and is enriched in cytoplasmic P bodies, the sites of mRNA degradation and storage in yeast and mammalian cells. When overexpressed, GFP-Rpm2p does not impact the number and size of P bodies; however, it prevents their disappearance when translation elongation is inhibited by cycloheximide. Proteasome mutants, ump1-2 and pre4-2, that bypass essential Rpm2p function, also stabilize P bodies. The stabilization of P bodies by Rpm2p may occur through reduced protein degradation since GFP-Rpm2p expressing cells have lower levels of ubiquitin. Genetic analysis revealed that overexpression of Dhh1p (a DEAD box helicase localized to P bodies) suppresses temperature-sensitive growth of the rpm2-100 mutant. Overexpression of Pab1p (a poly (A)-binding protein) also suppresses rpm2-100, suggesting that Rpm2p functions in at least two aspects of mRNA metabolism. The results presented here, and the transcriptional activation function demonstrated earlier, implicate Rpm2p as a coordinator of transcription and mRNA storage/decay in P bodies.
Collapse
Affiliation(s)
- Vilius Stribinskis
- Department of Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, KY, USA.
| | | |
Collapse
|
100
|
Tanaka KJ, Ogawa K, Takagi M, Imamoto N, Matsumoto K, Tsujimoto M. RAP55, a cytoplasmic mRNP component, represses translation in Xenopus oocytes. J Biol Chem 2006; 281:40096-106. [PMID: 17074753 DOI: 10.1074/jbc.m609059200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
mRNAs in eukaryotic cells are presumed to always associate with a set of proteins to form mRNPs. In Xenopus oocytes, a large pool of maternal mRNAs is masked from the translational apparatus as storage mRNPs. Here we identified Xenopus RAP55 (xRAP55) as a component of RNPs that associate with FRGY2, the principal component of maternal mRNPs. RAP55 is a member of the Scd6 or Lsm14 family. RAP55 localized to cytoplasmic foci in Xenopus oocytes and the processing bodies (P-bodies) in cultured human cells: in the latter cells, RAP55 is an essential constituent of the P-bodies. We isolated xRAP55-containing complexes from Xenopus oocytes and identified xRAP55-associated proteins, including a DEAD-box protein, Xp54, and a protein arginine methyltransferase, PRMT1. Recombinant xRAP55 repressed translation, together with Xp54, in an in vitro translation system. In addition, xRAP55 repressed translation in oocytes when tethered with a reporter mRNA. Domain analyses revealed that the N-terminal region of RAP55, including the Lsm domain, is important for the localization to P-bodies and translational repression. Taken together, our results suggest that xRAP55 is involved in translational repression of mRNA as a component of storage mRNPs.
Collapse
Affiliation(s)
- Kimio J Tanaka
- Laboratory of Cellular Biochemistry, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|