51
|
Kleinovink JW, Ossendorp F. Measuring the Antitumor T-Cell Response in the Context of Photodynamic Therapy. Methods Mol Biol 2022; 2451:579-588. [PMID: 35505034 DOI: 10.1007/978-1-0716-2099-1_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The field of photodynamic therapy (PDT) of cancer, like oncology research in general, is showing increasing interest in tumor immunology and immune effects of tumor treatment. Tumor ablation by PDT can lead to strong shifts in the composition of the immune cell infiltrate of tumors, and systemic effects of local therapy have been described. T lymphocytes, also known as T cells, are a type of adaptive immune cells that are of particular interest as they are very efficient in target cell recognition and killing, both at the treatment site and systemically. Moreover, T cells can constitute immunological memory to provide long-term protection. Several studies have described in detail how T-cell immune responses are induced by PDT and can play an important role in the therapeutic effect. This chapter describes several approaches of the analysis of T-cell responses during or after PDT in a mouse tumor model.
Collapse
Affiliation(s)
- Jan Willem Kleinovink
- Department of Immunology, Tumor Immunology Group, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Tumor Immunology Group, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
52
|
Zhu F, Wang BR, Zhu ZF, Wang SQ, Chai CX, Shang D, Li M. Photodynamic therapy: A next alternative treatment strategy for hepatocellular carcinoma? World J Gastrointest Surg 2021; 13:1523-1535. [PMID: 35070061 PMCID: PMC8727193 DOI: 10.4240/wjgs.v13.i12.1523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/20/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the most common cancers in the world. Of all types of liver cancer, hepatocellular carcinoma (HCC) is known to be the most frequent primary liver malignancy and has seriously compromised the health status of the general population. Locoregional thermal ablation techniques such as radiofrequency and microwave ablation, have attracted attention in clinical practice as an alternative strategy for HCC treatment. However, their aggressive thermal effect may cause undesirable complications such as hepatic decompensation, hemorrhage, bile duct injury, extrahepatic organ injuries, and skin burn. In recent years, photodynamic therapy (PDT), a gentle locoregional treatment, has attracted attention in ablation therapy for patients with superficial or luminal tumors as an alternative treatment strategy. However, some inherent defects and extrinsic factors of PDT have limited its use in clinical practice for deep-seated HCC. In this contribution, the aim is to summarize the current status and challenges of PDT in HCC treatment and provide potential strategies to overcome these deficiencies in further clinical translational practice.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Bi-Rong Wang
- Department of Breast and Thyroid Surgery, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zheng-Feng Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Si-Qin Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Chu-Xing Chai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Dan Shang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
53
|
Jeong H, Lee C, Lee J, Lee J, Hwang HS, Lee M, Na K. Hemagglutinin Nanoparticulate Vaccine with Controlled Photochemical Immunomodulation for Pathogenic Influenza-Specific Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100118. [PMID: 34693665 PMCID: PMC8655185 DOI: 10.1002/advs.202100118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Recently, viral infectious diseases, including COVID-19 and Influenza, are the subjects of major concerns worldwide. One strategy for addressing these concerns focuses on nasal vaccines, which have great potential for achieving successful immunization via safe, easy, and affordable approaches. However, conventional nasal vaccines have major limitations resulting from fast removal when pass through nasal mucosa and mucociliary clearance hindering their effectiveness. Herein a nanoparticulate vaccine (NanoVac) exhibiting photochemical immunomodulation and constituting a new self-assembled immunization system of a photoactivatable polymeric adjuvant with influenza virus hemagglutinin for efficient nasal delivery and antigen-specific immunity against pathogenic influenza viruses is described. NanoVac increases the residence period of antigens and further enhances by spatiotemporal photochemical modulation in the nasal cavity. As a consequence, photochemical immunomodulation of NanoVacs successfully induces humoral and cellular immune responses followed by stimulation of mature dendritic cells, plasma cells, memory B cells, and CD4+ and CD8+ T cells, resulting in secretion of antigen-specific immunoglobulins, cytokines, and CD8+ T cells. Notably, challenge with influenza virus after nasal immunization with NanoVacs demonstrates robust prevention of viral infection. Thus, this newly designed vaccine system can serve as a promising strategy for developing vaccines that are active against current hazardous pathogen outbreaks and pandemics.
Collapse
Affiliation(s)
- Hayoon Jeong
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
| | - Chung‐Sung Lee
- Department of BiotechnologyThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
- Division of Advanced ProsthodonticsUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Pharmaceutical Engineering and BiotechnologySun Moon UniversityAsan‐siChungcheongnam‐do31460Republic of Korea
| | - Jangsu Lee
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
| | - Jonghwan Lee
- Department of BiotechnologyThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
| | - Hee Sook Hwang
- Department of BiotechnologyThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
- Department of Pharmaceutical EngineeringDankook UniversityCheonan‐siChungcheongnam‐do31116Republic of Korea
| | - Min Lee
- Division of Advanced ProsthodonticsUniversity of California Los AngelesLos AngelesCA90095USA
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Kun Na
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
| |
Collapse
|
54
|
Lifshits LM, III JAR, Ramasamy E, Thummel RP, Cameron CG, McFarland SA. Ruthenium Photosensitizers for NIR PDT Require Lowest-Lying Triplet Intraligand (3IL) Excited States. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021; 8. [DOI: 10.1016/j.jpap.2021.100067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
55
|
Nkune NW, Simelane NWN, Montaseri H, Abrahamse H. Photodynamic Therapy-Mediated Immune Responses in Three-Dimensional Tumor Models. Int J Mol Sci 2021; 22:12618. [PMID: 34884424 PMCID: PMC8657498 DOI: 10.3390/ijms222312618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising non-invasive phototherapeutic approach for cancer therapy that can eliminate local tumor cells and produce systemic antitumor immune responses. In recent years, significant efforts have been made in developing strategies to further investigate the immune mechanisms triggered by PDT. The majority of in vitro experimental models still rely on the two-dimensional (2D) cell cultures that do not mimic a three-dimensional (3D) cellular environment in the human body, such as cellular heterogeneity, nutrient gradient, growth mechanisms, and the interaction between cells as well as the extracellular matrix (ECM) and therapeutic resistance to anticancer treatments. In addition, in vivo animal studies are highly expensive and time consuming, which may also show physiological discrepancies between animals and humans. In this sense, there is growing interest in the utilization of 3D tumor models, since they precisely mimic different features of solid tumors. This review summarizes the characteristics and techniques for 3D tumor model generation. Furthermore, we provide an overview of innate and adaptive immune responses induced by PDT in several in vitro and in vivo tumor models. Future perspectives are highlighted for further enhancing PDT immune responses as well as ideal experimental models for antitumor immune response studies.
Collapse
Affiliation(s)
| | | | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (N.W.N.); (N.W.N.S.); (H.M.)
| |
Collapse
|
56
|
Pigula M, Mai Z, Anbil S, Choi MG, Wang K, Maytin E, Pogue B, Hasan T. Dramatic Reduction of Distant Pancreatic Metastases Using Local Light Activation of Verteporfin with Nab-Paclitaxel. Cancers (Basel) 2021; 13:5781. [PMID: 34830934 PMCID: PMC8616053 DOI: 10.3390/cancers13225781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
Despite substantial drug development efforts, pancreatic adenocarcinoma (PDAC) remains a difficult disease to treat, and surgical resection is the only potentially curative option. Unfortunately, 80% of patients are ineligible for surgery due to the presence of invasive disease and/or distant metastases at the time of diagnosis. Treatment strategies geared towards reclassifying these patients as surgical candidates by reducing metastatic burden represents the most promising approach to improve long-term survival. We describe a photodynamic therapy (PDT) based approach that, in combination with the first-line chemotherapeutic nab-paclitaxel, effectively addresses distant metastases in three separate orthotopic PDAC models in immunodeficient mice. In addition to effectively controlling local tumor growth, PDT plus nab-paclitaxel primes the tumor to elicit systemic effects and reduce or abrogate metastases. This combination dramatically inhibits (up to 100%) the eventual development of metastases in models of early stage PDAC, and completely eliminates metastasis in 55% of animals with already established distant disease in late-stage models. Our findings suggest that this light activation process initiates local biological and/or physiological changes within the tumor microenvironment that can be leveraged to treat both localized and distant disease, and potentially reclassify patients with previously inoperable disease as surgical candidates.
Collapse
Affiliation(s)
- Michael Pigula
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA;
| | - Zhiming Mai
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| | - Sriram Anbil
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Myung-Gyu Choi
- Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 137-040, Korea;
| | - Kenneth Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55902, USA;
| | - Edward Maytin
- Department of Dermatology, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Brian Pogue
- Department of Engineering Sciences, Dartmouth College, Hanover, NH 03755, USA;
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
57
|
Jin ZY, Fatima H, Zhang Y, Shao Z, Chen XJ. Recent Advances in Bio‐Compatible Oxygen Singlet Generation and Its Tumor Treatment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Yang Jin
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Hira Fatima
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
| | - Yue Zhang
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Zongping Shao
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing Jiangsu 211816 P. R. China
| | - Xiang Jian Chen
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| |
Collapse
|
58
|
Research progress of azido-containing Pt(IV) antitumor compounds. Eur J Med Chem 2021; 227:113927. [PMID: 34695775 DOI: 10.1016/j.ejmech.2021.113927] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Cancer is a long-known incurable disease, and the medical use of cisplatin has been a significant discovery. However, the side-effects of cisplatin necessitate the development of new and improved drug. Therefore, in this study, we focused on the photoactivatable Pt(IV) compounds Pt[(X1)(X2)(Y1)(Y2)(N3)2], which have a completely novel mechanism of action. Pt(IV) can efficiently overcome the side-effects of cisplatin and other drugs. Here, we have demonstrated, summarized and discussed the effects and mechanism of these compounds. Compared to the relevant articles in the literature, we have provided a more detailed introduction and a made comprehensive classification of these compounds. We believe that our results can effectively provide a reference for the development of these drugs.
Collapse
|
59
|
Zhang D, Xie Q, Liu Y, Li Z, Li H, Li S, Li Z, Cui J, Su M, Jiang X, Xue P, Bai M. Photosensitizer IR700DX-6T- and IR700DX-mbc94-mediated photodynamic therapy markedly elicits anticancer immune responses during treatment of pancreatic cancer. Pharmacol Res 2021; 172:105811. [PMID: 34390852 DOI: 10.1016/j.phrs.2021.105811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND/AIMS IR700DX-6T and IR700DX-mbc94 are two chemically synthesized photosensitizers (PSs) that target the translocator protein (TSPO) and type 2 cannabinoid receptor (CB2R), respectively, for photodynamic therapy (PDT) of cancer. Recently, we found that IR700DX-6T and IR700DX-mbc94 exhibited high selectivity and efficiency in PDT for breast cancer and malignant astrocytoma. Yet, the phototherapeutic effects of the PSs on pancreatic cancer and underlying mechanisms remain unknown. This study investigated the effect of IR700DX-6T- or IR700DX-mbc94-PDT on pancreatic cancer and whether the treatment involves eliciting anticancer immune responses in support of superior therapeutic efficacy. METHODS Four pancreatic cancer cell lines were used for in vitro studies. C57BL/6 mice bearing pancreatic cancer cell-derived xenografts were generated for in vivo studies regarding the therapeutic effects of IR700DX-6T-PDT and IR700DX-mbc94-PDT on pancreatic cancer. The immunostimulatory or immunosuppressive effects of IR700DX-6T-PDT and IR700DX-mbc94-PDT were examined by detecting CD8+ T cells, regulatory T cells (Tregs), and dendritic cells (DCs) using flow cytometry and immunohistochemistry (IHC). RESULTS TSPO and CB2R were markedly upregulated in pancreatic cancer cells and tissues. Both IR700DX-6T-PDT and IR700DX-mbc94-PDT significantly inhibited pancreatic cancer cell growth in a dose- and time-dependent manner. Notably, assessment of anticancer immune responses revealed that both IR700DX-6T-PDT and IR700DX-mbc94-PDT significantly induced CD8+ T cells, promoted maturation of DCs, and suppressed Tregs, with stronger effects exerted by IR700DX-6T-PDT compared to IR700DX-mbc94-PDT. CONCLUSIONS IR700DX-6T-PDT and IR700DX-mbc94-PDT involves eliciting anticancer immune responses. Our study has also implicated that PDT in combination with immunotherapy holds promise to improve therapeutic efficacy for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qing Xie
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yang Liu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Zongyan Li
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Haiyan Li
- Department of Breast Surgery, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510650, China
| | - Shiying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhen Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Fourth General Surgery Department, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Jing Cui
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Nuclear Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Meng Su
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Ping Xue
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China.
| | - Mingfeng Bai
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
60
|
Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Photodynamic Therapy: A Compendium of Latest Reviews. Cancers (Basel) 2021; 13:4447. [PMID: 34503255 PMCID: PMC8430498 DOI: 10.3390/cancers13174447] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising therapy against cancer. Even though it has been investigated for more than 100 years, scientific publications have grown exponentially in the last two decades. For this reason, we present a brief compendium of reviews of the last two decades classified under different topics, namely, overviews, reviews about specific cancers, and meta-analyses of photosensitisers, PDT mechanisms, dosimetry, and light sources. The key issues and main conclusions are summarized, including ways and means to improve therapy and outcomes. Due to the broad scope of this work and it being the first time that a compendium of the latest reviews has been performed for PDT, it may be of interest to a wide audience.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Mario Ochoa
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Pablo Roldán-Varona
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | | | - José Miguel López-Higuera
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
61
|
De Silva P, Bano S, Pogue BW, Wang KK, Maytin EV, Hasan T. Photodynamic priming with triple-receptor targeted nanoconjugates that trigger T cell-mediated immune responses in a 3D in vitro heterocellular model of pancreatic cancer. NANOPHOTONICS 2021; 10:3199-3214. [PMID: 37485044 PMCID: PMC10361703 DOI: 10.1515/nanoph-2021-0304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Photodynamic priming (PDP), a collateral effect of photodynamic therapy, can transiently alter the tumor microenvironment (TME) beyond the cytotoxic zone. Studies have demonstrated that PDP increases tumor permeability and modulates immune-stimulatory effects by inducing immunogenic cell death, via the release of damage-associated molecular patterns and tumor-associated antigens. Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest of cancers with a stubborn immunosuppressive TME and a dense stroma, representing a challenge for current molecular targeted therapies often involving macromolecules. We, therefore, tested the hypothesis that PDP's TME modulation will enable targeted therapy and result in immune stimulation. Using triple-receptor-targeted photoimmuno-nanoconjugate (TR-PINs)-mediated PDP, targeting epidermal growth factor receptor, transferrin receptor, and human epidermal growth factor receptor 2 we show light dose-dependent TR-PINs mediated cytotoxicity inhuman PDA Ccells (MIAPaCa-2),co-cultured with human pancreatic cancer-associated fibroblasts (PCAFs) in spheroids. Furthermore, TR-PINs induced the expression of heat shock proteins (Hsp60, Hsp70), Calreticulin, and high mobility group box 1 in a light dose and time-dependent manner.TR-PINs-mediated T cell activation was observed in co-cultures of immune cells with the MIA PaCa-2-PCAF spheroids. Both CD4+ T and CD8+ T cells showed light dose and time-dependant antitumor reactivity by upregulating degranulation marker CD107a and interferon-gamma post-PDP. Substantial tumor cell death in immune cell-spheroid co-cultures by day 3 shows the augmentation by antitumor T cell activation and their ability to recognize tumors for a light dose-dependent kill. These data confirm enhanced destruction of heterogeneous pancreatic spheroids mediated by PDP-induced phototoxicity, TME modulation and increased immunogenicity with targeted nanoconstructs.
Collapse
Affiliation(s)
- Pushpamali De Silva
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Kenneth K. Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Edward V. Maytin
- Departments of Dermatology and Biomedical Engineering, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Tayyaba Hasan
- Corresponding author: Tayyaba Hasan, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, BAR 314A, Boston, MA, 02114, USA; and Division of Health Sciences and Technology, Massachusetts Institute of Technology, Harvard University, Cambridge, MA, 02139, USA,
| |
Collapse
|
62
|
Zeinali S, Tuncel A, Yüzer A, Yurt F. Imaging and detection of cell apoptosis byIn vitrophotodynamic therapy applications of zinc (II) phthalocyanine on human melanoma cancer. Photodiagnosis Photodyn Ther 2021; 36:102518. [PMID: 34478898 DOI: 10.1016/j.pdpdt.2021.102518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/29/2021] [Accepted: 08/27/2021] [Indexed: 01/10/2023]
Abstract
This study aims to investigate the photodynamic therapy (PDT) effects on MeWo (human melanoma cells) and HaCaT (normal human keratinocyte cells) by light stimulation of different concentrations of Zinc (II)-tetra-tert-butyl-phthalocyaninato (ZnPc). MTT viability assay data indicated that a 25 μM concentration of ZnPc is cytotoxic to the melanoma cancer cells while this concentration of ZnPc is not cytotoxic for the HaCaT cell line. Moreover, the results showed that photoactivated ZnPc at 12.5 μM concentration reduced the cell viability of the MeWo cell line to about 50 %. At this photosensitizing concentration, the efficacy of light doses of 20, 30, 40, and 50 J/cm2 was evaluated against MeWo and HaCaT cells. ZnPc at a concentration of 12.5 μM activated with a light dose of 50 J/cm2 was the most efficient for the killing of MeWo cells. In conclusion, the 12.5 μM of ZnPc with the treatment light dose of 50 J/cm2 from a RED light source was adequate to destroy MeWo cells by the ROS-induced apoptosis mechanism. It also exhibited low killing effects on healthy HaCaT cells. These findings are supported by the results of apoptosis with the Annexin V & Dead Cell Kit and fluorescence imaging.
Collapse
Affiliation(s)
- Sevda Zeinali
- Department Biomedical Technologies, Institute of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Ayca Tuncel
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Abdulcelil Yüzer
- Faculty of Engineering, Department of Engineering Fundamental Sciences, Tarsus University, 33400, Tarsus, Turkey
| | - Fatma Yurt
- Department Biomedical Technologies, Institute of Science, Ege University, 35100, Bornova, Izmir, Turkey; Department of Nuclear Applications, Institute of Nuclear Science, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
63
|
Zheng Y, Ye J, Li Z, Chen H, Gao Y. Recent progress in sono-photodynamic cancer therapy: From developed new sensitizers to nanotechnology-based efficacy-enhancing strategies. Acta Pharm Sin B 2021; 11:2197-2219. [PMID: 34522584 PMCID: PMC8424231 DOI: 10.1016/j.apsb.2020.12.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/27/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Many sensitizers have not only photodynamic effects, but also sonodynamic effects. Therefore, the combination of sonodynamic therapy (SDT) and photodynamic therapy (PDT) using sensitizers for sono-photodynamic therapy (SPDT) provides alternative opportunities for clinical cancer therapy. Although significant advances have been made in synthesizing new sensitizers for SPDT, few of them are successfully applied in clinical settings. The anti-tumor effects of the sensitizers are restricted by the lack of tumor-targeting specificity, incapability in deep intratumoral delivery, and the deteriorating tumor microenvironment. The application of nanotechnology-based drug delivery systems (NDDSs) can solve the above shortcomings, thereby improving the SPDT efficacy. This review summarizes various sensitizers as sono/photosensitizers that can be further used in SPDT, and describes different strategies for enhancing tumor treatment by NDDSs, such as overcoming biological barriers, improving tumor-targeted delivery and intratumoral delivery, providing stimuli-responsive controlled-release characteristics, stimulating anti-tumor immunity, increasing oxygen supply, employing different therapeutic modalities, and combining diagnosis and treatment. The challenges and prospects for further development of intelligent sensitizers and translational NDDSs for SPDT are also discussed.
Collapse
Affiliation(s)
- Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jinxiang Ye
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
64
|
Broadwater D, Medeiros HCD, Lunt RR, Lunt SY. Current Advances in Photoactive Agents for Cancer Imaging and Therapy. Annu Rev Biomed Eng 2021; 23:29-60. [PMID: 34255992 DOI: 10.1146/annurev-bioeng-122019-115833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photoactive agents are promising complements for both early diagnosis and targeted treatment of cancer. The dual combination of diagnostics and therapeutics is known as theranostics. Photoactive theranostic agents are activated by a specific wavelength of light and emit another wavelength, which can be detected for imaging tumors, used to generate reactive oxygen species for ablating tumors, or both. Photodynamic therapy (PDT) combines photosensitizer (PS) accumulation and site-directed light irradiation for simultaneous imaging diagnostics and spatially targeted therapy. Although utilized since the early 1900s, advances in the fields of cancer biology, materials science, and nanomedicine have expanded photoactive agents to modern medical treatments. In this review we summarize the origins of PDT and the subsequent generations of PSs and analyze seminal research contributions that have provided insight into rational PS design, such as photophysics, modes of cell death, tumor-targeting mechanisms, and light dosing regimens. We highlight optimizable parameters that, with further exploration, can expand clinical applications of photoactive agents to revolutionize cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Deanna Broadwater
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hyllana C D Medeiros
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Richard R Lunt
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA; , .,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA; ,
| |
Collapse
|
65
|
Cavin S, Gkasti A, Faget J, Hao Y, Letovanec I, Reichenbach M, Gonzalez M, Krueger T, Dyson PJ, Meylan E, Perentes JY. Low-dose photodynamic therapy promotes a cytotoxic immunological response in a murine model of pleural mesothelioma. Eur J Cardiothorac Surg 2021; 58:783-791. [PMID: 32372095 DOI: 10.1093/ejcts/ezaa145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/10/2020] [Accepted: 03/24/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Malignant pleural mesothelioma (MPM) is a deadly disease with limited treatment options. Approaches to enhance patient immunity against MPM have been tested but shown variable results. Previously, we have demonstrated interesting vascular modulating properties of low-dose photodynamic therapy (L-PDT) on MPM. Here, we hypothesized that L-PDT vascular modulation could favour immune cell extravasation in MPM and improve tumour control in combination with immune checkpoint inhibitors. METHODS First, we assessed the impact of L-PDT on vascular endothelial E-selectin expression, a key molecule for immune cell extravasation, in vitro and in a syngeneic murine model of MPM. Second, we characterized the tumour immune cell infiltrate by 15-colour flow cytometry analysis 2 and 7 days after L-PDT treatment of the murine MPM model. Third, we determined how L-PDT combined with immune checkpoint inhibitor anti-CTLA4 affected tumour growth in a murine MPM model. RESULTS L-PDT significantly enhanced E-selectin expression by endothelial cells in vitro and in vivo. This correlated with increased CD8+ T cells and activated antigen-presenting cells (CD11b+ dendritic cells and macrophages) infiltration in MPM. Also, compared to anti-CTLA4 that only affects tumour growth, the combination of L-PDT with anti-CTLA4 caused complete MPM regression in 37.5% of animals. CONCLUSIONS L-PDT enhances E-selectin expression in the MPM endothelium, which favours immune infiltration of tumours. The combination of L-PDT with immune checkpoint inhibitor anti-CTLA4 allows best tumour control and regression.
Collapse
Affiliation(s)
- Sabrina Cavin
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Aspasia Gkasti
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Julien Faget
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yameng Hao
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Igor Letovanec
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Maxime Reichenbach
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Michel Gonzalez
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Thorsten Krueger
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Etienne Meylan
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean Y Perentes
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
66
|
Combined OX40 Agonist and PD-1 Inhibitor Immunotherapy Improves the Efficacy of Vascular Targeted Photodynamic Therapy in a Urothelial Tumor Model. Molecules 2021; 26:molecules26123744. [PMID: 34205347 PMCID: PMC8234268 DOI: 10.3390/molecules26123744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Vascular targeted photodynamic therapy (VTP) is a nonsurgical tumor ablation approach used to treat early-stage prostate cancer and may also be effective for upper tract urothelial cancer (UTUC) based on preclinical data. Toward increasing response rates to VTP, we evaluated its efficacy in combination with concurrent PD-1 inhibitor/OX40 agonist immunotherapy in a urothelial tumor-bearing model. EXPERIMENTAL DESIGN In mice allografted with MB-49 UTUC cells, we compared the effects of combined VTP with PD-1 inhibitor/OX40 agonist with those of the component treatments on tumor growth, survival, lung metastasis, and antitumor immune responses. RESULTS The combination of VTP with both PD-1 inhibitor and OX40 agonist inhibited tumor growth and prolonged survival to a greater degree than VTP with either immunotherapeutic individually. These effects result from increased tumor infiltration and intratumoral proliferation of cytotoxic and helper T cells, depletion of Treg cells, and suppression of myeloid-derived suppressor cells. CONCLUSIONS Our findings suggest that VTP synergizes with PD-1 blockade and OX40 agonist to promote strong antitumor immune responses, yielding therapeutic efficacy in an animal model of urothelial cancer.
Collapse
|
67
|
Galiardi-Campoy AEB, Machado FC, Carvalho T, Tedesco AC, Rahal P, Calmon MF. Effects of photodynamic therapy mediated by emodin in cervical carcinoma cells. Photodiagnosis Photodyn Ther 2021; 35:102394. [PMID: 34119706 DOI: 10.1016/j.pdpdt.2021.102394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/10/2021] [Accepted: 06/07/2021] [Indexed: 01/10/2023]
Abstract
Cervical cancer is a worldwide public health problem, and improved selective therapies and anticancer drugs are urgently needed. In recent years, emodin has attracted considerable attention due to its anti-inflammatory, antineoplastic, and proapoptotic effects. Furthermore, emodin may be used as a photosensitizing agent in photodynamic therapy. Interest in photodynamic therapy for cancer treatment has increased due to its efficiency in causing tumor cell death. This study aimed to analyze the effect of emodin combined with photodynamic therapy in cervical carcinoma cell lines. At first, emodin presented cytotoxicity in concentration and time-dependent manners in all the specific cell lines analyzed. SiHa, CaSki, and HaCaT cancer cells presented more than 80% cell viability in concentrations below 30 µmol/L. Fluorescence microscopy images showed efficient cellular uptake of emodin in all analyzed cell lines. A significant decrease in cell viability was observed in SiHa, CaSki, and HaCaT cell lines after treatment of emodin combined with photodynamic therapy. These decreases were accompanied by increased ROS production, caspase-3 activity, and fluorescence intensity of autophagic vacuoles. This suggests increased ROS production led to cell death by apoptosis and autophagy. Additionally, after the combination of emodin and photodynamic therapy in SiHa cells, we observed the overexpression of 22 target genes and downregulation of two target genes of anti-cancer drugs. These results show the promising potential for applications that combine emodin with photodynamic therapy for cervical cancer treatment.
Collapse
Affiliation(s)
- Ana Emília Brumatti Galiardi-Campoy
- Institute of Biosciences, Humanities and Exact Sciences (IBILCE), Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo Street, 2265, Zip/Postal Code: 15054-010, São José do Rio Preto, SP, Brazil
| | - Francielly Cristina Machado
- Institute of Biosciences, Humanities and Exact Sciences (IBILCE), Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo Street, 2265, Zip/Postal Code: 15054-010, São José do Rio Preto, SP, Brazil
| | - Tamara Carvalho
- Institute of Biosciences, Humanities and Exact Sciences (IBILCE), Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo Street, 2265, Zip/Postal Code: 15054-010, São José do Rio Preto, SP, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Paula Rahal
- Institute of Biosciences, Humanities and Exact Sciences (IBILCE), Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo Street, 2265, Zip/Postal Code: 15054-010, São José do Rio Preto, SP, Brazil
| | - Marilia Freitas Calmon
- Institute of Biosciences, Humanities and Exact Sciences (IBILCE), Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo Street, 2265, Zip/Postal Code: 15054-010, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
68
|
Current Prospects for Treatment of Solid Tumors via Photodynamic, Photothermal, or Ionizing Radiation Therapies Combined with Immune Checkpoint Inhibition (A Review). Pharmaceuticals (Basel) 2021; 14:ph14050447. [PMID: 34068491 PMCID: PMC8151935 DOI: 10.3390/ph14050447] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) causes selective damage to tumor cells and vasculature and also triggers an anti-tumor immune response. The latter fact has prompted the exploration of PDT as an immune-stimulatory adjuvant. PDT is not the only cancer treatment that relies on electromagnetic energy to destroy cancer tissue. Ionizing radiation therapy (RT) and photothermal therapy (PTT) are two other treatment modalities that employ photons (with wavelengths either shorter or longer than PDT, respectively) and also cause tissue damage and immunomodulation. Research on the three modalities has occurred in different “silos”, with minimal interaction between the three topics. This is happening at a time when immune checkpoint inhibition (ICI), another focus of intense research and clinical development, has opened exciting possibilities for combining PDT, PTT, or RT with ICI to achieve improved therapeutic benefits. In this review, we surveyed the literature for studies that describe changes in anti-tumor immunity following the administration of PDT, PTT, and RT, including efforts to combine each modality with ICI. This information, collected all in one place, may make it easier to recognize similarities and differences and help to identify new mechanistic hypotheses toward the goal of achieving optimized combinations and tumor cures.
Collapse
|
69
|
He M, Yang T, Wang Y, Wang M, Chen X, Ding D, Zheng Y, Chen H. Immune Checkpoint Inhibitor-Based Strategies for Synergistic Cancer Therapy. Adv Healthc Mater 2021; 10:e2002104. [PMID: 33709564 DOI: 10.1002/adhm.202002104] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Indexed: 12/16/2022]
Abstract
Immune checkpoint blockade therapy (ICBT) targeting checkpoints, such as, cytotoxic T-lymphocyte associated protein-4 (CTLA-4), programmed death-1 (PD-1), or programmed death-ligand 1 (PD-L1), can yield durable immune response in various types of cancers and has gained constantly increasing research interests in recent years. However, the efficacy of ICBT alone is limited by low response rate and immune-related side effects. Emerging preclinical and clinical studies reveal that chemotherapy, radiotherapy, phototherapy, or other immunotherapies can reprogramm immunologically "cold" tumor microenvironment into a "hot" one, thus synergizing with ICBT. In this review, the working principle and current development of various immune checkpoint inhibitors are summarized, while the interactive mechanism and recent progress of ICBT-based synergistic therapies with other immunotherapy, chemotherapy, phototherapy, and radiotherapy in fundamental and clinical studies in the past 5 years are depicted and highlighted. Moreover, the potential issues in current studies of ICBT-based synergistic therapies and future perspectives are also discussed.
Collapse
Affiliation(s)
- Mengying He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Yuhan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Mengyuan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Xingye Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Dawei Ding
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Yiran Zheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
- State Key Laboratory of Radiation Medicine and Protection Soochow University Suzhou 215123 China
| |
Collapse
|
70
|
Duan Y, Yang H, Gao J, Wei D, Zhang Y, Wang J, Zhang X, Zhang J, Ge K, Wu X, Chang J. Immune Modulator and Low-Temperature PTT-Induced Synergistic Immunotherapy for Cancer Treatment. ACS APPLIED BIO MATERIALS 2021; 4:1524-1535. [PMID: 35014502 DOI: 10.1021/acsabm.0c01397] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immunotherapy has shown great potential in cancer therapeutics but has limitations of the insufficient activation of dendritic cells (DCs) and immune-suppressive microenvironment. To overcome these obstacles, a cascade synergistic immunotherapy nanosystem (denoted as CpG@PDA-FA) was designed to elevate anticancer immune response. The combination nanosystem including a photothermal agent polydopamine (PDA) and immunomodulator CpG oligodeoxynucleotides (CpG ODNs). On the one hand, polydopamine (PDA) acts as a photothermal agent to induce low-temperature PTT. It leads to immunogenic cell death (ICD), a programmed cell death pathway, which can activate DCs and enhance the antitumor immune response of T cells. On the other hand, CpG ODNs further promote maturation and migration of DCs as well as ameliorates the immunosuppression microenvironment of the tumor (TME). This paper focuses on a cancer synergistic treatment of ICD-induced immunotherapy by low-temperature PTT and ameliorates TME by immunomodulator CpG ODNs. We proved that CpG@PDA-FA NPs realized a remarkable synergistic treatment effect compared with respective single PTT or CpG therapy in the maturation of DCs and activation of T cells. In addition, CpG@PDA-FA NPs also reduced myeloid-derived suppressor cells and regulatory T cells to relieve immunosuppression. Hence, CpG@PDA-FA NPs provide a bidirectional immunotherapy strategy for tumor inhibition and highlight the cascade effects of low-temperature PTT and immunotherapy.
Collapse
Affiliation(s)
- Yue Duan
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Han Yang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Junxiao Gao
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Daohe Wei
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Yue Zhang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Jian Wang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Xinhui Zhang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Jinchao Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, P. R. China
| | - Kun Ge
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, P. R. China
| | - Xiaoli Wu
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Jin Chang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| |
Collapse
|
71
|
Lifshits LM, Roque JA, Cole HD, Thummel RP, Cameron CG, McFarland SA. NIR-Absorbing Ru II Complexes Containing α-Oligothiophenes for Applications in Photodynamic Therapy. Chembiochem 2020; 21:3594-3607. [PMID: 32761725 PMCID: PMC7736147 DOI: 10.1002/cbic.202000419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Indexed: 12/12/2022]
Abstract
The design of near-infrared (NIR)-active photosensitizers (PSs) for light-based cancer treatments such as photodynamic therapy (PDT) has been a challenge. While several NIR-RuII scaffolds have been reported, this approach has not been proven in cells. This is the first report of NIR-RuII PSs that are phototoxic to cancer cells, including highly pigmented B16F10 melanoma cells. The PS family incorporated a bis(1,8-naphthyridine)-based ligand (tpbn), a bidentate thiophene-based ligand (nT; n=0-4), and a monodentate 4-picoline ligand (4-pic). All compounds absorbed light >800 nm with maxima near 730 nm. Transient absorption (TA) measurements indicated that n=4 thiophene rings (4T) positioned the PDT-active triplet intraligand charge transfer (3 ILCT) excited state in energetic proximity to the lowest-lying triplet metal-to-ligand charge transfer (3 MLCT). 4T had low-micromolar phototoxicity with PIvis and PI733nm values as large as 90 and 12, respectively. Spectroscopic studies suggested that the longer-lived (τTA =3-6 μs) 3 ILCT state was accessible from the 3 MLCT state, but energetically uphill in the overall photophysics. The study highlights that phototoxic effects can be achieved with NIR-absorbing RuII PSs as long as the reactive 3 ILCT states are energetically accessible from the low-energy 3 MLCT states. It also demonstrates that tissue-penetrating NIR light can be used to activate the PSs in highly pigmented cells where melanin attenuates shorter wavelengths of light.
Collapse
Affiliation(s)
- Liubov M. Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Randolph P. Thummel
- Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas, 77204-5003, USA
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| |
Collapse
|
72
|
Yuan G, Yao M, Lv H, Jia X, Chen J, Xue J. Novel Targeted Photosensitizer as an Immunomodulator for Highly Efficient Therapy of T-Cell Acute Lymphoblastic Leukemia. J Med Chem 2020; 63:15655-15667. [PMID: 33300796 DOI: 10.1021/acs.jmedchem.0c01072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dasatinib is a kinase-targeted drug used in the treatment of leukemia. Regrettably, it remains far from optimal medicine due to insurmountable drug resistance and side effects. Photodynamic therapy (PDT) has proven that it can induce systemic immune responses. However, conventional photosensitizers as immunomodulators produce anticancer immunities, which are inadequate to eliminate residual cancer cells. Herein, a novel compound 4 was synthesized and investigated, which introduces dasatinib and zinc(II) phthalocyanine as the targeting and photodynamic moiety, respectively. Compound 4 exhibits a high affinity to CCRF-CEM cells/tumor tissues, which overexpress lymphocyte-specific protein tyrosine kinase (LCK), and preferential elimination from the body. Meanwhile, compound 4 shows excellent photocytotoxicity and tumor regression. Significantly, compound 4-induced PDT can obviously enhance immune responses, resulting in the production of more immune cells. We believe that the proposed manner is a potential strategy for the treatment of T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Gankun Yuan
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| | - Mengyu Yao
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| | - Huihui Lv
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| | - Xiao Jia
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| | - Juanjuan Chen
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| | - Jinping Xue
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| |
Collapse
|
73
|
Kim HI, Wilson BC. Photodynamic Diagnosis and Therapy for Peritoneal Carcinomatosis from Gastrointestinal Cancers: Status, Opportunities, and Challenges. J Gastric Cancer 2020; 20:355-375. [PMID: 33425438 PMCID: PMC7781745 DOI: 10.5230/jgc.2020.20.e39] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/15/2020] [Indexed: 12/21/2022] Open
Abstract
Selective accumulation of a photosensitizer and the subsequent response in only the light-irradiated target are advantages of photodynamic diagnosis and therapy. The limited depth of the therapeutic effect is a positive characteristic when treating surface malignancies, such as peritoneal carcinomatosis. For photodynamic diagnosis (PDD), adjunctive use of aminolevulinic acid- protoporphyrin IX-guided fluorescence imaging detects cancer nodules, which would have been missed during assessment using white light visualization only. Furthermore, since few side effects have been reported, this has the potential to become a vital component of diagnostic laparoscopy. A variety of photosensitizers have been examined for photodynamic therapy (PDT), and treatment protocols are heterogeneous in terms of photosensitizer type and dose, photosensitizer-light time interval, and light source wavelength, dose, and dose rate. Although several studies have suggested that PDT has favorable effects in peritoneal carcinomatosis, clinical trials in more homogenous patient groups are required to identify the true benefits. In addition, major complications, such as bowel perforation and capillary leak syndrome, need to be reduced. In the long term, PDD and PDT are likely to be successful therapeutic options for patients with peritoneal carcinomatosis, with several options to optimize the photosensitizer and light delivery parameters to improve safety and efficacy.
Collapse
Affiliation(s)
- Hyoung-Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Gastric Cancer Center, Yonsei Cancer Center, Seoul, Korea
- Open NBI Convergence Technology Research Laboratory, Severance Hospital, Seoul, Korea
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brian C. Wilson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
74
|
Smithen DA, Monro S, Pinto M, Roque J, Diaz-Rodriguez RM, Yin H, Cameron CG, Thompson A, McFarland SA. Bis[pyrrolyl Ru(ii)] triads: a new class of photosensitizers for metal-organic photodynamic therapy. Chem Sci 2020; 11:12047-12069. [PMID: 33738086 PMCID: PMC7953431 DOI: 10.1039/d0sc04500d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
A new family of ten dinuclear Ru(ii) complexes based on the bis[pyrrolyl Ru(ii)] triad scaffold, where two Ru(bpy)2 centers are separated by a variety of organic linkers, was prepared to evaluate the influence of the organic chromophore on the spectroscopic and in vitro photodynamic therapy (PDT) properties of the compounds. The bis[pyrrolyl Ru(ii)] triads absorbed strongly throughout the visible region, with several members having molar extinction coefficients (ε) ≥ 104 at 600-620 nm and longer. Phosphorescence quantum yields (Φ p) were generally less than 0.1% and in some cases undetectable. The singlet oxygen quantum yields (Φ Δ) ranged from 5% to 77% and generally correlated with their photocytotoxicities toward human leukemia (HL-60) cells regardless of the wavelength of light used. Dark cytotoxicities varied ten-fold, with EC50 values in the range of 10-100 μM and phototherapeutic indices (PIs) as large as 5400 and 260 with broadband visible (28 J cm-2, 7.8 mW cm-2) and 625 nm red (100 J cm-2, 42 mW cm-2) light, respectively. The bis[pyrrolyl Ru(ii)] triad with a pyrenyl linker (5h) was especially potent, with an EC50 value of 1 nM and PI > 27 000 with visible light and subnanomolar activity with 625 nm light (100 J cm-2, 28 mW cm-2). The lead compound 5h was also tested in a tumor spheroid assay using the HL60 cell line and exhibited greater photocytotoxicity in this more resistant model (EC50 = 60 nM and PI > 1200 with 625 nm light) despite a lower dark cytotoxicity. The in vitro PDT effects of 5h extended to bacteria, where submicromolar EC50 values and PIs >300 against S. mutans and S. aureus were obtained with visible light. This activity was attenuated with 625 nm red light, but PIs were still near 50. The ligand-localized 3ππ* state contributed by the pyrenyl linker of 5h likely plays a key role in its phototoxic effects toward cancer cells and bacteria.
Collapse
Affiliation(s)
- Deborah A Smithen
- Department of Chemistry , Dalhousie University , P. O. Box 15000 , Halifax , NS B3H 4R2 , Canada .
| | - Susan Monro
- Department of Chemistry , Acadia University , Wolfville , NS B4P 2R6 , Canada
| | - Mitch Pinto
- Department of Chemistry , Acadia University , Wolfville , NS B4P 2R6 , Canada
| | - John Roque
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , PO Box 26170 , Greensboro , NC 27402-6170 , USA
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , 700 Planetarium Pl , Arlington , TX 76019-0065 , USA .
| | - Roberto M Diaz-Rodriguez
- Department of Chemistry , Dalhousie University , P. O. Box 15000 , Halifax , NS B3H 4R2 , Canada .
| | - Huimin Yin
- Department of Chemistry , Acadia University , Wolfville , NS B4P 2R6 , Canada
| | - Colin G Cameron
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , 700 Planetarium Pl , Arlington , TX 76019-0065 , USA .
| | - Alison Thompson
- Department of Chemistry , Dalhousie University , P. O. Box 15000 , Halifax , NS B3H 4R2 , Canada .
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , 700 Planetarium Pl , Arlington , TX 76019-0065 , USA .
| |
Collapse
|
75
|
Role of Bcl-2 Family Proteins in Photodynamic Therapy Mediated Cell Survival and Regulation. Molecules 2020; 25:molecules25225308. [PMID: 33203053 PMCID: PMC7696921 DOI: 10.3390/molecules25225308] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy (PDT) is a treatment modality that involves three components: combination of a photosensitizer, light and molecular oxygen that leads to localized formation of reactive oxygen species (ROS). The ROS generated from this promising therapeutic modality can be lethal to the cell and leads to consequential destruction of tumor cells. However, sometimes the ROS trigger a stress response survival mechanism that helps the cells to cope with PDT-induced damage, resulting in resistance to the treatment. One preferred mechanism of cell death induced by PDT is apoptosis, and B-cell lymphoma 2 (Bcl-2) family proteins have been described as a major determinant of life or death decision of the death pathways. Apoptosis is a cellular self-destruction mechanism to remove old cells through the biological event of tissue homeostasis. The Bcl-2 family proteins act as a critical mediator of a life–death decision of cells in maintaining tissue homeostasis. There are several reports that show cancer cells developing resistance due to the increased interaction of the pro-survival Bcl-2 family proteins. However, the key mechanisms leading to apoptosis evasion and drug resistance have not been adequately understood. Therefore, it is critical to understand the mechanisms of PDT resistance, as well as the Bcl-2 family proteins, to give more insight into the treatment outcomes. In this review, we describe the role of Bcl-2 gene family proteins’ interaction in response to disease progression and PDT-induced resistance mechanisms.
Collapse
|
76
|
Combination of Photodynamic Therapy and a Flagellin-Adjuvanted Cancer Vaccine Potentiated the Anti-PD-1-Mediated Melanoma Suppression. Cells 2020; 9:cells9112432. [PMID: 33171765 PMCID: PMC7694978 DOI: 10.3390/cells9112432] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors become a standard therapy for malignant melanoma. As immune checkpoint inhibitor monotherapies proved to have limited efficacy in significant portion of patients, it is envisaged that combination with other therapeutic modalities may improve clinical outcomes. We investigated the effect of combining photodynamic therapy (PDT) and TLR5 agonist flagellin-adjuvanted tumor-specific peptide vaccination (FlaB-Vax) on the promotion of PD-1 blockade-mediated melanoma suppression using a mouse B16-F10 implantation model. Using a bilateral mouse melanoma cancer model, we evaluated the potentiation of PD-1 blockade by the combination of peritumoral FlaB-Vax delivery and PDT tumor ablation. A photosensitizing agent, pheophorbide A (PhA), was used for laser-triggered photodynamic destruction of the primary tumor. The effect of combination therapy in conjunction with PD-1 blockade was evaluated for tumor growth and survival. The effector cytokines that promote the activation of CD8+ T cells and antigen-presenting cells in tumor tissue and tumor-draining lymph nodes (TDLNs) were also assayed. PDT and FlaB-Vax combination therapy induced efficacious systemic antitumor immune responses for local and abscopal tumor control, with a significant increase in tumor-infiltrating effector memory CD8+ T cells and systemic IFNγ secretion. The combination of PDT and FlaB-Vax also enhanced the infiltration of tumor antigen-reactive CD8+ T cells and the accumulation of migratory CXCL10-secreting CD103+ dendritic cells (DCs) presumably contributing to tumor antigen cross-presentation in the tumor microenvironment (TME). The CD8+ T-cell-dependent therapeutic benefits of PDT combined with FlaB-Vax was significantly enhanced by a PD-1-targeting checkpoint inhibitor therapy. Conclusively, the combination of FlaB-Vax with PDT-mediated tumor ablation would serve a safe and feasible combinatorial therapy for enhancing PD-1 blockade treatment of malignant melanoma.
Collapse
|
77
|
Workenhe ST, Nguyen A, Bakhshinyan D, Wei J, Hare DN, MacNeill KL, Wan Y, Oberst A, Bramson JL, Nasir JA, Vito A, El-Sayes N, Singh SK, McArthur AG, Mossman KL. De novo necroptosis creates an inflammatory environment mediating tumor susceptibility to immune checkpoint inhibitors. Commun Biol 2020; 3:645. [PMID: 33149194 PMCID: PMC7643076 DOI: 10.1038/s42003-020-01362-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/08/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer immunotherapies using monoclonal antibodies to block inhibitory checkpoints are showing durable remissions in many types of cancer patients, although the majority of breast cancer patients acquire little benefit. Human melanoma and lung cancer patient studies suggest that immune checkpoint inhibitors are often potent in patients that already have intratumoral T cell infiltrate; although it remains unknown what types of interventions can result in an intratumoral T cell infiltrate in breast cancer. Using non-T cell-inflamed mammary tumors, we assessed what biological processes and downstream inflammation can overcome the barriers to spontaneous T cell priming. Here we show a specific type of combination therapy, consisting of oncolytic virus and chemotherapy, activates necroptosis and limits tumor growth in autochthonous tumors. Combination therapy activates proinflammatory cytokines; intratumoral influx of myeloid cells and cytotoxic T cell infiltrate in locally treated and distant autochthonous tumors to render them susceptible to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Samuel T Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| | - Andrew Nguyen
- McMaster Immunology Research Centre, Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - David Bakhshinyan
- Stem Cell and Cancer Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Jiarun Wei
- McMaster Immunology Research Centre, Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - David N Hare
- McMaster Immunology Research Centre, Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Kelly L MacNeill
- McMaster Immunology Research Centre, Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Yonghong Wan
- McMaster Immunology Research Centre, Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA
| | - Jonathan L Bramson
- McMaster Immunology Research Centre, Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jalees A Nasir
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON, Canada
| | - Alyssa Vito
- McMaster Immunology Research Centre, Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Nader El-Sayes
- McMaster Immunology Research Centre, Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Sheila K Singh
- Stem Cell and Cancer Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Andrew G McArthur
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON, Canada
| | - Karen L Mossman
- McMaster Immunology Research Centre, Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
78
|
De Silva P, Saad MA, Thomsen HC, Bano S, Ashraf S, Hasan T. Photodynamic therapy, priming and optical imaging: Potential co-conspirators in treatment design and optimization - a Thomas Dougherty Award for Excellence in PDT paper. J PORPHYR PHTHALOCYA 2020; 24:1320-1360. [PMID: 37425217 PMCID: PMC10327884 DOI: 10.1142/s1088424620300098] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Photodynamic therapy is a photochemistry-based approach, approved for the treatment of several malignant and non-malignant pathologies. It relies on the use of a non-toxic, light activatable chemical, photosensitizer, which preferentially accumulates in tissues/cells and, upon irradiation with the appropriate wavelength of light, confers cytotoxicity by generation of reactive molecular species. The preferential accumulation however is not universal and, depending on the anatomical site, the ratio of tumor to normal tissue may be reversed in favor of normal tissue. Under such circumstances, control of the volume of light illumination provides a second handle of selectivity. Singlet oxygen is the putative favorite reactive molecular species although other entities such as nitric oxide have been credibly implicated. Typically, most photosensitizers in current clinical use have a finite quantum yield of fluorescence which is exploited for surgery guidance and can also be incorporated for monitoring and treatment design. In addition, the photodynamic process alters the cellular, stromal, and/or vascular microenvironment transiently in a process termed photodynamic priming, making it more receptive to subsequent additional therapies including chemo- and immunotherapy. Thus, photodynamic priming may be considered as an enabling technology for the more commonly used frontline treatments. Recently, there has been an increase in the exploitation of the theranostic potential of photodynamic therapy in different preclinical and clinical settings with the use of new photosensitizer formulations and combinatorial therapeutic options. The emergence of nanomedicine has further added to the repertoire of photodynamic therapy's potential and the convergence and co-evolution of these two exciting tools is expected to push the barriers of smart therapies, where such optical approaches might have a special niche. This review provides a perspective on current status of photodynamic therapy in anti-cancer and anti-microbial therapies and it suggests how evolving technologies combined with photochemically-initiated molecular processes may be exploited to become co-conspirators in optimization of treatment outcomes. We also project, at least for the short term, the direction that this modality may be taking in the near future.
Collapse
Affiliation(s)
- Pushpamali De Silva
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mohammad A. Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hanna C. Thomsen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
79
|
Maruoka Y, Furusawa A, Okada R, Inagaki F, Wakiyama H, Kato T, Nagaya T, Choyke PL, Kobayashi H. Interleukin-15 after Near-Infrared Photoimmunotherapy (NIR-PIT) Enhances T Cell Response against Syngeneic Mouse Tumors. Cancers (Basel) 2020; 12:cancers12092575. [PMID: 32927646 PMCID: PMC7564397 DOI: 10.3390/cancers12092575] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Near infrared photoimmunotherapy is a newly developed and highly selective cancer treatment that employs a monoclonal antibody conjugated to a photo-absorber dye, IRDye700DX, which is activated by 690 nm light. Cancer cell-targeted near infrared photoimmunotherapy selectively induces rapid necrotic/immunogenic cell death only on target cancer cells and this induces antitumor host immunity including re-priming and proliferation of multi-chronal T-cells that can react with cancer-specific antigens. Interleukin-15 is a type-I cytokine that activates natural killer-, B- and T-cells while having minimal effect on regulatory T-cells that lack the interleukin-15 receptor. Therefore, interleukin-15 administration combined with cancer cell-targeted near infrared photoimmunotherapy could further inhibit tumor growth by increasing antitumor host immunity. In tumor-bearing immunocompetent mice receiving this combination therapy, significant tumor growth inhibition and prolonged survival was demonstrated compared with either single therapy alone, and tumor infiltrating CD8+ T-cells increased in number in combination-treated mice. Interleukin-15 enhances therapeutic effects of cancer-targeted near infrared photoimmunotherapy. Abstract Near infrared photoimmunotherapy (NIR-PIT) is a newly developed and highly selective cancer treatment that employs a monoclonal antibody (mAb) conjugated to a photo-absorber dye, IRDye700DX, which is activated by 690 nm light. Cancer cell-targeted NIR-PIT induces rapid necrotic/immunogenic cell death (ICD) that induces antitumor host immunity including re-priming and proliferation of T cells. Interleukin-15 (IL-15) is a cytokine that activates natural killer (NK)-, B- and T-cells while having minimal effect on regulatory T cells (Tregs) that lack the IL-15 receptor. Here, we hypothesized that IL-15 administration with cancer cell-targeted NIR-PIT could further inhibit tumor growth by increasing antitumor host immunity. Three syngeneic mouse tumor models, MC38-luc, LL/2, and MOC1, underwent combined CD44-targeted NIR-PIT and short-term IL-15 administration with appropriate controls. Comparing with the single-agent therapy, the combination therapy of IL-15 after NIR-PIT inhibited tumor growth, prolonged survival, and increased tumor infiltrating CD8+ T cells more efficiently in tumor-bearing mice. IL-15 appears to enhance the therapeutic effect of cancer-targeted NIR-PIT.
Collapse
|
80
|
Wang Z, Chen L, Wang K, Chau HF, Wong KL, Fung YH, Wu F. Triphenylamine-substituted zinc porphyrin nanoparticles with photodynamic/photothermal activity for cancer phototherapy in vitro. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An amphiphilic zinc porphyrin complex with a typical donor–acceptor (D–A) structure was synthesized, where the triphenylamine acted as a donor unit while the porphyrin was used as an electronic acceptor. Due to the presence of triethylene glycol moieties on the parent structure, Zn-TPAP could spontaneously assemble to the related nanoparticles (Zn-TPAP NPs) with improved hydrophilicity. The as-prepared Zn-TPAP NPs presented relatively uniform spherical particles with the average particle sizes around 160 nm, which was suitable for tumor accumulation benefiting from the EPR effect. Due to the aggregation of the porphyrin molecules in the assembled nanostructures, Zn-TPAP NPs displayed broadened and red-shifted absorption and quenched fluorescence relative to that of Zn-TPAP. In addition to ROS generation, Zn-TPAP NPs exhibited moderate photothermal effects and the photothermal conversion efficiency was measured as 29%. Zn-TPAP NPs showed good biocompatibility and could generate ROS in the A549 cells. Under light irradiation, Zn-TPAP NPs can efficiently kill cancer cells. Thus, Zn-TPAP NPs could be used as potential nanoagents for cancer treatment through the photothermal/photodynamic synergistic modes.
Collapse
Affiliation(s)
- Zejiang Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072 P. R. China
| | - Li Chen
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062 P. R. China
| | - Kai Wang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062 P. R. China
| | - Ho-Fai Chau
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| | - Yan-Ho Fung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072 P. R. China
| |
Collapse
|
81
|
Akhter MH, Ahsan MJ, Rahman M, Anwar S, Rizwanullah M. Advancement in Nanotheranostics for Effective Skin Cancer Therapy: State of the Art. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2468187308666181116130949] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
:
The skin cancer has become a leading concern worldwide as a result of high
mortality rate. The treatment modality involves radiation therapy, chemotherapy or surgery.
More often combination therapy of chemotherapeutic agents gives better solution
over single chemotherapeutic agent. The Globocon report suggested that high incidence
and mortality rate in skin cancer is growing day-to-day. This type of cancer is more prevalent
in that area where a person is highly exposed to sunlight. The nanotechnology-based
therapy is nowadays drawing attention and becoming a more important issue to be discussed.
The nanotherapy of skin cancer is dealt with various approaches and strategies.
The strategic based approaches imply nanoparticles targeting carcinoma cells, functionalized
nanoparticles for specific targeting to cancer cells, receptor-mediated active targeting
as nanoshells, nanostrutured lipid carriers, liposome, ethosome, bilosome, polymeric nanoparticle,
nanosphere, dendrimers, carbon nanotubes, quantum dots, solid lipid nanoparticles
and fullerenes which are highly efficient in specific killing of cancer cells. The passive
targeting of chemotherapeutic agents is also helpful in dealing with carcinoma due to
enhanced permeability and retention effect (EPR).
:
The article outlines nano-based therapy currently focused globally, and the outcomes of
the therapy as well.
Collapse
Affiliation(s)
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Mahfoozur Rahman
- Faculty of Health Sciences, Shalom Institute of Health and Allied Sciences (SIHAS) Sam Higginbottom University of Agriculture, Technology and Sciences Allahabad, 211007, Uttar Pradesh, India
| | - Siraj Anwar
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER) Jamia Hamdard, New Delhi-110062, India
| | - Md. Rizwanullah
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER) Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
82
|
Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 2020; 17:657-674. [DOI: 10.1038/s41571-020-0410-2] [Citation(s) in RCA: 723] [Impact Index Per Article: 180.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
|
83
|
Chizenga EP, Abrahamse H. Nanotechnology in Modern Photodynamic Therapy of Cancer: A Review of Cellular Resistance Patterns Affecting the Therapeutic Response. Pharmaceutics 2020; 12:pharmaceutics12070632. [PMID: 32640564 PMCID: PMC7407821 DOI: 10.3390/pharmaceutics12070632] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/23/2022] Open
Abstract
Photodynamic therapy (PDT) has emerged as a potential therapeutic option for most localized cancers. Its high measure of specificity and minimal risk of side effects compared to other therapies has put PDT on the forefront of cancer research in the current era. The primary cause of treatment failure and high mortality rates is the occurrence of cancer resistance to therapy. Hence, PDT is designed to be selective and tumor-specific. However, because of complex biological characteristics and cell signaling, cancer cells have shown a propensity to acquire cellular resistance to PDT by modulating the photosensitization process or its products. Fortunately, nanotechnology has provided many answers in biomedical and clinical applications, and modern PDT now employs the use of nanomaterials to enhance its efficacy and mitigate the effects of acquired resistance. This review, therefore, sought to scrutinize the mechanisms of cellular resistance that affect the therapeutic response with an emphasis on the use of nanomaterials as a way of overriding cancer cell resistance. The resistance mechanisms that have been reported are complex and photosensitizer (PS)-specific. We conclude that altering the structure of PSs using nanotechnology is an ideal paradigm for enhancing PDT efficacy in the presence of cellular resistance.
Collapse
|
84
|
Zhong XF, Sun X. Nanomedicines based on nanoscale metal-organic frameworks for cancer immunotherapy. Acta Pharmacol Sin 2020; 41:928-935. [PMID: 32355277 PMCID: PMC7468577 DOI: 10.1038/s41401-020-0414-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer immunotherapy, with an aim to enhance host immune responses, has been recognized as a promising therapeutic treatment for cancer. A diversity of immunomodulatory agents, including tumor-associated antigens, adjuvants, cytokines and immunomodulators, has been explored for their ability to induce a cascading adaptive immune response. Nanoscale metal-organic frameworks (nMOFs), a class of crystalline-shaped nanomaterials formed by the self-assembly of organic ligands and metal nodes, are attractive for cancer immunotherapy because they feature tunable pore size, high surface area and loading capacity, and intrinsic biodegradability. In this review we summarize recent progress in the development of nMOFs for cancer immunotherapy, including cancer vaccine delivery and combination of in situ vaccination with immunomodulators to reverse immune suppression. Current challenges and future perspectives for rational design of nMOF-based cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Xiao-Fang Zhong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
85
|
Shen L, Zhou T, Fan Y, Chang X, Wang Y, Sun J, Xing L, Jiang H. Recent progress in tumor photodynamic immunotherapy. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
86
|
Novel Therapies Boosting T Cell Immunity in Epstein Barr Virus-Associated Nasopharyngeal Carcinoma. Int J Mol Sci 2020; 21:ijms21124292. [PMID: 32560253 PMCID: PMC7352617 DOI: 10.3390/ijms21124292] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumour of the head and neck affecting localised regions of the world, with the highest rates described in Southeast Asia, Northern Africa, and Greenland. Its high morbidity rate is linked to both late-stage diagnosis and unresponsiveness to conventional anti-cancer treatments. Multiple aetiological factors have been described including environmental factors, genetics, and viral factors (Epstein Barr Virus, EBV), making NPC treatment that much more complex. The most common forms of NPCs are those that originate from the epithelial tissue lining the nasopharynx and are often linked to EBV infection. Indeed, they represent 75–95% of NPCs in the low-risk populations and almost 100% of NPCs in high-risk populations. Although conventional surgery has been improved with nasopharyngectomy’s being carried out using more sophisticated surgical equipment for better tumour resection, recent findings in the tumour microenvironment have led to novel treatment options including immunotherapies and photodynamic therapy, able to target the tumour and improve the immune system. This review provides an update on the disease’s aetiology and the future of NPC treatments with a focus on therapies activating T cell immunity.
Collapse
|
87
|
Blood Flow Measurements Enable Optimization of Light Delivery for Personalized Photodynamic Therapy. Cancers (Basel) 2020; 12:cancers12061584. [PMID: 32549354 PMCID: PMC7353010 DOI: 10.3390/cancers12061584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Fluence rate is an effector of photodynamic therapy (PDT) outcome. Lower light fluence rates can conserve tumor perfusion during some illumination protocols for PDT, but then treatment times are proportionally longer to deliver equivalent fluence. Likewise, higher fluence rates can shorten treatment time but may compromise treatment efficacy by inducing blood flow stasis during illumination. We developed blood-flow-informed PDT (BFI-PDT) to balance these effects. BFI-PDT uses real-time noninvasive monitoring of tumor blood flow to inform selection of irradiance, i.e., incident fluence rate, on the treated surface. BFI-PDT thus aims to conserve tumor perfusion during PDT while minimizing treatment time. Pre-clinical studies in murine tumors of radiation-induced fibrosarcoma (RIF) and a mesothelioma cell line (AB12) show that BFI-PDT preserves tumor blood flow during illumination better than standard PDT with continuous light delivery at high irradiance. Compared to standard high irradiance PDT, BFI-PDT maintains better tumor oxygenation during illumination and increases direct tumor cell kill in a manner consistent with known oxygen dependencies in PDT-mediated cytotoxicity. BFI-PDT promotes vascular shutdown after PDT, thereby depriving remaining tumor cells of oxygen and nutrients. Collectively, these benefits of BFI-PDT produce a significantly better therapeutic outcome than standard high irradiance PDT. Moreover, BFI-PDT requires ~40% less time on average to achieve outcomes that are modestly better than those with standard low irradiance treatment. This contribution introduces BFI-PDT as a platform for personalized light delivery in PDT, documents the design of a clinically-relevant instrument, and establishes the benefits of BFI-PDT with respect to treatment outcome and duration.
Collapse
|
88
|
Shin H, Na K. Cancer-Targetable pH-Sensitive Zinc-Based Immunomodulators Combined with Photodynamic Therapy for in Situ Vaccination. ACS Biomater Sci Eng 2020; 6:3430-3439. [PMID: 33463185 DOI: 10.1021/acsbiomaterials.0c00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A cancer vaccine is a promising immunotherapy modality, but the heterogenicity of tumors and substantial time and costs required in tumor-associated antigen (TAA) screening have hindered the development of an individualized vaccine. Herein, we propose in situ vaccination using cancer-targetable pH-sensitive zinc-based immunomodulators (CZIs) to elicit antitumor immune response against TAAs of patients' tumors without the ex vivo identification processes. In the tumor microenvironment, CZIs promote the release of large amounts of TAAs and exposure of calreticulin on the cell surface via immunogenic cell death through the combined effect of excess zinc ions and photodynamic therapy (PDT). With these properties, CZIs potentiate antitumor immunity and inhibit tumor growth as well as lung metastasis in CT26 tumor-bearing mice. This nanoplatform may suggest an alternative therapeutic strategy to overcoming the limitations of existing cancer vaccines and may broaden the application of nanoparticles for cancer immunotherapy.
Collapse
Affiliation(s)
- Heejun Shin
- Center for Photomedicine, Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi do 14662, Republic of Korea
| | - Kun Na
- Center for Photomedicine, Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi do 14662, Republic of Korea.,Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si, Gyeonggi do 14662, Republic of Korea
| |
Collapse
|
89
|
Wang H, Wang K, He L, Liu Y, Dong H, Li Y. Engineering antigen as photosensitiser nanocarrier to facilitate ROS triggered immune cascade for photodynamic immunotherapy. Biomaterials 2020; 244:119964. [DOI: 10.1016/j.biomaterials.2020.119964] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
|
90
|
Xu X, Lu H, Lee R. Near Infrared Light Triggered Photo/Immuno-Therapy Toward Cancers. Front Bioeng Biotechnol 2020; 8:488. [PMID: 32528941 PMCID: PMC7264102 DOI: 10.3389/fbioe.2020.00488] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/27/2020] [Indexed: 12/31/2022] Open
Abstract
Nanomaterials-based phototherapies, mainly including photothermal therapy (PTT), photodynamic therapy (PDT) and photoimmunotherapy (PIT), present high efficacy, minimal invasion and negligible adverse effects in cancer treatment. The integrated phototherapeutic modalities can enhance the efficiency of cancer immunotherapy for clinical application transformation. The near-infrared (NIR) light source enables phototherapies with the high penetration depth in the biological tissues, less toxic to normal cells and tissues and a low dose of light irradiation. Mediated via the novel NIR-responsive nanomaterials, PTT and PDT are able to provoke cancer cells apoptosis from the generated heat and reactive oxygen species, respectively. The released cancer-specific antigens and membrane damage danger signals from the damaged cancer cells trigger immune responses, which would enhance the antitumor efficacy via a variety of immunotherapy. This review summarized the recent advances in NIR-triggered photo-/immune-therapeutic modalities and their synergistic mechanisms and applications toward cancers. Furthermore, the challenges, potential solutions and future directions of NIR-triggered photo-/immunotherapy were briefly discussed.
Collapse
Affiliation(s)
- Xiaoxue Xu
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology, Sydney, NSW, Australia
| | - Hongxu Lu
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology, Sydney, NSW, Australia
| | - Ruda Lee
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
91
|
Kaneko K, Osada T, Morse MA, Gwin WR, Ginzel JD, Snyder JC, Yang XY, Liu CX, Diniz MA, Bodoor K, Hughes PF, Haystead TA, Lyerly HK. Heat shock protein 90-targeted photodynamic therapy enables treatment of subcutaneous and visceral tumors. Commun Biol 2020; 3:226. [PMID: 32385408 PMCID: PMC7210113 DOI: 10.1038/s42003-020-0956-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/21/2020] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) ablates malignancies by applying focused near-infrared (nIR) light onto a lesion of interest after systemic administration of a photosensitizer (PS); however, the accumulation of existing PS is not tumor-exclusive. We developed a tumor-localizing strategy for PDT, exploiting the high expression of heat shock protein 90 (Hsp90) in cancer cells to retain high concentrations of PS by tethering a small molecule Hsp90 inhibitor to a PS (verteporfin, VP) to create an Hsp90-targeted PS (HS201). HS201 accumulates to a greater extent than VP in breast cancer cells both in vitro and in vivo, resulting in increased treatment efficacy of HS201-PDT in various human breast cancer xenografts regardless of molecular and clinical subtypes. The therapeutic index achieved with Hsp90-targeted PDT would permit treatment not only of localized tumors, but also more diffusely infiltrating processes such as inflammatory breast cancer.
Collapse
Affiliation(s)
- Kensuke Kaneko
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Takuya Osada
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Michael A Morse
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - William R Gwin
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Joshua D Ginzel
- Department of Cell Biology, Duke University, Durham, NC, 27710, USA
| | - Joshua C Snyder
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Cell Biology, Duke University, Durham, NC, 27710, USA
| | - Xiao-Yi Yang
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Cong-Xiao Liu
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Márcio A Diniz
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Khaldon Bodoor
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Timothy Aj Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA.
| | - H Kim Lyerly
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
92
|
Anbil S, Pigula M, Huang HC, Mallidi S, Broekgaarden M, Baglo Y, De Silva P, Simeone DM, Mino-Kenudson M, Maytin EV, Rizvi I, Hasan T. Vitamin D Receptor Activation and Photodynamic Priming Enables Durable Low-dose Chemotherapy. Mol Cancer Ther 2020; 19:1308-1319. [PMID: 32220968 DOI: 10.1158/1535-7163.mct-19-0791] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/08/2019] [Accepted: 03/12/2020] [Indexed: 12/18/2022]
Abstract
Patients with cancer often confront the decision of whether to continue high-dose chemotherapy at the expense of cumulative toxicities. Reducing the dose of chemotherapy regimens while preserving efficacy is sorely needed to preserve the performance status of these vulnerable patients, yet has not been prioritized. Here, we introduce a dual pronged approach to modulate the microenvironment of desmoplastic pancreatic tumors and enable significant dose deescalation of the FDA-approved chemotherapeutic nanoliposomal irinotecan (nal-IRI) without compromising tumor control. We demonstrate that light-based photodynamic priming (PDP) coupled with vitamin D3 receptor (VDR) activation within fibroblasts increases intratumoral nal-IRI accumulation and suppresses protumorigenic CXCL12/CXCR7 crosstalk. Combined photodynamic and biochemical modulation of the tumor microenvironment enables a 75% dose reduction of nal-IRI while maintaining treatment efficacy, resulting in improved tolerability. Modifying the disease landscape to increase the susceptibility of cancer, via preferentially modulating fibroblasts, represents a promising and relatively underexplored strategy to enable dose deescalation. The approach presented here, using a combination of three clinically available therapies with nonoverlapping toxicities, can be rapidly translated with minimal modification to treatment workflow, and challenges the notion that significant improvements in chemotherapy efficacy can only be achieved at the expense of increased toxicity.
Collapse
Affiliation(s)
- Sriram Anbil
- Long School of Medicine, UT Health San Antonio, San Antonio, Texas.,Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael Pigula
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Huang-Chiao Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mans Broekgaarden
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yan Baglo
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pushpamali De Silva
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Diane M Simeone
- Department of Surgery, Langone School of Medicine, New York University, New York, New York
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Edward V Maytin
- Department of Dermatology and Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio
| | - Imran Rizvi
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. .,Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
93
|
Huang TY, Huang GL, Zhang CY, Zhuang BW, Liu BX, Su LY, Ye JY, Xu M, Kuang M, Xie XY. Supramolecular Photothermal Nanomedicine Mediated Distant Tumor Inhibition via PD-1 and TIM-3 Blockage. Front Chem 2020; 8:1. [PMID: 32117862 PMCID: PMC7034522 DOI: 10.3389/fchem.2020.00001] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/01/2020] [Indexed: 01/03/2023] Open
Abstract
Supramolecular nanoparticles for photothermal therapy (PTT) have shown promising therapeutic efficacy in the primary tumor and great potential for turning the whole-body immune microenvironment from "cold" to "hot," which allows for the simultaneous treatment of the primary tumor and the metastatic site. In this work, we develop a liposome-based PTT nanoparticle through the self-assembly of FDA-approved intravenous injectable lipids and a photothermal agent, indocyanine green (ICG). The obtained ICG-liposome shows long-term storage stability, high ICG encapsulation efficiency (>95%), and enhanced near-infrared (NIR) light-triggered photothermal reaction both in vitro and in vivo. The ICG-liposome efficiently eradicated the primary tumor upon laser irradiation in two colon cancer animal models (CT26 and MC38) and promoted the infiltration of CD8 T cells to distant tumors. However, PTT from ICG-liposome shows only a minimal effect on the inhibition of distant tumor growth in long-term monitoring, predicting other immunosuppressive mechanisms that exist in the distant tumor. By immune-profiling of the tumor microenvironment, we find that the distant tumor growth after PTT highly correlates to compensatory upregulation of immune checkpoint biomarkers, including program death-1 (PD-1), T-cell immunoglobulin, and mucin domain-containing protein 3 (TIM-3), in tumor-infiltrating CD8 T cells. Based on this mechanism, we combine dual PD-1 and TIM-3 blockade with PTT in an MC38 tumor model. This combo successfully clears the primary tumor, generates a systemic immune response, and inhibits the growth of the distant tumor. The ICG-liposome-combined PD-1/TIM-3 blockade strategy sheds light on the future clinical use of supramolecular PTT for cancer immunotherapy.
Collapse
Affiliation(s)
- Tong-Yi Huang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guang-Liang Huang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chun-Yang Zhang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bo-Wen Zhuang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bao-Xian Liu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li-Ya Su
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jie-Yi Ye
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ming Xu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ming Kuang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Liver Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Yan Xie
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
94
|
Sensitive Photodynamic Detection of Adult T-cell Leukemia/Lymphoma and Specific Leukemic Cell Death Induced by Photodynamic Therapy: Current Status in Hematopoietic Malignancies. Cancers (Basel) 2020; 12:cancers12020335. [PMID: 32024297 PMCID: PMC7072618 DOI: 10.3390/cancers12020335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 01/10/2023] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL), an aggressive type of T-cell malignancy, is caused by the human T-cell leukemia virus type I (HTLV-1) infections. The outcomes, following therapeutic interventions for ATL, have not been satisfactory. Photodynamic therapy (PDT) exerts selective cytotoxic activity against malignant cells, as it is considered a minimally invasive therapeutic procedure. In PDT, photosensitizing agent administration is followed by irradiation at an absorbance wavelength of the sensitizer in the presence of oxygen, with ultimate direct tumor cell death, microvasculature injury, and induced local inflammatory reaction. This review provides an overview of the present status and state-of-the-art ATL treatments. It also focuses on the photodynamic detection (PDD) of hematopoietic malignancies and the recent progress of 5-Aminolevulinic acid (ALA)-PDT/PDD, which can efficiently induce ATL leukemic cell-specific death with minor influence on normal lymphocytes. Further consideration of the ALA-PDT/PDD system along with the circulatory system regarding the clinical application in ATL and others will be discussed. ALA-PDT/PDD can be promising as a novel treatment modality that overcomes unmet medical needs with the optimization of PDT parameters to increase the effectiveness of the tumor-killing activity and enhance the innate and adaptive anti-tumor immune responses by the optimized immunogenic cell death.
Collapse
|
95
|
Maruoka Y, Furusawa A, Okada R, Inagaki F, Fujimura D, Wakiyama H, Kato T, Nagaya T, Choyke PL, Kobayashi H. Combined CD44- and CD25-Targeted Near-Infrared Photoimmunotherapy Selectively Kills Cancer and Regulatory T Cells in Syngeneic Mouse Cancer Models. Cancer Immunol Res 2020; 8:345-355. [PMID: 31953245 DOI: 10.1158/2326-6066.cir-19-0517] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/06/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed and selective cancer treatment that induces necrotic and immunogenic cell death and utilizes a mAb conjugated to a photo-absorber dye, IR700DX, activated by NIR light. Although CD44 is a surface cancer marker associated with drug resistance, anti-CD44-IR700 NIR-PIT results in inhibited cell growth and prolonged survival in multiple tumor types. Meanwhile, CD25-targeted NIR-PIT has been reported to achieve selective and local depletion of FOXP3+CD25+CD4+ regulatory T cells (Treg), which are primary immunosuppressive cells in the tumor microenvironment (TME), resulting in activation of local antitumor immunity. Combined NIR-PIT with CD44- and CD25-targeted agents has the potential to directly eliminate tumor cells and also amplify the immune response by removing FOXP3+CD25+CD4+ Tregs from the TME. We investigated the difference in therapeutic effects of CD44-targeted NIR-PIT alone, CD25-targeted NIR-PIT alone, and the combination of CD44- and CD25-targeted NIR-PIT in several syngeneic tumor models, including MC38-luc, LL/2, and MOC1. The combined NIR-PIT showed significant tumor growth inhibition and prolonged survival compared with CD44-targeted NIR-PIT alone in all tumor models and showed prolonged survival compared with CD25-targeted NIR-PIT alone in MC38-luc and LL/2 tumors. Combined CD44- and CD25-targeted NIR-PIT also resulted in some complete remissions. Therefore, combined NIR-PIT simultaneously targeting cancer antigens and immunosuppressive cells in the TME may be more effective than either type of NIR-PIT alone and may have potential to induce prolonged immune responses in treated tumors.
Collapse
Affiliation(s)
- Yasuhiro Maruoka
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Aki Furusawa
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ryuhei Okada
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Fuyuki Inagaki
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daiki Fujimura
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hiroaki Wakiyama
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Takuya Kato
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
96
|
Photochemical Internalization: Light Paves Way for New Cancer Chemotherapies and Vaccines. Cancers (Basel) 2020; 12:cancers12010165. [PMID: 31936595 PMCID: PMC7016662 DOI: 10.3390/cancers12010165] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
Photochemical internalization (PCI) is a further development of photodynamic therapy (PDT). In this report, we describe PCI as a potential tool for cellular internalization of chemotherapeutic agents or antigens and systematically review the ongoing research. Eighteen published papers described the pre-clinical and clinical developments of PCI-mediated delivery of chemotherapeutic agents or antigens. The studies were screened against pre-defined eligibility criteria. Pre-clinical studies suggest that PCI can be effectively used to deliver chemotherapeutic agents to the cytosol of tumor cells and, thereby, improve treatment efficacy. One Phase-I clinical trial has been conducted, and it demonstrated that PCI-mediated bleomycin treatment was safe and identified tolerable doses of the photosensitizer disulfonated tetraphenyl chlorin (TPCS2a). Likewise, PCI was pre-clinically shown to mediate major histocompatibility complex (MHC) class I antigen presentation and generation of tumor-specific cytotoxic CD8+ T-lymphocytes (CTL) and cancer remission. A first clinical Phase I trial with the photosensitizer TPCS2a combined with human papilloma virus antigen (HPV) was recently completed and results are expected in 2020. Hence, photosensitizers and light can be used to mediate cytosolic delivery of endocytosed chemotherapeutics or antigens. While the therapeutic potential in cancer has been clearly demonstrated pre-clinically, further clinical trials are needed to reveal the true translational potential of PCI in humans.
Collapse
|
97
|
Suo X, Zhang J, Zhang Y, Liang XJ, Zhang J, Liu D. A nano-based thermotherapy for cancer stem cell-targeted therapy. J Mater Chem B 2020; 8:3985-4001. [DOI: 10.1039/d0tb00311e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer stem cells (CSCs) exhibit high resistance to conventional therapy and are responsible for cancer metastasis and tumor relapse.
Collapse
Affiliation(s)
- Xiaomin Suo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Hebei University
- Baoding 071002
- People's Republic of China
- College of Chemistry and Environmental Science
| | - Juncai Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Hebei University
- Baoding 071002
- People's Republic of China
- College of Chemistry and Environmental Science
| | - Yue Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Hebei University
- Baoding 071002
- People's Republic of China
- College of Chemistry and Environmental Science
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology
- Beijing 100190
- People's Republic of China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Hebei University
- Baoding 071002
- People's Republic of China
- College of Chemistry and Environmental Science
| | - Dandan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Hebei University
- Baoding 071002
- People's Republic of China
- College of Chemistry and Environmental Science
| |
Collapse
|
98
|
Nitta M, Muragaki Y, Maruyama T, Iseki H, Komori T, Ikuta S, Saito T, Yasuda T, Hosono J, Okamoto S, Koriyama S, Kawamata T. Role of photodynamic therapy using talaporfin sodium and a semiconductor laser in patients with newly diagnosed glioblastoma. J Neurosurg 2019; 131:1361-1368. [PMID: 30544336 DOI: 10.3171/2018.7.jns18422] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVE In this study on the effectiveness and safety of photodynamic therapy (PDT) using talaporfin sodium and a semiconductor laser, the long-term follow-up results of 11 patients with glioblastoma enrolled in the authors' previous phase II clinical trial (March 2009-2012) and the clinical results of 19 consecutive patients with newly diagnosed glioblastoma prospectively enrolled in a postmarket surveillance (March 2014-December 2016) were analyzed and compared with those of 164 patients treated without PDT during the same period. METHODS The main outcome measures were the median overall survival (OS) and progression-free survival (PFS) times. Moreover, the adverse events and radiological changes after PDT, as well as the patterns of recurrence, were analyzed and compared between the groups. Kaplan-Meier curves were created to assess the differences in OS and PFS between the groups. Univariate and multivariate analyses were performed to identify the prognostic factors, including PDT, among patients with newly diagnosed glioblastoma. RESULTS The median PFS times of the PDT and control groups were 19.6 and 9.0 months, with 6-month PFS rates of 86.3% and 64.9%, respectively (p = 0.016). The median OS times were 27.4 and 22.1 months, with 1-year OS rates of 95.7% and 72.5%, respectively (p = 0.0327). Multivariate analyses found PDT, preoperative Karnofsky Performance Scale score, and IDH mutation to be significant independent prognostic factors for both OS and PFS. Eighteen of 30 patients in the PDT group experienced tumor recurrence, including local recurrence, distant recurrence, and dissemination in 10, 3, and 4 patients, respectively. Conversely, 141 of 164 patients in the control group experienced tumor recurrence, including 101 cases of local recurrence. The rate of local recurrence tended to be lower in the PDT group (p = 0.06). CONCLUSIONS The results of the present study suggest that PDT with talaporfin sodium and a semiconductor laser provides excellent local control, with few adverse effects even in cases of multiple laser irradiations, as well as potential survival benefits for patients with newly diagnosed glioblastoma.
Collapse
Affiliation(s)
- Masayuki Nitta
- 1Department of Neurosurgery and
- 2Faculty of Advanced Techno-Surgery, Institute of Biomedical Engineering and Science, Tokyo Women's Medical University; and
| | - Yoshihiro Muragaki
- 1Department of Neurosurgery and
- 2Faculty of Advanced Techno-Surgery, Institute of Biomedical Engineering and Science, Tokyo Women's Medical University; and
| | - Takashi Maruyama
- 1Department of Neurosurgery and
- 2Faculty of Advanced Techno-Surgery, Institute of Biomedical Engineering and Science, Tokyo Women's Medical University; and
| | - Hiroshi Iseki
- 2Faculty of Advanced Techno-Surgery, Institute of Biomedical Engineering and Science, Tokyo Women's Medical University; and
| | - Takashi Komori
- 3Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Soko Ikuta
- 2Faculty of Advanced Techno-Surgery, Institute of Biomedical Engineering and Science, Tokyo Women's Medical University; and
| | | | | | | | | | | | | |
Collapse
|
99
|
Nath S, Obaid G, Hasan T. The Course of Immune Stimulation by Photodynamic Therapy: Bridging Fundamentals of Photochemically Induced Immunogenic Cell Death to the Enrichment of T-Cell Repertoire. Photochem Photobiol 2019; 95:1288-1305. [PMID: 31602649 PMCID: PMC6878142 DOI: 10.1111/php.13173] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Photodynamic therapy (PDT) is a potentially immunogenic and FDA-approved antitumor treatment modality that utilizes the spatiotemporal combination of a photosensitizer, light and oftentimes oxygen, to generate therapeutic cytotoxic molecules. Certain photosensitizers under specific conditions, including ones in clinical practice, have been shown to elicit an immune response following photoillumination. When localized within tumor tissue, photogenerated cytotoxic molecules can lead to immunogenic cell death (ICD) of tumor cells, which release damage-associated molecular patterns and tumor-specific antigens. Subsequently, the T-lymphocyte (T cell)-mediated adaptive immune system can become activated. Activated T cells then disseminate into systemic circulation and can eliminate primary and metastatic tumors. In this review, we will detail the multistage cascade of events following PDT of solid tumors that ultimately lead to the activation of an antitumor immune response. More specifically, we connect the fundamentals of photochemically induced ICD with a proposition on potential mechanisms for PDT enhancement of the adaptive antitumor response. We postulate a hypothesis that during the course of the immune stimulation process, PDT also enriches the T-cell repertoire with tumor-reactive activated T cells, diversifying their tumor-specific targets and eliciting a more expansive and rigorous antitumor response. The implications of such a process are likely to impact the outcomes of rational combinations with immune checkpoint blockade, warranting investigations into T-cell diversity as a previously understudied and potentially transformative paradigm in antitumor photodynamic immunotherapy.
Collapse
Affiliation(s)
- Shubhankar Nath
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Girgis Obaid
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
100
|
R Mokoena D, P George B, Abrahamse H. Enhancing Breast Cancer Treatment Using a Combination of Cannabidiol and Gold Nanoparticles for Photodynamic Therapy. Int J Mol Sci 2019; 20:E4771. [PMID: 31561450 PMCID: PMC6801525 DOI: 10.3390/ijms20194771] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022] Open
Abstract
Indisputably, cancer is a global crisis that requires immediate intervention. Despite the use of conventional treatments over the past decades, it is acceptable to admit that these are expensive, invasive, associated with many side effects and, therefore, a reduced quality of life. One of the most possible solutions to this could be the use of gold nanoparticle (AuNP) conjugated photodynamic therapy (PDT) in combination with cannabidiol (CBD), a Cannabis derivative from the Cannabis sativa. Since the use of Cannabis has always been associated with recreation and psychoactive qualities, the positive effects of Cannabis or its derivatives on cancer treatment have been misunderstood and hence misinterpreted. On the other hand, AuNP-PDT is the most favoured form of treatment for cancer, due to its augmented specificity and minimal risk of side effects compared to conventional treatments. However, its use requires the consideration of several physical, biologic, pharmacologic and immunological factors, which may hinder its effectiveness if not taken into consideration. In this review, the role of gold nanoparticle mediated PDT combined with CBD treatment on breast cancer cells will be deliberated.
Collapse
Affiliation(s)
- Dimakatso R Mokoena
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box: 17011, Johannesburg 2028, South Africa.
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box: 17011, Johannesburg 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box: 17011, Johannesburg 2028, South Africa.
| |
Collapse
|