51
|
Han JE, Wui SR, Park SA, Lee NG, Kim KS, Cho YJ, Kim HJ, Kim HJ. Comparison of the immune responses to the CIA06-adjuvanted human papillomavirus L1 VLP vaccine with those against the licensed HPV vaccine Cervarix™ in mice. Vaccine 2012; 30:4127-34. [PMID: 22561312 DOI: 10.1016/j.vaccine.2012.04.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/12/2012] [Accepted: 04/22/2012] [Indexed: 01/15/2023]
Abstract
CIA05 is a toll-like receptor (TLR) 4 agonist derived from an Escherichia coli lipopolysaccharide (LPS) mutant and has been shown to have potential as a vaccine adjuvant. In this study, we investigated the immunopotentiating activity of the adjuvant system CIA06, which is comprised of CIA05 and aluminum hydroxide (alum), when used with the human papillomavirus (HPV) L1 virus-like particles (VLPs) vaccine. BALB/c mice were immunized intramuscularly three times at 2-week intervals with HPV16 L1 VLPs alone or in the presence of various combinations of CIA05 and alum, and the immune responses were assessed. We found that the combination of CIA05 and alum at a ratio of 1:50 (designated CIA06B) yielded the highest immune response in terms of serum anti-HPV L1 VLP IgG antibody titers, splenocyte interferon (IFN)-γ secretion, and antigen-specific memory B cell responses. The immunogenicity of the CIA06B-adjuvanted HPV16/18 L1 VLP vaccine was compared with that of the currently licensed HPV vaccine Cervarix™. The CIA06B-adjuvanted vaccine was similar to Cervarix™ with regard to eliciting serum antigen-specific IgG antibodies and virus-neutralizing antibodies but more effective at inducing splenic cytokine production and memory B cells. We also observed that the antigen-specific IgG antibody titers, splenic IFN-γ secretion and memory B cells induced by the CIA06B-adjuvanted HPV vaccine remained high up to 24 weeks post-immunization. Based on these data, we concluded that CIA06B may have potential as an adjuvant in a potent prophylactic vaccine against HPV infection.
Collapse
Affiliation(s)
- Ji Eun Han
- Department of Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul 143-747, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Bowen WS, Minns LA, Johnson DA, Mitchell TC, Hutton MM, Evans JT. Selective TRIF-dependent signaling by a synthetic toll-like receptor 4 agonist. Sci Signal 2012; 5:ra13. [PMID: 22337809 DOI: 10.1126/scisignal.2001963] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In response to ligand binding to the Toll-like receptor 4 (TLR4) and myeloid differentiation-2 (MD-2) receptor complex, two major signaling pathways are activated that involve different adaptor proteins. One pathway depends on myeloid differentiation marker 88 (MyD88), which elicits proinflammatory responses, whereas the other depends on Toll-IL-1 receptor (TIR) domain-containing adaptor inducing interferon-β (TRIF), which elicits type I interferon production. Here, we showed that the TLR4 agonist and vaccine adjuvant CRX-547, a member of the aminoalkyl glucosaminide 4-phosphate (AGP) class of synthetic lipid A mimetics, displayed TRIF-selective signaling in human cells, which was dependent on a minor structural modification to the carboxyl bioisostere corresponding to the 1-phosphate group on most lipid A types. CRX-547 stimulated little or no activation of MyD88-dependent signaling molecules or cytokines, whereas its ability to activate the TRIF-dependent pathway was similar to that of a structurally related inflammatory AGP and of lipopolysaccharide from Salmonella minnesota. This TRIF-selective signaling response resulted in the production of substantially less of the proinflammatory mediators that are associated with MyD88 signaling, thereby potentially reducing toxicity and improving the therapeutic index of this synthetic TLR4 agonist and vaccine adjuvant.
Collapse
Affiliation(s)
- William S Bowen
- GlaxoSmithKline Biologicals, 553 Old Corvallis Road, Hamilton, MT 59840, USA
| | | | | | | | | | | |
Collapse
|
53
|
Wang S, Astsaturov IA, Bingham CA, McCarthy KM, von Mehren M, Xu W, Alpaugh RK, Tang Y, Littlefield BA, Hawkins LD, Ishizaka ST, Weiner LM. Effective antibody therapy induces host-protective antitumor immunity that is augmented by TLR4 agonist treatment. Cancer Immunol Immunother 2011; 61:49-61. [PMID: 21842208 DOI: 10.1007/s00262-011-1090-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 07/25/2011] [Indexed: 11/28/2022]
Abstract
Toll-like receptors are potent activators of the innate immune system and generate signals leading to the initiation of the adaptive immune response that can be utilized for therapeutic purposes. We tested the hypothesis that combined treatment with a Toll-like receptor agonist and an antitumor monoclonal antibody is effective and induces host-protective antitumor immunity. C57BL/6 human mutated HER2 (hmHER2) transgenic mice that constitutively express kinase-deficient human HER2 under control of the CMV promoter were established. These mice demonstrate immunological tolerance to D5-HER2, a syngeneic human HER2-expressing melanoma cell line. This human HER2-tolerant model offers the potential to serve as a preclinical model to test both antibody therapy and the immunization potential of human HER2-targeted therapeutics. Here, we show that E6020, a Toll-like receptor-4 (TLR4) agonist effectively boosted the antitumor efficacy of the monoclonal antibody trastuzumab in immunodeficient C57BL/6 SCID mice as well as in C57BL/6 hmHER2 transgenic mice. E6020 and trastuzumab co-treatment resulted in significantly greater inhibition of tumor growth than was observed with either agent individually. Furthermore, mice treated with the combination of trastuzumab and the TLR4 agonist were protected against rechallenge with human HER2-transfected tumor cells in hmHER2 transgenic mouse strains. These findings suggest that combined treatment with trastuzumab and a TLR4 agonist not only promotes direct antitumor effects but also induces a host-protective human HER2-directed adaptive immune response, indicative of a memory response. These data provide an immunological rationale for testing TLR4 agonists in combination with antibody therapy in patients with cancer.
Collapse
Affiliation(s)
- Shangzi Wang
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Coffey TJ, Werling D. Therapeutic targeting of the innate immune system in domestic animals. Cell Tissue Res 2010; 343:251-61. [DOI: 10.1007/s00441-010-1054-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/08/2010] [Indexed: 12/23/2022]
|
55
|
Differential activation and maturation of two porcine DC populations following TLR ligand stimulation. Mol Immunol 2010; 47:2103-11. [DOI: 10.1016/j.molimm.2010.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 03/19/2010] [Accepted: 03/23/2010] [Indexed: 01/26/2023]
|
56
|
Beatty PL, Narayanan S, Gariépy J, Ranganathan S, Finn OJ. Vaccine against MUC1 antigen expressed in inflammatory bowel disease and cancer lessens colonic inflammation and prevents progression to colitis-associated colon cancer. Cancer Prev Res (Phila) 2010; 3:438-46. [PMID: 20332301 DOI: 10.1158/1940-6207.capr-09-0194] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Association of chronic inflammation with an increased risk of cancer is well established, but the contributions of innate versus adaptive immunity are not fully delineated. There has furthermore been little consideration of the role played by chronic inflammation-associated antigens, including cancer antigens, and the possibility of using them as vaccines to lower the cancer risk. We studied the human tumor antigen MUC1 which is abnormally expressed in colon cancers and also in inflammatory bowel disease (IBD) that gives rise to colitis-associated colon cancer (CACC). Using our new mouse model of MUC1(+) IBD that progresses to CACC, interleukin-10 knockout mice crossed with MUC1 transgenic mice, we show that vaccination against MUC1 delays IBD and prevents progression to CACC. One mechanism is the induction of MUC1-specific adaptive immunity (anti-MUC1 IgG and anti-MUC1 CTL), which seems to eliminate abnormal MUC1(+) cells in IBD colons. The other mechanism is the change in the local and the systemic microenvironments. Compared with IBD in vaccinated mice, IBD in control mice is dominated by larger numbers of neutrophils in the colon and myeloid-derived suppressor cells in the spleen, which can compromise adaptive immunity and facilitate tumor growth. This suggests that the tumor-promoting microenvironment of chronic inflammation can be converted to a tumor-inhibiting environment by increasing adaptive immunity against a disease-associated antigen.
Collapse
Affiliation(s)
- Pamela L Beatty
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
57
|
Maiti KK, Decastro M, El-Sayed ABMAA, Foote MI, Wolfert MA, Boons GJ. Chemical synthesis and proinflammatory responses of monophosphoryl lipid A adjuvant candidates. European J Org Chem 2010; 2010:80-91. [PMID: 20228877 PMCID: PMC2835315 DOI: 10.1002/ejoc.200900973] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Indexed: 11/08/2022]
Abstract
Lipopolysaccharides (LPS), which are structural components of the outer surface membrane of Gram-negative bacteria, trigger innate immune responses through activation of Toll-like receptor 4 (TLR4). Such responses may be exploited for the development of adjuvants and in particular monophosphoryl lipid A (MPLA) obtained by controlled hydrolysis of LPS of Salmonella minnesota, exhibits low toxicity yet possesses beneficial immuno-stimulatory properties. We have developed an efficient synthetic approach for the preparation of a major component of MPLA (1), which has as a key feature the use of allyloxycarbonates (Alloc) as permanent protecting groups for the C-3 and C-4 hydroxyls of the proximal glucosamine unit. The latter protecting groups greatly facilitated deprotection of the fully assembled compound. Furthermore, the amino functions were protected as N-2,2,2-trichloroethoxycarbamates (Troc), which performed efficient neighboring group participation to give selectively 1,2-trans-glycosides and could easily be removed under mild conditions without affecting the permanent Alloc carbonates and anomeric dimethylthexylsilyl (TDS) ether. The synthetic methodology was also employed for the preparation of a monophosphoryl lipid A (2) derivative that has the anomeric center of the proximal sugar modified as a methyl glycoside. Compound 1 was not able to induce cytokine production in mouse macrophages whereas methyl glycoside 2 displayed activity, however it has a lower potency and efficacy than lipid A obtained by controlled hydrolysis S. minnesota. This indicates compound 2 is an attractive candidate for adjuvant development and that 1 is not the active substance of MPLA obtained by controlled hydrolysis of LPS.
Collapse
Affiliation(s)
- Kaustabh K Maiti
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
58
|
Abstract
Natural derivatives and synthetic analogues of lipopolysaccharide are potent stimulators of the mammalian immune system. Retained adjuvant activity with reduced toxicity was obtained by the development of monophosphoryl lipid A (MPL((R))), which is approved for use in several vaccine products. Ongoing research and development of synthetic TLR4 agonists may offer increased purity and biological activity with reduced cost. Extensive research has elucidated the mechanism of action of TLR4 agonists and structure-function relationships. Moreover, the formulation of TLR4 agonists has been shown to significantly affect the type and magnitude of elicited immune response. TLR4 agonists comprise a promising class of adjuvants for safe and effective vaccines.
Collapse
|
59
|
Walker LE, Vang L, Shen X, Livingston BD, Post P, Sette A, Godin CS, Newman MJ. Design and preclinical development of a recombinant protein and DNA plasmid mixed format vaccine to deliver HIV-derived T-lymphocyte epitopes. Vaccine 2009; 27:7087-95. [PMID: 19786132 PMCID: PMC2783266 DOI: 10.1016/j.vaccine.2009.09.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 09/02/2009] [Accepted: 09/16/2009] [Indexed: 01/23/2023]
Abstract
Coordinated interactions between helper and cytotoxic T-lymphocytes (HTL and CTL) are needed for optimal effector cell functions and the establishment of immunological memory. We, therefore, designed a mixed format vaccine based on the use of highly conserved HIV-derived T-lymphocyte epitopes wherein the HTL epitopes were delivered as a recombinant protein and the CTL epitopes which were encoded in a DNA vaccine plasmid. Immunogenicity testing in HLA transgenic mice and GLP preclinical safety testing in rabbits and guinea pigs were used to document the utility of this approach and to support Phase 1 trial clinical testing. Both vaccine components were immunogenic and safely co-administered.
Collapse
Affiliation(s)
| | - Lo Vang
- Pharmexa Inc., San Diego,, CA, USA
| | | | | | | | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, San Diego, CA, USA
| | | | | |
Collapse
|
60
|
Abstract
There is a renewed enthusiasm about subunit vaccines for malaria coincident with the formation of new alliances and partnerships raising international public awareness, attracting increased resources and the re-focusing of research programs on adjuvant development for infectious disease vaccines. It is generally accepted that subunit vaccines for malaria will require adjuvants to induce protective immune responses, and availability of suitable adjuvants has in the past been a barrier to the development of malaria vaccines. Several novel adjuvants are now in licensed products or in late stage clinical development, while several others are in the earlier development pipeline. Successful vaccine development requires knowing which adjuvants to use and knowing how to formulate adjuvants and antigens to achieve stable, safe, and immunogenic vaccines. For the majority of vaccine researchers this information is not readily available, nor is access to well-characterized adjuvants. In this minireview, we outline the current state of adjuvant research and development as it pertains to effective malaria vaccines.
Collapse
Affiliation(s)
- R N Coler
- Infectious Disease Research Institute, Seattle, WA 98104, USA
| | | | | | | |
Collapse
|
61
|
O’Hagan DT, De Gregorio E. The path to a successful vaccine adjuvant – ‘The long and winding road’. Drug Discov Today 2009; 14:541-51. [DOI: 10.1016/j.drudis.2009.02.009] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 02/19/2009] [Accepted: 02/23/2009] [Indexed: 11/28/2022]
|
62
|
MF59 Emulsion Is an Effective Delivery System for a Synthetic TLR4 Agonist (E6020). Pharm Res 2009; 26:1477-85. [DOI: 10.1007/s11095-009-9859-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 02/17/2009] [Indexed: 01/08/2023]
|
63
|
Lahiri A, Das P, Chakravortty D. Engagement of TLR signaling as adjuvant: towards smarter vaccine and beyond. Vaccine 2008; 26:6777-83. [PMID: 18835576 DOI: 10.1016/j.vaccine.2008.09.045] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 08/07/2008] [Accepted: 09/16/2008] [Indexed: 12/31/2022]
Abstract
Toll like receptors (TLRs) are a family of conserved pattern recognition receptors that recognizes specific microbial patterns and allow the cell to distinguish between self and non-self materials. The very property of the TLRs to link innate and adaptive immunity offers a novel prospect to develop vaccines engaging TLR signaling. The presence of TLR ligands as adjuvant in conjunction with the vaccine is shown to increase the efficacy and response to the immunization with a particular antigen. For infectious as well as for noninfectious diseases, TLR activation have been used in both established and experimental vaccines. The choice of the TLR agonist to be used, the subsequent efficacy and the safety profile of the vaccine is thus a crucial step in vaccine development. Recent studies also suggest the involvement of other non-TLR immune receptors to control vaccine immunogenicity. Here we focus on the findings dealing with TLR ligands as adjuvant and discuss the importance of these studies to develop an optimal vaccine.
Collapse
Affiliation(s)
- Amit Lahiri
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
64
|
Accelerated prion disease pathogenesis in Toll-like receptor 4 signaling-mutant mice. J Virol 2008; 82:10701-8. [PMID: 18715916 DOI: 10.1128/jvi.00522-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Prion diseases such as scrapie involve the accumulation of disease-specific prion protein, PrP(Sc), in the brain. Toll-like receptors (TLRs) are a family of proteins that recognize microbial constituents and are central players in host innate immune responses. The TLR9 agonist unmethylated CpG DNA was shown to prolong the scrapie incubation period in mice, suggesting that innate immune activation interferes with prion disease progression. Thus, it was predicted that ablation of TLR signaling would result in accelerated pathogenesis. C3H/HeJ (Tlr4(Lps-d)) mice, which possess a mutation in the TLR4 intracellular domain preventing TLR4 signaling, and strain-matched wild-type control (C3H/HeOuJ) mice were infected intracerebrally or intraperitoneally with various doses of scrapie inoculum. Incubation periods were significantly shortened in C3H/HeJ compared with C3H/HeOuJ mice, regardless of the route of infection or dose administered. At the clinical phase of disease, brain PrP(Sc) levels in the two strains of mice showed no significant differences by Western blotting. In addition, compared with macrophages from C3H/HeOuJ mice, those from C3H/HeJ mice were unresponsive to fibrillogenic PrP peptides (PrP residues 106 to 126 [PrP(106-126)] and PrP(118-135)) and the TLR4 agonist lipopolysaccharide but not to the TLR2 agonist zymosan, as measured by cytokine production. These data confirm that innate immune activation via TLR signaling interferes with scrapie infection. Furthermore, the results also suggest that the scrapie pathogen, or a component(s) thereof, is capable of stimulating an innate immune response that is active in the central nervous system, since C3H/HeJ mice, which lack the response, exhibit shortened incubation periods following both intraperitoneal and intracerebral infections.
Collapse
|