51
|
Agriesti F, Landini F, Tamma M, Pacelli C, Mazzoccoli C, Calice G, Ruggieri V, Capitanio G, Mori G, Piccoli C, Capitanio N. Bioenergetic profile and redox tone modulate in vitro osteogenesis of human dental pulp stem cells: new perspectives for bone regeneration and repair. Stem Cell Res Ther 2023; 14:215. [PMID: 37608350 PMCID: PMC10463344 DOI: 10.1186/s13287-023-03447-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Redox signaling and energy metabolism are known to be involved in controlling the balance between self-renewal and proliferation/differentiation of stem cells. In this study we investigated metabolic and redox changes occurring during in vitro human dental pulp stem cells (hDPSCs) osteoblastic (OB) differentiation and tested on them the impact of the reactive oxygen species (ROS) signaling. METHODS hDPSCs were isolated from dental pulp and subjected to alkaline phosphatase and alizarin red staining, q-RT-PCR, and western blotting analysis of differentiation markers to assess achievement of osteogenic/odontogenic differentiation. Moreover, a combination of metabolic flux analysis and confocal cyto-imaging was used to profile the metabolic phenotype and to evaluate the redox tone of hDPSCs. RESULTS In differentiating hDPSCs we observed the down-regulation of the mitochondrial respiratory chain complexes expression since the early phase of the process, confirmed by metabolic flux analysis, and a reduction of the basal intracellular peroxide level in its later phase. In addition, dampened glycolysis was observed, thereby indicating a lower energy-generating phenotype in differentiating hDPSCs. Treatment with the ROS scavenger Trolox, applied in the early-middle phases of the process, markedly delayed OB differentiation of hDPSCs assessed as ALP activity, Runx2 expression, mineralization capacity, expression of stemness and osteoblast marker genes (Nanog, Lin28, Dspp, Ocn) and activation of ERK1/2. In addition, the antioxidant partly prevented the inhibitory effect on cell metabolism observed following osteogenic induction. CONCLUSIONS Altogether these results provided evidence that redox signaling, likely mediated by peroxide species, influenced the stepwise osteogenic expansion/differentiation of hDPSCs and contributed to shape its accompanying metabolic phenotype changes thus improving their efficiency in bone regeneration and repair.
Collapse
Affiliation(s)
- Francesca Agriesti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Francesca Landini
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Mirko Tamma
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Carmela Mazzoccoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Giovanni Calice
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Vitalba Ruggieri
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
- Clinical Pathology Unit, “Madonna delle Grazie’’ Hospital, Matera, Italy
| | - Giuseppe Capitanio
- Department of Translational Biomedicine and Neuroscience “DiBraiN”, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
52
|
Li X, Shen H, Zhang M, Teissier V, Huang EE, Gao Q, Tsubosaka M, Toya M, Kushioka J, Maduka CV, Contag CH, Chow SKH, Zhang N, Goodman SB. Glycolytic reprogramming in macrophages and MSCs during inflammation. Front Immunol 2023; 14:1199751. [PMID: 37675119 PMCID: PMC10477714 DOI: 10.3389/fimmu.2023.1199751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/21/2023] [Indexed: 09/08/2023] Open
Abstract
Background Dysregulated inflammation is associated with many skeletal diseases and disorders, such as osteolysis, non-union of fractures, osteonecrosis, osteoarthritis and orthopaedic infections. We previously showed that continuous infusion of lipopolysaccharide (LPS) contaminated polyethylene particles (cPE) caused prolonged inflammation and impaired bone formation. However, the metabolic and bioenergetic processes associated with inflammation of bone are unknown. Mitochondria are highly dynamic organelles that modulate cell metabolism and orchestrate the inflammatory responses that involve both resident and recruited cells. Glycolytic reprogramming, the shift from oxidative phosphorylation (OXPHOS) to glycolysis causes inappropriate cell activation and function, resulting in dysfunctional cellular metabolism. We hypothesized that impaired immunoregulation and bone regeneration from inflammatory states are associated with glycolytic reprogramming and mitochondrial dysfunction in macrophages (Mφ) and mesenchymal stromal cells (MSCs). Methods We used the Seahorse XF96 analyzer and real-time qPCR to study the bioenergetics of Mφ and MSCs exposed to cPE. To understand the oxygen consumption rate (OCR), we used Seahorse XF Cell Mito Stress Test Kit with Seahorse XF96 analyzer. Similarly, Seahorse XF Glycolytic Rate Assay Kit was used to detect the extracellular acidification rate (ECAR) and Seahorse XF Real-Time ATP Rate Assay kit was used to detect the real-time ATP production rates from OXPHOS and glycolysis. Real-time qPCR was performed to analyze the gene expression of key enzymes in glycolysis and mitochondrial biogenesis. We further detected the gene expression of proinflammatory cytokines in Mφ and genes related to cell differentiation in MSC during the challenge of cPE. Results Our results demonstrated that the oxidative phosphorylation of Mφ exposed to cPE was significantly decreased when compared with the control group. We found reduced basal, maximal and ATP-production coupled respiration rates, and decreased proton leak in Mφ during challenge with cPE. Meanwhile, Mφ showed increased basal glycolysis and proton efflux rates (PER) when exposed to cPE. The percentage (%) of PER from glycolysis was higher in Mφ exposed to cPE, indicating that the contribution of the glycolytic pathway to total extracellular acidification was elevated during the challenge of cPE. In line with the results of OCR and ECAR, we found Mφ during cPE challenge showed higher glycolytic ATP (glycoATP) production rates and lower mitochondrial ATP (mitoATP) production rates which is mainly from OXPHOS. Interestingly, MSCs showed enhanced glycolysis during challenge with cPE, but no significant changes in oxygen consumption rates (OCR). In accordance, seahorse assay of real-time ATP revealed glycoATP rates were elevated while mitoATP rates showed no significant differences in MSC during challenge with cPE. Furthermore, Mφ and MSCs exposed to cPE showed upregulated gene expression levels of glycolytic regulators and Mφ exposed to cPE expressed higher levels of pro-inflammatory cytokines. Conclusion This study demonstrated the dysfunctional bioenergetic activity of bone marrow-derived Mφ and MSCs exposed to cPE, which could impair the immunoregulatory properties of cells in the bone niche. The underlying molecular defect related to disordered mitochondrial function could represent a potential therapeutic target during the resolution of inflammation.
Collapse
Affiliation(s)
- Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mao Zhang
- Cardiovascular Institute Operations, Stanford University School of Medicine, Stanford, CA, United States
| | - Victoria Teissier
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Ejun Elijah Huang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Chima V. Maduka
- Departments of Biomedical Engineering and Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Christopher H. Contag
- Departments of Biomedical Engineering and Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
53
|
Domínguez-Zorita S, Cuezva JM. The Mitochondrial ATP Synthase/IF1 Axis in Cancer Progression: Targets for Therapeutic Intervention. Cancers (Basel) 2023; 15:3775. [PMID: 37568591 PMCID: PMC10417293 DOI: 10.3390/cancers15153775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer poses a significant global health problem with profound personal and economic implications on National Health Care Systems. The reprograming of metabolism is a major trait of the cancer phenotype with a clear potential for developing effective therapeutic strategies to combat the disease. Herein, we summarize the relevant role that the mitochondrial ATP synthase and its physiological inhibitor, ATPase Inhibitory Factor 1 (IF1), play in metabolic reprogramming to an enhanced glycolytic phenotype. We stress that the interplay in the ATP synthase/IF1 axis has additional functional roles in signaling mitohormetic programs, pro-oncogenic or anti-metastatic phenotypes depending on the cell type. Moreover, the same axis also participates in cell death resistance of cancer cells by restrained mitochondrial permeability transition pore opening. We emphasize the relevance of the different post-transcriptional mechanisms that regulate the specific expression and activity of ATP synthase/IF1, to stimulate further investigations in the field because of their potential as future targets to treat cancer. In addition, we review recent findings stressing that mitochondria metabolism is the primary altered target in lung adenocarcinomas and that the ATP synthase/IF1 axis of OXPHOS is included in the most significant signature of metastatic disease. Finally, we stress that targeting mitochondrial OXPHOS in pre-clinical mouse models affords a most effective therapeutic strategy in cancer treatment.
Collapse
Affiliation(s)
- Sonia Domínguez-Zorita
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28041 Madrid, Spain
| | - José M. Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28041 Madrid, Spain
| |
Collapse
|
54
|
Quarato ER, Salama NA, Li AJ, Smith CO, Zhang J, Kawano Y, McArthur M, Liesveld JL, Becker MW, Elliott MR, Eliseev RA, Calvi LM. Efferocytosis by bone marrow mesenchymal stromal cells disrupts osteoblastic differentiation via mitochondrial remodeling. Cell Death Dis 2023; 14:428. [PMID: 37452070 PMCID: PMC10349065 DOI: 10.1038/s41419-023-05931-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
The efficient clearance of dead and dying cells, efferocytosis, is critical to maintain tissue homeostasis. In the bone marrow microenvironment (BMME), this role is primarily fulfilled by professional bone marrow macrophages, but recent work has shown that mesenchymal stromal cells (MSCs) act as a non-professional phagocyte within the BMME. However, little is known about the mechanism and impact of efferocytosis on MSCs and on their function. To investigate, we performed flow cytometric analysis of neutrophil uptake by ST2 cells, a murine bone marrow-derived stromal cell line, and in murine primary bone marrow-derived stromal cells. Transcriptional analysis showed that MSCs possess the necessary receptors and internal processing machinery to conduct efferocytosis, with Axl and Tyro3 serving as the main receptors, while MerTK was not expressed. Moreover, the expression of these receptors was modulated by efferocytic behavior, regardless of apoptotic target. MSCs derived from human bone marrow also demonstrated efferocytic behavior, showing that MSC efferocytosis is conserved. In all MSCs, efferocytosis impaired osteoblastic differentiation. Transcriptional analysis and functional assays identified downregulation in MSC mitochondrial function upon efferocytosis. Experimentally, efferocytosis induced mitochondrial fission in MSCs. Pharmacologic inhibition of mitochondrial fission in MSCs not only decreased efferocytic activity but also rescued osteoblastic differentiation, demonstrating that efferocytosis-mediated mitochondrial remodeling plays a critical role in regulating MSC differentiation. This work describes a novel function of MSCs as non-professional phagocytes within the BMME and demonstrates that efferocytosis by MSCs plays a key role in directing mitochondrial remodeling and MSC differentiation. Efferocytosis by MSCs may therefore be a novel mechanism of dysfunction and senescence. Since our data in human MSCs show that MSC efferocytosis is conserved, the consequences of MSC efferocytosis may impact the behavior of these cells in the human skeleton, including bone marrow remodeling and bone loss in the setting of aging, cancer and other diseases.
Collapse
Affiliation(s)
- Emily R Quarato
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Noah A Salama
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Allison J Li
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Charles O Smith
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Jane Zhang
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuko Kawano
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew McArthur
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Jane L Liesveld
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael W Becker
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael R Elliott
- University of Virginia, Department of Microbiology, Immunology, and Cancer Biology, Charlottesville, VA, USA
| | - Roman A Eliseev
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Laura M Calvi
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
55
|
Gouveia D, Correia J, Cardoso A, Carvalho C, Oliveira AC, Almeida A, Gamboa Ó, Ribeiro L, Branquinho M, Sousa A, Lopes B, Sousa P, Moreira A, Coelho A, Rêma A, Alvites R, Ferreira A, Maurício AC, Martins Â. Intensive neurorehabilitation and allogeneic stem cells transplantation in canine degenerative myelopathy. Front Vet Sci 2023; 10:1192744. [PMID: 37520009 PMCID: PMC10374290 DOI: 10.3389/fvets.2023.1192744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/12/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Degenerative myelopathy (DM) is a neurodegenerative spinal cord disease with upper motor neurons, with progressive and chronic clinical signs, similar to amyotrophic lateral sclerosis (ALS). DM has a complex etiology mainly associated with SOD1 gene mutation and its toxic role, with no specific treatment. Daily intensive rehabilitation showed survival time near 8 months but most animals are euthanized 6-12 months after clinical signs onset. Methods This prospective controlled blinded cohort clinical study aims to evaluate the neural regeneration response ability of DM dogs subjected to an intensive neurorehabilitation protocol with mesenchymal stem cells (MSCs) transplantation. In total, 13 non-ambulatory (OFS 6 or 8) dogs with homozygous genotype DM/DM and diagnosed by exclusion were included. All were allocated to the intensive neurorehabilitation with MSCs protocol (INSCP) group (n = 8) or to the ambulatory rehabilitation protocol (ARP) group (n = 5), which differ in regard to training intensity, modalities frequency, and MSCs transplantation. The INSCP group was hospitalized for 1 month (T0 to T1), followed by MSCs transplantation (T1) and a second month (T2), whereas the ARP group was under ambulatory treatment for the same 2 months. Results Survival mean time of total population was 375 days, with 438 days for the INSCP group and 274 for the ARP group, with a marked difference on the Kaplan-Meier survival analysis. When comparing the literature's results, there was also a clear difference in the one-sample t-test (p = 0.013) with an increase in time of approximately 70%. OFS classifications between groups at each time point were significantly different (p = 0.008) by the one-way ANOVA and the independent sample t-test. Discussion This INSCP showed to be safe, feasible, and a possibility for a long progression of DM dogs with quality of life and functional improvement. This study should be continued.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisboa, Portugal
| | - Jéssica Correia
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, Setubal, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisboa, Portugal
| | - Ana Cardoso
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Lisboa, Portugal
| | - Carla Carvalho
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, Setubal, Portugal
| | - Ana Catarina Oliveira
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Lisboa, Portugal
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
| | - Lénio Ribeiro
- Faculty of Veterinary Medicine, Lusófona University, Lisboa, Portugal
| | - Mariana Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Ana Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Alícia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Gandra, Portugal
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- CIISA - Centro Interdisciplinar-Investigáo em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universi dade Técnica de Lisboa, Lisboa, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisboa, Portugal
| |
Collapse
|
56
|
Murata Y, Jo JI, Tabata Y. Molecular Beacon Imaging System to Discriminate the Differentiation State of Cells from Energy Metabolic Pathways. ACS Sens 2023; 8:2207-2218. [PMID: 37253227 DOI: 10.1021/acssensors.3c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Metabolic pathways of energy production play an essential role as a function of cells. It is well recognized that the differentiation state of stem cells is highly associated with their metabolic profile. Therefore, visualization of the energy metabolic pathway makes it possible to discriminate the differentiation state of cells and predict the cell potential for reprogramming and differentiation. However, at present, it is technically difficult to directly assess the metabolic profile of individual living cells. In this study, we developed an imaging system of cationized gelatin nanospheres (cGNS) incorporating molecular beacons (MB) (cGNSMB) to detect intracellular pyruvate dehydrogenase kinase 1 (PDK1) and peroxisome proliferator-activated receptor γ, coactivator-1α (PGC-1α) mRNA of key regulators in the energy metabolism. The prepared cGNSMB was readily internalized into mouse embryonic stem cells, while their pluripotency was maintained. The high level of glycolysis in the undifferentiated state, the increased oxidative phosphorylation over the spontaneous early differentiation, and the lineage-specific neural differentiation were visualized based on the MB fluorescence. The fluorescence intensity corresponded well to the change of extracellular acidification rate and the oxygen consumption rate of representative metabolic indicators. These findings indicate that the cGNSMB imaging system is a promising tool to visually discriminate the differentiation state of cells from energy metabolic pathways.
Collapse
Affiliation(s)
- Yuki Murata
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
57
|
Sabini E, Arboit L, Khan MP, Lanzolla G, Schipani E. Oxidative phosphorylation in bone cells. Bone Rep 2023; 18:101688. [PMID: 37275785 PMCID: PMC10238578 DOI: 10.1016/j.bonr.2023.101688] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
The role of energy metabolism in bone cells is an active field of investigation. Bone cells are metabolically very active and require high levels of energy in the form of adenosine triphosphate (ATP) to support their function. ATP is generated in the cytosol via glycolysis coupled with lactic acid fermentation and in the mitochondria via oxidative phosphorylation (OXPHOS). OXPHOS is the final convergent metabolic pathway for all oxidative steps of dietary nutrients catabolism. The formation of ATP is driven by an electrochemical gradient that forms across the mitochondrial inner membrane through to the activity of the electron transport chain (ETC) complexes and requires the presence of oxygen as the final electron acceptor. The current literature supports a model in which glycolysis is the main source of energy in undifferentiated mesenchymal progenitors and terminally differentiated osteoblasts, whereas OXPHOS appears relevant in an intermediate stage of differentiation of those cells. Conversely, osteoclasts progressively increase OXPHOS during differentiation until they become multinucleated and mitochondrial-rich terminal differentiated cells. Despite the abundance of mitochondria, mature osteoclasts are considered ATP-depleted, and the availability of ATP is a critical factor that regulates the low survival capacity of these cells, which rapidly undergo death by apoptosis. In addition to ATP, bioenergetic metabolism generates reactive oxygen species (ROS) and intermediate metabolites that regulate a variety of cellular functions, including epigenetics changes of genomic DNA and histones. This review will briefly discuss the role of OXPHOS and the cross-talks OXPHOS-glycolysis in the differentiation process of bone cells.
Collapse
Affiliation(s)
- Elena Sabini
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia 19104, PA, USA
| | - Lorenzo Arboit
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia 19104, PA, USA
| | - Mohd Parvez Khan
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia 19104, PA, USA
| | - Giulia Lanzolla
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia 19104, PA, USA
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia 19104, PA, USA
| |
Collapse
|
58
|
Kong Y, Ao J, Chen Q, Su W, Zhao Y, Fei Y, Ma J, Ji M, Mi L. Evaluating Differentiation Status of Mesenchymal Stem Cells by Label-Free Microscopy System and Machine Learning. Cells 2023; 12:1524. [PMID: 37296645 PMCID: PMC10252613 DOI: 10.3390/cells12111524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play a crucial role in tissue engineering, as their differentiation status directly affects the quality of the final cultured tissue, which is critical to the success of transplantation therapy. Furthermore, the precise control of MSC differentiation is essential for stem cell therapy in clinical settings, as low-purity stem cells can lead to tumorigenic problems. Therefore, to address the heterogeneity of MSCs during their differentiation into adipogenic or osteogenic lineages, numerous label-free microscopic images were acquired using fluorescence lifetime imaging microscopy (FLIM) and stimulated Raman scattering (SRS), and an automated evaluation model for the differentiation status of MSCs was built based on the K-means machine learning algorithm. The model is capable of highly sensitive analysis of individual cell differentiation status, so it has great potential for stem cell differentiation research.
Collapse
Affiliation(s)
- Yawei Kong
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
| | - Jianpeng Ao
- Department of Physics, Fudan University, Shanghai 200433, China;
| | - Qiushu Chen
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
| | - Wenhua Su
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
| | - Yinping Zhao
- Human Phenome Institute, Fudan University, Shanghai 200433, China;
| | - Yiyan Fei
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
| | - Jiong Ma
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Shanghai Engineering Research Center of Industrial Microorganisms, The Multiscale Research Institute of Complex Systems (MRICS), School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Minbiao Ji
- Department of Physics, Fudan University, Shanghai 200433, China;
| | - Lan Mi
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.K.); (Q.C.); (W.S.); (Y.F.); (J.M.)
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| |
Collapse
|
59
|
Akhmetshina A, Kratky D, Rendina-Ruedy E. Influence of Cholesterol on the Regulation of Osteoblast Function. Metabolites 2023; 13:metabo13040578. [PMID: 37110236 PMCID: PMC10143138 DOI: 10.3390/metabo13040578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Bone is a dynamic tissue composed of cells, an extracellular matrix, and mineralized portion. Osteoblasts are responsible for proper bone formation and remodeling, and function. These processes are endergonic and require cellular energy in the form of adenosine triphosphate (ATP), which is derived from various sources such as glucose, fatty acids, and amino acids. However, other lipids such as cholesterol have also been found to play a critical role in bone homeostasis and can also contribute to the overall bioenergetic capacity of osteoblasts. In addition, several epidemiological studies have found a link between elevated cholesterol, cardiovascular disease, an enhanced risk of osteoporosis, and increased bone metastasis in cancer patients. This review focuses on how cholesterol, its derivatives, and cholesterol-lowering medications (statins) regulate osteoblast function and bone formation. It also highlights the molecular mechanisms underlying the cholesterol-osteoblast crosstalk.
Collapse
Affiliation(s)
- Alena Akhmetshina
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Elizabeth Rendina-Ruedy
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
60
|
Chariyev-Prinz F, Szojka A, Neto N, Burdis R, Monaghan MG, Kelly DJ. An assessment of the response of human MSCs to hydrostatic pressure in environments supportive of differential chondrogenesis. J Biomech 2023; 154:111590. [PMID: 37163962 DOI: 10.1016/j.jbiomech.2023.111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/31/2023] [Accepted: 04/11/2023] [Indexed: 05/12/2023]
Abstract
Mechanical stimulation can modulate the chondrogenic differentiation of stem/progenitor cells and potentially benefit tissue engineering (TE) of functional articular cartilage (AC). Mechanical cues like hydrostatic pressure (HP) are often applied to cell-laden scaffolds, with little optimization of other key parameters (e.g. cell density, biomaterial properties) known to effect lineage commitment. In this study, we first sought to establish cell seeding densities and fibrin concentrations supportive of robust chondrogenesis of human mesenchymal stem cells (hMSCs). High cell densities (15*106 cells/ml) were more supportive of sGAG deposition on a per cell basis, while collagen deposition was higher at lower seeding densities (5*106 cells/ml). Employment of lower fibrin (2.5 %) concentration hydrogels supported more robust chondrogenesis of hMSCs, with higher collagen type II and lower collagen type X deposition compared to 5 % hydrogels. The application of HP to hMSCs maintained in identified chondro-inductive culture conditions had little effect on overall levels of cartilage-specific matrix production. However, if hMSCs were first temporally primed with TGF-β3 before its withdrawal, they responded to HP by increased sGAG production. The response to HP in higher cell density cultures was also associated with a metabolic shift towards glycolysis, which has been linked with a mature chondrocyte-like phenotype. These results suggest that mechanical stimulation may not be necessary to engineer functional AC grafts using hMSCs if other culture conditions have been optimised. However, such bioreactor systems can potentially be employed to better understand how engineered tissues respond to mechanical loading in vivo once removed from in vitro culture environments.
Collapse
Affiliation(s)
- Farhad Chariyev-Prinz
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Alex Szojka
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Nuno Neto
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Ross Burdis
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Michael G Monaghan
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
61
|
Rodimova S, Mozherov A, Elagin V, Karabut M, Shchechkin I, Kozlov D, Krylov D, Gavrina A, Kaplin V, Epifanov E, Minaev N, Bardakova K, Solovieva A, Timashev P, Zagaynova E, Kuznetsova D. FLIM imaging revealed spontaneous osteogenic differentiation of stem cells on gradient pore size tissue-engineered constructs. Stem Cell Res Ther 2023; 14:81. [PMID: 37046354 PMCID: PMC10091689 DOI: 10.1186/s13287-023-03307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND There is an urgent clinical need for targeted strategies aimed at the treatment of bone defects resulting from fractures, infections or tumors. 3D scaffolds represent an alternative to allogeneic MSC transplantation, due to their mimicry of the cell niche and the preservation of tissue structure. The actual structure of the scaffold itself can affect both effective cell adhesion and its osteoinductive properties. Currently, the effects of the structural heterogeneity of scaffolds on the behavior of cells and tissues at the site of damage have not been extensively studied. METHODS Both homogeneous and heterogeneous scaffolds were generated from poly(L-lactic acid) methacrylated in supercritical carbon dioxide medium and were fabricated by two-photon polymerization. The homogeneous scaffolds consist of three layers of cylinders of the same diameter, whereas the heterogeneous (gradient pore sizes) scaffolds contain the middle layer of cylinders of increased diameter, imitating the native structure of spongy bone. To evaluate the osteoinductive properties of both types of scaffold, we performed in vitro and in vivo experiments. Multiphoton microscopy with fluorescence lifetime imaging microscopy was used for determining the metabolic states of MSCs, as a sensitive marker of cell differentiation. The results obtained from this approach were verified using standard markers of osteogenic differentiation and based on data from morphological analysis. RESULTS The heterogeneous scaffolds showed improved osteoinductive properties, accelerated the metabolic rearrangements associated with osteogenic differentiation, and enhanced the efficiency of bone tissue recovery, thereby providing for both the development of appropriate morphology and mineralization. CONCLUSIONS The authors suggest that the heterogeneous tissue constructs are a promising tool for the restoration of bone defects. And, furthermore, that our results demonstrate that the use of label-free bioimaging methods can be considered as an effective approach for intravital assessment of the efficiency of differentiation of MSCs on scaffolds.
Collapse
Affiliation(s)
- Svetlana Rodimova
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022.
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000.
| | - Artem Mozherov
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Maria Karabut
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Ilya Shchechkin
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Dmitry Kozlov
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Dmitry Krylov
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Alena Gavrina
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Vladislav Kaplin
- Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 4 Kosygina St, Moscow, Russia, 119991
| | - Evgenii Epifanov
- Research Center "Crystallography and Photonics", Institute of Photonic Technologies, Russian Academy of Sciences, 2 Pionerskaya St, Troitsk, Moscow, Russia, 108840
| | - Nikita Minaev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya Str, Moscow, Russia, 119991
| | - Ksenia Bardakova
- Research Center "Crystallography and Photonics", Institute of Photonic Technologies, Russian Academy of Sciences, 2 Pionerskaya St, Troitsk, Moscow, Russia, 108840
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya Str, Moscow, Russia, 119991
| | - Anna Solovieva
- Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 4 Kosygina St, Moscow, Russia, 119991
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya Str, Moscow, Russia, 119991
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 8-2 Trubetskaya Str, Moscow, Russia, 119991
| | - Elena Zagaynova
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Daria Kuznetsova
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| |
Collapse
|
62
|
Subbiah R, Lin EY, Athirasala A, Romanowicz GE, Lin ASP, Califano JV, Guldberg RE, Bertassoni LE. Engineering of an Osteoinductive and Growth Factor-Free Injectable Bone-Like Microgel for Bone Regeneration. Adv Healthc Mater 2023; 12:e2200976. [PMID: 36808718 PMCID: PMC10978434 DOI: 10.1002/adhm.202200976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/30/2022] [Indexed: 02/22/2023]
Abstract
Bone autografts remain the gold standard for bone grafting surgeries despite having increased donor site morbidity and limited availability. Bone morphogenetic protein-loaded grafts represent another successful commercial alternative. However, the therapeutic use of recombinant growth factors has been associated with significant adverse clinical outcomes. This highlights the need to develop biomaterials that closely approximate the structure and composition of bone autografts, which are inherently osteoinductive and biologically active with embedded living cells, without the need for added supplements. Here, injectable growth factor-free bone-like tissue constructs are developed, that closely approximate the cellular, structural, and chemical composition of bone autografts. It is demonstrated that these micro-constructs are inherently osteogenic, and demonstrate the ability to stimulate mineralized tissue formation and regenerate bone in critical-sized defects in-vivo. Furthermore, the mechanisms that allow human mesenchymal stem cells (hMSCs) to be highly osteogenic in these constructs, despite the lack of osteoinductive supplements, are assessed, whereby Yes activated protein (YAP) nuclear localization and adenosine signaling appear to regulate osteogenic cell differentiation. The findings represent a step toward a new class of minimally invasive, injectable, and inherently osteoinductive scaffolds, which are regenerative by virtue of their ability to mimic the tissue cellular and extracellular microenvironment, thus showing promise for clinical applications in regenerative engineering.
Collapse
Affiliation(s)
- Ramesh Subbiah
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Edith Y Lin
- Department of Periodontics, School of Dentistry, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Avathamsa Athirasala
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, 97201, USA
- Knight Cancer Precision Biofabrication Hub, Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Genevieve E Romanowicz
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97403, USA
| | - Angela S P Lin
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97403, USA
| | - Joseph V Califano
- Department of Periodontics, School of Dentistry, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Robert E Guldberg
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97403, USA
| | - Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, 97201, USA
- Knight Cancer Precision Biofabrication Hub, Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Center for Regenerative Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| |
Collapse
|
63
|
Sautchuk R, Yu C, McArthur M, Massie C, Brookes PS, Porter GA, Awad H, Eliseev RA. Role of the Mitochondrial Permeability Transition in Bone Metabolism and Aging. J Bone Miner Res 2023; 38:522-540. [PMID: 36779737 PMCID: PMC10101909 DOI: 10.1002/jbmr.4787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/14/2023]
Abstract
The mitochondrial permeability transition pore (MPTP) and its positive regulator, cyclophilin D (CypD), play important pathophysiological roles in aging. In bone tissue, higher CypD expression and pore activity are found in aging; however, a causal relationship between CypD/MPTP and bone degeneration needs to be established. We previously reported that CypD expression and MPTP activity are downregulated during osteoblast (OB) differentiation and that manipulations in CypD expression affect OB differentiation and function. Using a newly developed OB-specific CypD/MPTP gain-of-function (GOF) mouse model, we here present evidence that overexpression of a constitutively active K166Q mutant of CypD (caCypD) impairs OB energy metabolism and function, and bone morphological and biomechanical parameters. Specifically, in a spatial-dependent and sex-dependent manner, OB-specific CypD GOF led to a decrease in oxidative phosphorylation (OxPhos) levels, higher oxidative stress, and general metabolic adaptations coincident with the decreased bone organic matrix content in long bones. Interestingly, accelerated bone degeneration was present in vertebral bones regardless of sex. Overall, our work confirms CypD/MPTP overactivation as an important pathophysiological mechanism leading to bone degeneration and fragility in aging. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
| | - Chen Yu
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
| | - Matthew McArthur
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
| | - Christine Massie
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Paul S Brookes
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
- Department of Pharmacology & Physiology, University of Rochester, Rochester, NY, USA
| | - George A Porter
- Department of Pediatrics, Division of Cardiology, University of Rochester, Rochester, NY, USA
| | - Hani Awad
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Roman A Eliseev
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
- Department of Pharmacology & Physiology, University of Rochester, Rochester, NY, USA
- Department of Pathology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
64
|
Smith N, Shirazi S, Cakouros D, Gronthos S. Impact of Environmental and Epigenetic Changes on Mesenchymal Stem Cells during Aging. Int J Mol Sci 2023; 24:ijms24076499. [PMID: 37047469 PMCID: PMC10095074 DOI: 10.3390/ijms24076499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Many crucial epigenetic changes occur during early skeletal development and throughout life due to aging, disease and are heavily influenced by an individual’s lifestyle. Epigenetics is the study of heritable changes in gene expression as the result of changes in the environment without any mutation in the underlying DNA sequence. The epigenetic profiles of cells are dynamic and mediated by different mechanisms, including histone modifications, non-coding RNA-associated gene silencing and DNA methylation. Given the underlining role of dysfunctional mesenchymal tissues in common age-related skeletal diseases such as osteoporosis and osteoarthritis, investigations into skeletal stem cells or mesenchymal stem cells (MSC) and their functional deregulation during aging has been of great interest and how this is mediated by an evolving epigenetic landscape. The present review describes the recent findings in epigenetic changes of MSCs that effect growth and cell fate determination in the context of aging, diet, exercise and bone-related diseases.
Collapse
Affiliation(s)
- Nicholas Smith
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Suzanna Shirazi
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| |
Collapse
|
65
|
Lee E, Park M, Kim B, Kang S. Effect of Black Maca Supplementation on Inflammatory Markers and Physical Fitness in Male Elite Athletes. Nutrients 2023; 15:nu15071618. [PMID: 37049458 PMCID: PMC10097151 DOI: 10.3390/nu15071618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Given the current lack of studies, the primary purpose of this study was to investigate the effects of black maca supplementation intake on changes in physical strength and inflammatory markers among elite athletes. Forty-four elite athletes were recruited for the present study. They included shooting athletes, racket sports athletes, and fin swimming athletes. The intake capsules contained 2500 mg of 100% concentrated black maca extract. Participants were instructed to take one capsule twice a day for eight weeks with pure water. Changes were seen in the ATP-PC systems and aerobic energy systems, particularly in the fin swimming athletes requiring aerobic energy systems. This effect is caused by increased antioxidant activity and influenced mitochondrial biosynthesis regulatory factors due to black maca supplementation intake. These findings provide preliminary evidence that elite athletes will benefit from taking black maca to improve their inflammation levels and physical fitness.
Collapse
Affiliation(s)
- Eunjae Lee
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Republic of Korea;
- Waseda Institute for Sport Sciences, Waseda University, Saitama 341-0018, Japan
| | - Myeonghun Park
- Charmacist, Seoul 02797, Republic of Korea; (M.P.); (B.K.)
- Laboratory of Exercise Physiology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Republic of Korea
| | - Byoungju Kim
- Charmacist, Seoul 02797, Republic of Korea; (M.P.); (B.K.)
| | - Sunghwun Kang
- Laboratory of Exercise Physiology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Republic of Korea
- Interdisciplinary Program in Biohealth-Machinery Convergence Engineering, Kangwon National University, Chuncheon-si 24341, Republic of Korea
- Correspondence: ; Tel.: +82-33-250-6788; Fax: +82-33-259-5680
| |
Collapse
|
66
|
Löffler J, Noom A, Ellinghaus A, Dienelt A, Kempa S, Duda GN. A comprehensive molecular profiling approach reveals metabolic alterations that steer bone tissue regeneration. Commun Biol 2023; 6:327. [PMID: 36973478 PMCID: PMC10042875 DOI: 10.1038/s42003-023-04652-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023] Open
Abstract
Bone regeneration after fracture is a complex process with high and dynamic energy demands. The impact of metabolism on bone healing progression and outcome, however, is so far understudied. Our comprehensive molecular profiling reveals that central metabolic pathways, such as glycolysis and the citric acid cycle, are differentially activated between rats with successful or compromised bone regeneration (young versus aged female Sprague-Dawley rats) early in the inflammatory phase of bone healing. We also found that the citric acid cycle intermediate succinate mediates individual cellular responses and plays a central role in successful bone healing. Succinate induces IL-1β in macrophages, enhances vessel formation, increases mesenchymal stromal cell migration, and potentiates osteogenic differentiation and matrix formation in vitro. Taken together, metabolites-here particularly succinate-are shown to play central roles as signaling molecules during the onset of healing and in steering bone tissue regeneration.
Collapse
Affiliation(s)
- Julia Löffler
- Julius Wolff Institute (JWI), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 10115, Berlin, Germany
| | - Anne Noom
- Julius Wolff Institute (JWI), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute (JWI), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Anke Dienelt
- Julius Wolff Institute (JWI), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Stefan Kempa
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 10115, Berlin, Germany.
| | - Georg N Duda
- Julius Wolff Institute (JWI), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany.
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany.
| |
Collapse
|
67
|
Feng Z, Jin M, Liang J, Kang J, Yang H, Guo S, Sun X. Insight into the effect of biomaterials on osteogenic differentiation of mesenchymal stem cells: A review from a mitochondrial perspective. Acta Biomater 2023; 164:1-14. [PMID: 36972808 DOI: 10.1016/j.actbio.2023.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Bone damage may be triggered by a variety of factors, and the damaged area often requires a bone graft. Bone tissue engineering can serve as an alternative strategy for repairing large bone defects. Mesenchymal stem cells (MSCs), the progenitor cells of connective tissue, have become an important tool for tissue engineering due to their ability to differentiate into a variety of cell types. The precise regulation of the growth and differentiation of the stem cells used for bone regeneration significantly affects the efficiency of this type of tissue engineering. During the process of osteogenic induction, the dynamics and function of localized mitochondria are altered. These changes may also alter the microenvironment of the therapeutic stem cells and result in mitochondria transfer. Mitochondrial regulation not only affects the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell. To date, bone tissue engineering research has mainly focused on the influence of biomaterials on phenotype and nuclear genotype, with few studies investigating the role of mitochondria. In this review, we provide a comprehensive summary of researches into the role of mitochondria in MSCs differentiation and critical analysis regarding smart biomaterials that are able to "programme" mitochondria modulation was proposed. STATEMENT OF SIGNIFICANCE: : • This review proposed the precise regulation of the growth and differentiation of the stem cells used to seed bone regeneration. • This review addressed the dynamics and function of localized mitochondria during the process of osteogenic induction and the effect of mitochondria on the microenvironment of stem cells. • This review summarized biomaterials which affect the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell through the regulation of mitochondria.
Collapse
Affiliation(s)
- Ziyi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China
| | - Meiqi Jin
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Junning Kang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China.
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| |
Collapse
|
68
|
Dicks AR, Maksaev GI, Harissa Z, Savadipour A, Tang R, Steward N, Liedtke W, Nichols CG, Wu CL, Guilak F. Skeletal dysplasia-causing TRPV4 mutations suppress the hypertrophic differentiation of human iPSC-derived chondrocytes. eLife 2023; 12:e71154. [PMID: 36810131 PMCID: PMC9949800 DOI: 10.7554/elife.71154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Mutations in the TRPV4 ion channel can lead to a range of skeletal dysplasias. However, the mechanisms by which TRPV4 mutations lead to distinct disease severity remain unknown. Here, we use CRISPR-Cas9-edited human-induced pluripotent stem cells (hiPSCs) harboring either the mild V620I or lethal T89I mutations to elucidate the differential effects on channel function and chondrogenic differentiation. We found that hiPSC-derived chondrocytes with the V620I mutation exhibited increased basal currents through TRPV4. However, both mutations showed more rapid calcium signaling with a reduced overall magnitude in response to TRPV4 agonist GSK1016790A compared to wildtype (WT). There were no differences in overall cartilaginous matrix production, but the V620I mutation resulted in reduced mechanical properties of cartilage matrix later in chondrogenesis. mRNA sequencing revealed that both mutations up-regulated several anterior HOX genes and down-regulated antioxidant genes CAT and GSTA1 throughout chondrogenesis. BMP4 treatment up-regulated several essential hypertrophic genes in WT chondrocytes; however, this hypertrophic maturation response was inhibited in mutant chondrocytes. These results indicate that the TRPV4 mutations alter BMP signaling in chondrocytes and prevent proper chondrocyte hypertrophy, as a potential mechanism for dysfunctional skeletal development. Our findings provide potential therapeutic targets for developing treatments for TRPV4-mediated skeletal dysplasias.
Collapse
Affiliation(s)
- Amanda R Dicks
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
| | - Grigory I Maksaev
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. LouisSt LouisUnited States
| | - Zainab Harissa
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
| | - Alireza Savadipour
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
- Department of Mechanical Engineering and Material Science, Washington University in St. LouisSt. LouisUnited States
| | - Ruhang Tang
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
| | - Nancy Steward
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
| | - Wolfgang Liedtke
- Department of Neurology, Duke University School of MedicineDurhamUnited States
- Department of Molecular Pathobiology - NYU College of DentistryNew YorkUnited States
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. LouisSt LouisUnited States
| | - Chia-Lung Wu
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of RochesterRochesterUnited States
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
| |
Collapse
|
69
|
Ross EA, Turner LA, Donnelly H, Saeed A, Tsimbouri MP, Burgess KV, Blackburn G, Jayawarna V, Xiao Y, Oliva MAG, Willis J, Bansal J, Reynolds P, Wells JA, Mountford J, Vassalli M, Gadegaard N, Oreffo ROC, Salmeron-Sanchez M, Dalby MJ. Nanotopography reveals metabolites that maintain the immunomodulatory phenotype of mesenchymal stromal cells. Nat Commun 2023; 14:753. [PMID: 36765065 PMCID: PMC9918539 DOI: 10.1038/s41467-023-36293-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent progenitor cells that are of considerable clinical potential in transplantation and anti-inflammatory therapies due to their capacity for tissue repair and immunomodulation. However, MSCs rapidly differentiate once in culture, making their large-scale expansion for use in immunomodulatory therapies challenging. Although the differentiation mechanisms of MSCs have been extensively investigated using materials, little is known about how materials can influence paracrine activities of MSCs. Here, we show that nanotopography can control the immunomodulatory capacity of MSCs through decreased intracellular tension and increasing oxidative glycolysis. We use nanotopography to identify bioactive metabolites that modulate intracellular tension, growth and immunomodulatory phenotype of MSCs in standard culture and during larger scale cell manufacture. Our findings demonstrate an effective route to support large-scale expansion of functional MSCs for therapeutic purposes.
Collapse
Affiliation(s)
- Ewan A Ross
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Lesley-Anne Turner
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Hannah Donnelly
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Anwer Saeed
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Monica P Tsimbouri
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Karl V Burgess
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, Bearsden, Glasgow, G61 1QH, UK
| | - Gavin Blackburn
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, Bearsden, Glasgow, G61 1QH, UK
| | - Vineetha Jayawarna
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Yinbo Xiao
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Mariana A G Oliva
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Jennifer Willis
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Jaspreet Bansal
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Paul Reynolds
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Julia A Wells
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Joanne Mountford
- Scottish National Blood Transfusion Service, Advanced Therapeutics, Jack Copland Centre, 52 Research Avenue North, Heriot Watt Research Park, Edinburgh, EH14 4BE, UK
| | - Massimo Vassalli
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK.
| |
Collapse
|
70
|
Chaudhary S, Ghosal D, Tripathi P, Kumar S. Cellular metabolism: a link connecting cellular behaviour with the physiochemical properties of biomaterials for bone tissue engineering. Biomater Sci 2023; 11:2277-2291. [PMID: 36748852 DOI: 10.1039/d2bm01410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biomaterial properties, such as surface roughness, morphology, stiffness, conductivity, and chemistry, significantly influence a cell's ability to sense and adhere to its surface and regulate cell functioning. Understanding how biomaterial properties govern changes in cellular function is one of the fundamental goals of tissue engineering. Still, no generalized rule is established to predict cellular processes (adhesion, spreading, growth and differentiation) on biomaterial surfaces. A few studies have highlighted that cells sense biomaterial properties at multiple length scales and regulate various intracellular biochemical processes like cytoskeleton organization, gene regulation, and receptor expression to influence cell function. However, recent studies have found cellular metabolism as another critical aspect of cellular processes that regulate cell behavior, co-relating metabolism to cellular functions like adhesion, proliferation, and differentiation. Now researchers have started to uncover previously overlooked factors on how biomaterial properties govern changes in cellular functions mediated through metabolism. This review highlights how different physiochemical properties of scaffolds designed from different biomaterials influence cell metabolism. The review also discusses the role of metabolism change in cellular functions and cell behavior in the context of bone tissue engineering. It also emphasizes the importance of cell metabolism as a missing link between the cellular behavior and physicochemical properties of scaffolds and serves as a guiding principle for designing scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Shivani Chaudhary
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Doyel Ghosal
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Pravesh Tripathi
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Sachin Kumar
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India. .,Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
71
|
Sun H, Zheng M, Liu J, Fan W, He H, Huang F. Melatonin promoted osteogenesis of human periodontal ligament cells by regulating mitochondrial functions through the translocase of the outer mitochondrial membrane 20. J Periodontal Res 2023; 58:53-69. [PMID: 36373245 DOI: 10.1111/jre.13068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Melatonin plays an important role in various beneficial functions, including promoting differentiation. However, effects on osteogenic differentiation, especially in human periodontal cells (hPDLCs), still remain inconclusive. Mitochondria are highly dynamic organelles that play an important role in various biological processes in cells, including energy metabolism and oxidative stress reaction. Furthermore, the translocase of the outer mitochondrial membrane 20 (TOM20) is responsible for recognizing and transporting precursor proteins. Thus, the objective of this study was to evaluate the functionality of melatonin on osteogenesis in human periodontal cells and to explore the involved mechanism of mitochondria. METHODS The hPDLCs were extracted and identified by flow cytometry and multilineage differentiation. We divided hPDLCs into control group, osteogenic induction group, and osteogenesis with melatonin treatment group (100, 10, and 1 μM). Then we used a specific siRNA to achieve interference of TOM20. Alizarin red and Alkaline phosphatase staining and activity assays were performed to evaluate osteogenic differentiation. Osteogenesis-related genes and proteins were measured by qPCR and western blot. Mitochondrial functions were tested using ATP, NAD+/NADH, JC-1, and Seahorse Mito Stress Test kits. Finally, TOM20 and mitochondrial dynamics-related molecules expression were also assessed by qPCR and western blot. RESULTS Our results showed that melatonin-treated hPDLCs had higher calcification and ALP activity as well as upregulated OCN and Runx2 expression at mRNA and protein levels, which was the most obvious in 1 μM melatonin-treated group. Meanwhile, melatonin supplement elevated intracellular ATP production and mitochondrial membrane potential by increasing mitochondrial oxidative metabolism, hence causing a lower NAD+ /NADH ratio. In addition, we also found that melatonin treatment raised TOM20 level and osteogenesis and mitochondrial functions were both suppressed after knocking down TOM20. CONCLUSION We found that melatonin promoted osteogenesis of hPDLCs and 1 μM melatonin had the most remarkable effect. Melatonin treatment can reinforce mitochondrial functions by upregulating TOM20.
Collapse
Affiliation(s)
- Haoyun Sun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Miaomiao Zheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jiawei Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
72
|
Topographical cues of PLGA membranes modulate the behavior of hMSCs, myoblasts and neuronal cells. Colloids Surf B Biointerfaces 2023; 222:113070. [PMID: 36495697 DOI: 10.1016/j.colsurfb.2022.113070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Biomaterial surface modification through the introduction of defined and repeated patterns of topography helps study cell behavior in response to defined geometrical cues. The lithographic molding technique is widely used for conferring biomaterial surface microscale cues and enhancing the performance of biomedical devices. In this work, different master molds made by UV mask lithography were used to prepare poly (D,L-lactide-co-glycolide) - PLGA micropatterned membranes to present different features of topography at the cellular interface: channels, circular pillars, rectangular pillars, and pits. The effects of geometrical cues were investigated on different cell sources, such as neuronal cells, myoblasts, and stem cells. Morphological evaluation revealed a peculiar cell arrangement in response to a specific topographical stimulus sensed over the membrane surface. Cells seeded on linear-grooved membranes showed that this cue promoted elongated cell morphology. Rectangular and circular pillars act instead as discontinuous cues at the cell-membrane interface, inducing cell growth in multiple directions. The array of pits over the surface also highlighted the precise spatiotemporal organization of the cell; they grew between the interconnected membrane space within the pits, avoiding the microscale hole. The overall approach allowed the evaluation of the responses of different cell types adhered to various surface patterns, build-up on the same polymeric membrane, and disclosing the effect of specific topographical features. We explored how various microtopographic signals play distinct roles in different cells, thus affecting cell adhesion, migration, differentiation, cell-cell interactions, and other metabolic activities.
Collapse
|
73
|
Luo G, Wosinski P, Salazar-Noratto GE, Bensidhoum M, Bizios R, Marashi SA, Potier E, Sheng P, Petite H. Glucose Metabolism: Optimizing Regenerative Functionalities of Mesenchymal Stromal Cells Postimplantation. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:47-61. [PMID: 35754335 DOI: 10.1089/ten.teb.2022.0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mesenchymal stromal cells (MSCs) are considered promising candidates for regenerative medicine applications. Their clinical performance postimplantation, however, has been disappointing. This lack of therapeutic efficacy is most likely due to suboptimal formulations of MSC-containing material constructs. Tissue engineers, therefore, have developed strategies addressing/incorporating optimized cell, microenvironmental, biochemical, and biophysical cues/stimuli to enhance MSC-containing construct performance. Such approaches have had limited success because they overlooked that maintenance of MSC viability after implantation for a sufficient time is necessary for MSCs to develop their regenerative functionalities fully. Following a brief overview of glucose metabolism and regulation in MSCs, the present literature review includes recent pertinent findings that challenge old paradigms and notions. We hereby report that glucose is the primary energy substrate for MSCs, provides precursors for biomass generation, and regulates MSC functions, including proliferation and immunosuppressive properties. More importantly, glucose metabolism is central in controlling in vitro MSC expansion, in vivo MSC viability, and MSC-mediated angiogenesis postimplantation when addressing MSC-based therapies. Meanwhile, in silico models are highlighted for predicting the glucose needs of MSCs in specific regenerative medicine settings, which will eventually enable tissue engineers to design viable and potent tissue constructs. This new knowledge should be incorporated into developing novel effective MSC-based therapies. Impact statement The clinical use of mesenchymal stromal cells (MSCs) has been unsatisfactory due to the inability of MSCs to survive and be functional after implantation for sufficient periods to mediate directly or indirectly a successful regenerative tissue response. The present review summarizes the endeavors in the past, but, most importantly, reports the latest findings that elucidate underlying mechanisms and identify glucose metabolism as the crucial parameter in MSC survival and the subsequent functions pertinent to new tissue formation of importance in tissue regeneration applications. These latest findings justify further basic research and the impetus for developing new strategies to improve the modalities and efficacy of MSC-based therapies.
Collapse
Affiliation(s)
- Guotian Luo
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Pauline Wosinski
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Giuliana E Salazar-Noratto
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Morad Bensidhoum
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Rena Bizios
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Sayed-Amir Marashi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Esther Potier
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Puyi Sheng
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hervé Petite
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| |
Collapse
|
74
|
Yu BF, Wang Z, Chen XX, Zeng Q, Dai CC, Wei J. Continuous dynamic identification of key genes and molecular signaling pathways of periosteum in guided bone self-generation in swine model. J Orthop Surg Res 2023; 18:53. [PMID: 36653843 PMCID: PMC9847205 DOI: 10.1186/s13018-023-03524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Guided bone self-generation with periosteum-preserved has successfully regenerated mandibular, temporomandibular and interphalangeal joint. The aim of this study was to investigate the dynamic changes of gene expression of periosteum which was involved in the guided bone self-generation. METHODS Rib defects of critical size were created in mature swine with periosteum-preserved. The periosteum was sutured into a sealed sheath that closed the bone defect. The periosteum of trauma and control sites were harvested at postoperative 9 time points, and total RNA was extracted. Microarray analysis was conducted to identify the differences in the transcriptome of different time points between two groups. RESULTS The differentially expressed genes (DEGs) between control and trauma group were different at postoperative different time points. The dynamic changes of the number of DEGs fluctuated a lot. There were 3 volatility peaks, and we chose 3 time points of DEG number peak (1 week, 5 weeks and 6 months) to study the functions of DEGs. Oxidoreductase activity, oxidation-reduction process and mitochondrion are the most enriched terms of Go analysis. The major signaling pathways of DEGs enrichment include oxidative phosphorylation, PI3K-Akt signaling pathway, osteoclast differentiation pathway and Wnt signaling. CONCLUSIONS The oxidoreductase reaction was activated during this bone regeneration process. The oxidative phosphorylation, PI3K-Akt signaling pathway, osteoclast differentiation pathway and Wnt signaling may play important roles in the guided bone self-generation with periosteum-preserved. This study can provide a reference for how to improve the application of this concept of bone regeneration.
Collapse
Affiliation(s)
- Bao-Fu Yu
- grid.412523.30000 0004 0386 9086Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200011 China
| | - Zi Wang
- grid.412523.30000 0004 0386 9086Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200011 China
| | - Xiao-Xue Chen
- grid.412523.30000 0004 0386 9086Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200011 China
| | - Qi Zeng
- grid.415002.20000 0004 1757 8108Department of Plastic Surgery, Jiangxi Province People’s Hospital, Nanchang, China
| | - Chuan-Chang Dai
- grid.412523.30000 0004 0386 9086Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200011 China
| | - Jiao Wei
- grid.412523.30000 0004 0386 9086Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200011 China
| |
Collapse
|
75
|
Vitamin D and Bone: A Story of Endocrine and Auto/Paracrine Action in Osteoblasts. Nutrients 2023; 15:nu15030480. [PMID: 36771187 PMCID: PMC9919888 DOI: 10.3390/nu15030480] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Despite its rigid structure, the bone is a dynamic organ, and is highly regulated by endocrine factors. One of the major bone regulatory hormones is vitamin D. Its renal metabolite 1α,25-OH2D3 has both direct and indirect effects on the maintenance of bone structure in health and disease. In this review, we describe the underlying processes that are directed by bone-forming cells, the osteoblasts. During the bone formation process, osteoblasts undergo different stages which play a central role in the signaling pathways that are activated via the vitamin D receptor. Vitamin D is involved in directing the osteoblasts towards proliferation or apoptosis, regulates their differentiation to bone matrix producing cells, and controls the subsequent mineralization of the bone matrix. The stage of differentiation/mineralization in osteoblasts is important for the vitamin D effect on gene transcription and the cellular response, and many genes are uniquely regulated either before or during mineralization. Moreover, osteoblasts contain the complete machinery to metabolize active 1α,25-OH2D3 to ensure a direct local effect. The enzyme 1α-hydroxylase (CYP27B1) that synthesizes the active 1α,25-OH2D3 metabolite is functional in osteoblasts, as well as the enzyme 24-hydroxylase (CYP24A1) that degrades 1α,25-OH2D3. This shows that in the past 100 years of vitamin D research, 1α,25-OH2D3 has evolved from an endocrine regulator into an autocrine/paracrine regulator of osteoblasts and bone formation.
Collapse
|
76
|
Li M, Li T, Yin J, Xie C, Zhu J. Evaluation of toxicological effects of bisphenol S with an in vitro human bone marrow mesenchymal stem cell: Implications for bone health. Toxicology 2023; 484:153408. [PMID: 36565802 DOI: 10.1016/j.tox.2022.153408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
As the use of bisphenol A (BPA) has been restricted in consumer products, bisphenol S (BPS) is one major alternative to BPA for various materials, leading to growing concerns about its health risks in human beings. However, little is known about the toxic effects of BPS on bone health. We employed human bone marrow mesenchymal stem cells (hBMSCs) for the in vitro assessment of BPS on cell proliferation, differentiation, and self-renewal. Our study revealed that BPS at concentrations of 10-10-10-7 M increased cell viability but induced the morphological changes of hBMSCs. Moreover, BPS decreased ROS generation and increased Nrf2 expression. Furthermore, BPS not only activated ERα/β expression but also increased β-catenin expression and induced the replicative senescence of hBMSCs. Furthermore, we found that the upregulation of β-catenin induced by BPS was mediated, in part, by ER signaling. Overall, our results suggested BPS exposure caused the homeostatic imbalance of hBMSCs.
Collapse
Affiliation(s)
- Mei Li
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China; School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Tenglong Li
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Juan Yin
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
77
|
Gnocchi D, Sabbà C, Mazzocca A. Lactic acid fermentation: A maladaptive mechanism and an evolutionary throwback boosting cancer drug resistance. Biochimie 2023; 208:180-185. [PMID: 36638953 DOI: 10.1016/j.biochi.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
After four decades of research primarily focused on tumour genetics, the importance of metabolism in tumour biology is receiving renewed attention. Cancer cells undergo energy, biosynthetic and metabolic rewiring, which involves several pathways with a prevalent change from oxidative phosphorylation (OXPHOS) to lactic acid fermentation, known as the Warburg effect. During carcinogenesis, microenvironmental changes can trigger the transition from OXPHOS to lactic acid fermentation, an ancient form of energy supply, mimicking the behaviour of certain anaerobic unicellular organisms according to "atavistic" models of cancer. However, the role of this transition as a mechanism of cancer drug resistance is unclear. Here, we hypothesise that the metabolic rewiring of cancer cells to fermentation can be triggered, enhanced, and sustained by exposure to chronic or high-dose chemotherapy, thereby conferring resistance to drug therapy. We try to expand on the idea that metabolic reprogramming from OXPHOS to lactate fermentation in drug-resistant tumour cells occurs as a general phenotypic mechanism in any type of cancer, regardless of tumour cell heterogeneity, biodiversity, and genetic characteristics. This metabolic response may therefore represent a common feature in cancer biology that could be exploited for therapeutic purposes to overcome chemotherapy resistance, which is currently a major challenge in cancer treatment.
Collapse
Affiliation(s)
- Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
78
|
Xin L, Wen Y, Song J, Chen T, Zhai Q. Bone regeneration strategies based on organelle homeostasis of mesenchymal stem cells. Front Endocrinol (Lausanne) 2023; 14:1151691. [PMID: 37033227 PMCID: PMC10081449 DOI: 10.3389/fendo.2023.1151691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The organelle modulation has emerged as a crucial contributor to the organismal homeostasis. The mesenchymal stem cells (MSCs), with their putative functions in maintaining the regeneration ability of adult tissues, have been identified as a major driver to underlie skeletal health. Bone is a structural and endocrine organ, in which the organelle regulation on mesenchymal stem cells (MSCs) function has most been discovered recently. Furthermore, potential treatments to control bone regeneration are developing using organelle-targeted techniques based on manipulating MSCs osteogenesis. In this review, we summarize the most current understanding of organelle regulation on MSCs in bone homeostasis, and to outline mechanistic insights as well as organelle-targeted approaches for accelerated bone regeneration.
Collapse
Affiliation(s)
- Liangjing Xin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yao Wen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Qiming Zhai, ; Tao Chen, ; Jinlin Song,
| | - Tao Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Qiming Zhai, ; Tao Chen, ; Jinlin Song,
| | - Qiming Zhai
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Qiming Zhai, ; Tao Chen, ; Jinlin Song,
| |
Collapse
|
79
|
Alternative Methods as Tools for Obesity Research: In Vitro and In Silico Approaches. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010108. [PMID: 36676057 PMCID: PMC9860640 DOI: 10.3390/life13010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023]
Abstract
The study of adipogenesis is essential for understanding and treating obesity, a multifactorial problem related to body fat accumulation that leads to several life-threatening diseases, becoming one of the most critical public health problems worldwide. In this review, we propose to provide the highlights of the adipogenesis study based on in vitro differentiation of human mesenchymal stem cells (hMSCs). We list in silico methods, such as molecular docking for identification of molecular targets, and in vitro approaches, from 2D, more straightforward and applied for screening large libraries of substances, to more representative physiological models, such as 3D and bioprinting models. We also describe the development of physiological models based on microfluidic systems applied to investigate adipogenesis in vitro. We intend to identify the main alternative models for adipogenesis evaluation, contributing to the direction of preclinical research in obesity. Future directions indicate the association of in silico and in vitro techniques to bring a clear picture of alternative methods based on adipogenesis as a tool for obesity research.
Collapse
|
80
|
Bollmann A, Sons HC, Schiefer JL, Fuchs PC, Windolf J, Suschek CV. Comparative Study of the Osteogenic Differentiation Potential of Adipose Tissue-Derived Stromal Cells and Dedifferentiated Adipose Cells of the Same Tissue Origin under Pro and Antioxidant Conditions. Biomedicines 2022; 10:biomedicines10123071. [PMID: 36551827 PMCID: PMC9776284 DOI: 10.3390/biomedicines10123071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Adipose tissue-derived stromal cells (ASCs) play an important role in various therapeutic approaches to bone regeneration. However, such applications become challenging when the obtained cells show a functional disorder, e.g., an impaired osteogenic differentiation potential (ODP). In addition to ASCs, human adipose tissue is also a source for another cell type with therapeutic potential, the dedifferentiated fat cells (DFATs), which can be obtained from mature adipocytes. Here, we for the first time compared the ODPs of each donors ASC and DFAT obtained from the same adipose tissue sample as well as the role of oxidative stress or antioxidative catalase on their osteogenic outcome. Osteogenic potential of ASC and DFAT from nine human donors were compared in vitro. Flow cytometry, staining for calcium accumulation with alizarin red, alkaline phosphatase assay and Western blots were used over an osteogenic induction period of up to 14 days. H2O2 was used to induce oxidative stress and catalase was used as an antioxidative measure. We have found that ASC and DFAT cultures' ODPs are nearly identical. If ASCs from an adipose tissue sample showed good or bad ODP, so did the corresponding DFAT cultures. The inter-individual variability of the donor ODPs was immense with a maximum factor of about 20 and correlated neither with the age nor the sex of the donors of the adipose tissue. Oxidative stress in the form of exogenously added H2O2 led to a significant ODP decrease in both cell types, with this ODP decrease being significantly lower in DFAT cultures than in the corresponding ASC cultures. Regardless of the individual cell culture-specific ODP, however, exogenously applied catalase led to an approx. 2.5-fold increase in osteogenesis in the ASC and DFAT cultures. Catalase appears to be a potent pro-osteogenic factor, at least in vitro. A new finding that points to innovative strategies and therapeutic approaches in bone regeneration. Furthermore, our results show that DFATs behave similarly to ASCs of the same adipose tissue sample with respect to ODPs and could therefore be a very attractive and readily available source of multipotent stem cells in bone regenerative therapies.
Collapse
Affiliation(s)
- Anne Bollmann
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Hans Christian Sons
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Jennifer Lynn Schiefer
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Ostmerheimer Straße 200, 51109 Köln, Germany
| | - Paul C. Fuchs
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Ostmerheimer Straße 200, 51109 Köln, Germany
| | - Joachim Windolf
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Christoph Viktor Suschek
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
81
|
Thanaskody K, Jusop AS, Tye GJ, Wan Kamarul Zaman WS, Dass SA, Nordin F. MSCs vs. iPSCs: Potential in therapeutic applications. Front Cell Dev Biol 2022; 10:1005926. [PMID: 36407112 PMCID: PMC9666898 DOI: 10.3389/fcell.2022.1005926] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 01/24/2023] Open
Abstract
Over the past 2 decades, mesenchymal stem cells (MSCs) have attracted a lot of interest as a unique therapeutic approach for a variety of diseases. MSCs are capable of self-renewal and multilineage differentiation capacity, immunomodulatory, and anti-inflammatory properties allowing it to play a role in regenerative medicine. Furthermore, MSCs are low in tumorigenicity and immune privileged, which permits the use of allogeneic MSCs for therapies that eliminate the need to collect MSCs directly from patients. Induced pluripotent stem cells (iPSCs) can be generated from adult cells through gene reprogramming with ectopic expression of specific pluripotency factors. Advancement in iPS technology avoids the destruction of embryos to make pluripotent cells, making it free of ethical concerns. iPSCs can self-renew and develop into a plethora of specialized cells making it a useful resource for regenerative medicine as they may be created from any human source. MSCs have also been used to treat individuals infected with the SARS-CoV-2 virus. MSCs have undergone more clinical trials than iPSCs due to high tumorigenicity, which can trigger oncogenic transformation. In this review, we discussed the overview of mesenchymal stem cells and induced pluripotent stem cells. We briefly present therapeutic approaches and COVID-19-related diseases using MSCs and iPSCs.
Collapse
Affiliation(s)
- Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia,Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia,*Correspondence: Fazlina Nordin,
| |
Collapse
|
82
|
Liu S, Chen D, Xie Z, Zhao S, Tang W, He H, Ho YP, Ho HP, Kong SK. A high spatial resolution osteogenic differentiation in human mesenchymal stem cells induced by femtosecond laser. JOURNAL OF BIOPHOTONICS 2022; 15:e202200144. [PMID: 35852043 DOI: 10.1002/jbio.202200144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
A variety of physical and chemical methods have been developed in research laboratories for the induction of stem cell differentiation. However, the use of exogenous chemicals and materials may limit their widespread utility in clinics. To develop a clean and precise induction approach with minimal invasion, we reported here that 1-second stimulation by a tightly focused femtosecond laser (fsL) (140 mW/μm2 , 200 fs) can modulate the signaling systems in human mesenchymal cells, such as intracellular calcium and reactive oxygen species. Upon stimulation on an automatic platform, hMSCs were found to express osteoblastic markers and form calcium-rich deposits. Moreover, tissue mineralization was observed when the fsL-illuminated hMSCs were ectopically transplanted into nude mice. Collectively, we described a novel and non-contact optical stimulation method for cell differentiation with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Shiyue Liu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Dihan Chen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Zhenming Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Shirui Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Wanyi Tang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hao He
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Siu-Kai Kong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
83
|
Zheng K, Guo L, Ullah S, Cao Y, Huang X, shan H, Jiang J, Wu J, Jiang Y. Proteome changes of sheep rumen epithelium during postnatal development. Front Genet 2022; 13:1031707. [PMID: 36386827 PMCID: PMC9641056 DOI: 10.3389/fgene.2022.1031707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/13/2022] [Indexed: 12/03/2022] Open
Abstract
Background: The development of the rumen epithelium is a critical physiological challenge for sheep. However, the molecular mechanism underlying postnatal rumen development in sheep remains rarely understood. Results: Here, we used a shotgun approach and bioinformatics analyses to investigate and compare proteomic profiles of sheep rumen epithelium tissue on day 0, 15, 30, 45, and 60 of age. A total of 4,523 proteins were identified, in which we found 852, 342, 164, and 95 differentially expressed proteins (DEPs) between day 0 and day 15, between day 15 and day 30, between day 30 and day 45, between day 45 and day 60, respectively. Furthermore, subcellular localization analysis showed that the DEPs were majorly localized in mitochondrion between day 0 and day 15, after which nucleus proteins were the most DEPs. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that DEPs significantly enriched in mitochondrion, ubiquitination, histone modifications, glutathione synthase activity, and wnt and nortch signaling pathways. Conclusion: Our data indicate that the biogenesis of mitochondrion in rumen epithelial cell is essential for the initiation of rumen epithelial development. Glutathione, wnt signaling pathway and nortch signaling pathway participated in rumen epithelial growth. Ubiquitination, post-translational modifications of histone might be key molecular functions in regulating rumen epithelial development.
Collapse
Affiliation(s)
- Kaizhi Zheng
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liangyong Guo
- Huzhou Academy of Agricultural Sciences, Huzhou, China
| | - Saif Ullah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences, Lasbela, Pakistan
| | - Yang Cao
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Huang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huili shan
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junfang Jiang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianliang Wu
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Jianliang Wu, ; Yongqing Jiang,
| | - Yongqing Jiang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Jianliang Wu, ; Yongqing Jiang,
| |
Collapse
|
84
|
Li Y, Li L, Li X, Luo B, Ye Q, Wang H, Yang L, Zhu X, Han L, Zhang R, Tian H, Wang P. A mechanistic review of chinese medicine polyphenols on bone formation and resorption. Front Pharmacol 2022; 13:1017538. [PMID: 36313339 PMCID: PMC9597080 DOI: 10.3389/fphar.2022.1017538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Bone reconstruction includes a steady state system of bone formation and bone absorption. This tight coupling requires subtle coordination between osteoblasts and osteoclasts. If this balance is broken, it will lead to bone mass loss, bone density reduction, and bone metabolic diseases, such as osteoporosis. Polyphenols in Chinese herbal medicines are active ingredients in plant extracts with high safety and few side effects, and they can play a role in affecting bone formation and bone resorption. Some of these have estrogen-like effects and can better target bone health in postmenopausal women. The purpose of this review is to provide comprehensive information on the mechanisms underlying the relationship between traditional Chinese medicine polyphenols and bone formation or bone resorption.
Collapse
Affiliation(s)
- Yan Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lingyu Li
- Cancer Research Institute, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaoyun Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Bingjie Luo
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Qianyun Ye
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Haoyu Wang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Li Yang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaofeng Zhu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
| | - Li Han
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ronghua Zhang
- Cancer Research Institute, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
- *Correspondence: Ronghua Zhang, ; Huaqin Tian, ; Panpan Wang,
| | - Huaqin Tian
- Foshan Hospital of Traditional Chinese Medicine, Foshan, China
- *Correspondence: Ronghua Zhang, ; Huaqin Tian, ; Panpan Wang,
| | - Panpan Wang
- Cancer Research Institute, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
- First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Ronghua Zhang, ; Huaqin Tian, ; Panpan Wang,
| |
Collapse
|
85
|
Yoshioka H, Komura S, Kuramitsu N, Goto A, Hasegawa T, Amizuka N, Ishimoto T, Ozasa R, Nakano T, Imai Y, Akiyama H. Deletion of Tfam in Prx1-Cre expressing limb mesenchyme results in spontaneous bone fractures. J Bone Miner Metab 2022; 40:839-852. [PMID: 35947192 DOI: 10.1007/s00774-022-01354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/21/2022] [Indexed: 10/15/2022]
Abstract
INTRODUCTION Osteoblasts require substantial amounts of energy to synthesize the bone matrix and coordinate skeleton mineralization. This study analyzed the effects of mitochondrial dysfunction on bone formation, nano-organization of collagen and apatite, and the resultant mechanical function in mouse limbs. MATERIALS AND METHODS Limb mesenchyme-specific Tfam knockout (Tfamf/f;Prx1-Cre: Tfam-cKO) mice were analyzed morphologically and histologically, and gene expressions in the limb bones were assessed by in situ hybridization, qPCR, and RNA sequencing (RNA-seq). Moreover, we analyzed the mitochondrial function of osteoblasts in Tfam-cKO mice using mitochondrial membrane potential assay and transmission electron microscopy (TEM). We investigated the pathogenesis of spontaneous bone fractures using immunohistochemical analysis, TEM, birefringence analyzer, microbeam X-ray diffractometer and nanoindentation. RESULTS Forelimbs in Tfam-cKO mice were significantly shortened from birth, and spontaneous fractures occurred after birth, resulting in severe limb deformities. Histological and RNA-seq analyses showed that bone hypoplasia with a decrease in matrix mineralization was apparent, and the expression of type I collagen and osteocalcin was decreased in osteoblasts of Tfam-cKO mice, although Runx2 expression was unchanged. Decreased type I collagen deposition and mineralization in the matrix of limb bones in Tfam-cKO mice were associated with marked mitochondrial dysfunction. Tfam-cKO mice bone showed a significantly lower Young's modulus and hardness due to poor apatite orientation which is resulted from decreased osteocalcin expression. CONCLUSION Mice with limb mesenchyme-specific Tfam deletions exhibited spontaneous limb bone fractures, resulting in severe limb deformities. Bone fragility was caused by poor apatite orientation owing to impaired osteoblast differentiation and maturation.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Shingo Komura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Norishige Kuramitsu
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Atsushi Goto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| |
Collapse
|
86
|
Walsh SK, Soni R, Arendt LM, Skala MC, Henak CR. Maturation- and degeneration-dependent articular cartilage metabolism via optical redox ratio imaging. J Orthop Res 2022; 40:1735-1743. [PMID: 34792214 DOI: 10.1002/jor.25214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023]
Abstract
From the two metabolic processes in healthy cartilage, glycolysis has been associated with proliferation and oxidative phosphorylation (oxphos) with matrix synthesis. Recently, metabolic dysregulation was significantly correlated with cartilage degradation and osteoarthritis progression. While these findings suggest maturation predisposes cartilage to metabolic instability with consequences for tissue maintenance, these links have not been shown. Therefore, this study sought to address three hypotheses (a) chondrocytes exhibit differential metabolic activity between immaturity (0-4 months), adolescence (5-18 months), and maturity (>18 months); (b) perturbation of metabolic activity has consequences on expression of genes pertinent to cartilage tissue maintenance; and (c) severity of cartilage damage is positively correlated with glycolysis and oxphos activity as well as optical redox ratio in postadolescent cartilage. Porcine femoral cartilage samples from pigs (3 days to 6 years) underwent optical redox ratio imaging, which measures autofluorescence of NAD(P)H and FAD. Gene expression analysis and histological scoring was conducted for comparison against imaging metrics. NAD(P)H and FAD autofluorescence both demonstrated increasing intensity with age, while optical redox ratio was lowest in adolescent samples compared to immature or mature samples. Inhibition of glycolysis suppressed expression of Col2, Col1, ADAMTS4, and ADAMTS5, while oxphos inhibition had no effect. FAD fluorescence and optical redox ratio were positively correlated with histological degeneration. This study demonstrates maturation- and degeneration-dependent metabolic activity in cartilage and explores the consequences of this differential activity on gene expression. This study aids our basic understanding of cartilage biology and highlights opportunity for potential diagnostic applications.
Collapse
Affiliation(s)
- Shannon K Walsh
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rikin Soni
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lisa M Arendt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Melissa C Skala
- Morgridge Institute for Research, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
87
|
Kholodenko IV, Gisina AM, Manukyan GV, Majouga AG, Svirshchevskaya EV, Kholodenko RV, Yarygin KN. Resistance of Human Liver Mesenchymal Stem Cells to FAS-Induced Cell Death. Curr Issues Mol Biol 2022; 44:3428-3443. [PMID: 36005132 PMCID: PMC9406952 DOI: 10.3390/cimb44080236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/05/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have a pronounced therapeutic potential in various pathological conditions. Though therapeutic effects of MSC transplantation have been studied for a long time, the underlying mechanisms are still not clear. It has been shown that transplanted MSCs are rapidly eliminated, presumably by apoptosis. As the mechanisms of MSC apoptosis are not fully understood, in the present work we analyzed MSC sensitivity to Fas-induced apoptosis using MSCs isolated from the biopsies of liver fibrosis patients (L-MSCs). The level of cell death was analyzed by flow cytometry in the propidium iodide test. The luminescent ATP assay was used to measure cellular ATP levels; and the mitochondrial membrane potential was assessed using the potential-dependent dye JC-1. We found that human L-MSCs were resistant to Fas-induced cell death over a wide range of FasL and anti-Fas mAb concentrations. At the same time, intrinsic death signal inducers CoCl2 and staurosporine caused apoptosis of L-MSCs in a dose-dependent manner. Despite the absence of Fas-induced cell death treatment of L-MSCs with low concentrations of FasL or anti-Fas mAb resulted in a cellular ATP level decrease, while high concentrations of the inducers caused a decline of the mitochondrial membrane potential. Pre-incubation of L-MSCs with the pro-inflammatory cytokine TNF-α did not promote L-MSC cell death. Our data indicate that human L-MSCs have increased resistance to receptor-mediated cell death even under inflammatory conditions.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.M.G.); (K.N.Y.)
- Correspondence: ; Tel.: +7-(905)7765062; Fax: +7-(499)2450857
| | - Alisa M. Gisina
- Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.M.G.); (K.N.Y.)
| | - Garik V. Manukyan
- Petrovsky Russian Research Center of Surgery, 119991 Moscow, Russia;
| | - Alexander G. Majouga
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Products, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Elena V. Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (R.V.K.)
| | - Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (R.V.K.)
| | - Konstantin N. Yarygin
- Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.M.G.); (K.N.Y.)
| |
Collapse
|
88
|
Energy Metabolism and Lipidome Are Highly Regulated during Osteogenic Differentiation of Dental Follicle Cells. Stem Cells Int 2022; 2022:3674931. [PMID: 35903407 PMCID: PMC9315453 DOI: 10.1155/2022/3674931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Dental follicle cells (DFCs) are stem/progenitor cells of the periodontium and give rise to alveolar osteoblasts. However, understanding of the molecular mechanisms of osteogenic differentiation, which is required for cell-based therapies, is delimited. This study is aimed at analyzing the energy metabolism during the osteogenic differentiation of DFCs. Human DFCs were cultured, and osteogenic differentiation was induced by either dexamethasone or bone morphogenetic protein 2 (BMP2). Previous microarray data were reanalyzed to examine pathways that are regulated after osteogenic induction. Expression and activity of metabolic markers were evaluated by western blot analysis and specific assays, relative amount of mitochondrial DNA was measured by real-time quantitative polymerase chain reaction, the oxidative state of cells was determined by a glutathione assay, and the lipidome of cells was analyzed via mass spectrometry (MS). Moreover, osteogenic markers were analyzed after the inhibition of fatty acid synthesis by 5-(tetradecyloxy)-2-furoic acid or C75. Pathway enrichment analysis of microarray data revealed that carbon metabolism was amongst the top regulated pathways after osteogenic induction in DFCs. Further analysis showed that enzymes involved in glycolysis, citric acid cycle, mitochondrial activity, and lipid metabolism are differentially expressed during differentiation, with most markers upregulated and more markedly after induction with dexamethasone compared to BMP2. Moreover, the cellular state was more oxidized, and mitochondrial DNA was distinctly upregulated during the second half of differentiation. Besides, MS of the lipidome revealed higher lipid concentrations after osteogenic induction, with a preference for species with lower numbers of C-atoms and double bonds, which indicates a de novo synthesis of lipids. Concordantly, inhibition of fatty acid synthesis impeded the osteogenic differentiation of DFCs. This study demonstrates that energy metabolism is highly regulated during osteogenic differentiation of DFCs including changes in the lipidome suggesting enhanced de novo synthesis of lipids, which are required for the differentiation process.
Collapse
|
89
|
Persad KL, Lopaschuk GD. Energy Metabolism on Mitochondrial Maturation and Its Effects on Cardiomyocyte Cell Fate. Front Cell Dev Biol 2022; 10:886393. [PMID: 35865630 PMCID: PMC9294643 DOI: 10.3389/fcell.2022.886393] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
Alterations in energy metabolism play a major role in the lineage of cardiomyocytes, such as the dramatic changes that occur in the transition from neonate to newborn. As cardiomyocytes mature, they shift from a primarily glycolytic state to a mitochondrial oxidative metabolic state. Metabolic intermediates and metabolites may have epigenetic and transcriptional roles in controlling cell fate by increasing mitochondrial biogenesis. In the maturing cardiomyocyte, such as in the postnatal heart, fatty acid oxidation increases in conjunction with increased mitochondrial biogenesis driven by the transcriptional coregulator PGC1-α. PGC1-α is necessary for mitochondrial biogenesis in the heart at birth, with deficiencies leading to postnatal cardiomyopathy. While stem cell therapy as a treatment for heart failure requires further investigation, studies suggest that adult stem cells may secrete cardioprotective factors which may regulate cardiomyocyte differentiation and survival. This review will discuss how metabolism influences mitochondrial biogenesis and how mitochondrial biogenesis influences cell fate, particularly in the context of the developing cardiomyocyte. The implications of energy metabolism on stem cell differentiation into cardiomyocytes and how this may be utilized as a therapy against heart failure and cardiovascular disease will also be discussed.
Collapse
|
90
|
Győrgy R, Kostoglou M, Mantalaris A, Georgiadis MC. Development of a multi-scale model to simulate Mesenchymal Stem Cell osteogenic differentiation within hydrogels in a rotating wall bioreactor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
91
|
Cueto-Ureña C, Mocholí E, Escrivá-Fernández J, González-Granero S, Sánchez-Hernández S, Solana-Orts A, Ballester-Lurbe B, Benabdellah K, Guasch RM, García-Verdugo JM, Martín F, Coffer PJ, Pérez-Roger I, Poch E. Rnd3 Expression is Necessary to Maintain Mitochondrial Homeostasis but Dispensable for Autophagy. Front Cell Dev Biol 2022; 10:834561. [PMID: 35832788 PMCID: PMC9271580 DOI: 10.3389/fcell.2022.834561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is a highly conserved process that mediates the targeting and degradation of intracellular components to lysosomes, contributing to the maintenance of cellular homeostasis and to obtaining energy, which ensures viability under stress conditions. Therefore, autophagy defects are common to different neurodegenerative disorders. Rnd3 belongs to the family of Rho GTPases, involved in the regulation of actin cytoskeleton dynamics and important in the modulation of cellular processes such as migration and proliferation. Murine models have shown that Rnd3 is relevant for the correct development and function of the Central Nervous System and lack of its expression produces several motor alterations and neural development impairment. However, little is known about the molecular events through which Rnd3 produces these phenotypes. Interestingly we have observed that Rnd3 deficiency correlates with the appearance of autophagy impairment profiles and irregular mitochondria. In this work, we have explored the impact of Rnd3 loss of expression in mitochondrial function and autophagy, using a Rnd3 KO CRISPR cell model. Rnd3 deficient cells show no alterations in autophagy and mitochondria turnover is not impaired. However, Rnd3 KO cells have an altered mitochondria oxidative metabolism, resembling the effect caused by oxidative stress. In fact, lack of Rnd3 expression makes these cells strictly dependent on glycolysis to obtain energy. Altogether, our results demonstrate that Rnd3 is relevant to maintain mitochondria function, suggesting a possible relationship with neurodegenerative diseases.
Collapse
Affiliation(s)
- Cristina Cueto-Ureña
- School of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Enric Mocholí
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Josep Escrivá-Fernández
- School of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Susana González-Granero
- Laboratorio de Neurobiologia Comparada, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia and CIBER de Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Sabina Sánchez-Hernández
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Granada, Spain
| | - Amalia Solana-Orts
- School of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Begoña Ballester-Lurbe
- School of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Karim Benabdellah
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Granada, Spain
| | - Rosa M. Guasch
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiologia Comparada, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia and CIBER de Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Francisco Martín
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Granada, Spain
| | - Paul J. Coffer
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ignacio Pérez-Roger
- School of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
- *Correspondence: Ignacio Pérez-Roger, ; Enric Poch,
| | - Enric Poch
- School of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
- *Correspondence: Ignacio Pérez-Roger, ; Enric Poch,
| |
Collapse
|
92
|
Medeiros C, Wallace JM. High glucose-induced inhibition of osteoblast like MC3T3-E1 differentiation promotes mitochondrial perturbations. PLoS One 2022; 17:e0270001. [PMID: 35714142 PMCID: PMC9205493 DOI: 10.1371/journal.pone.0270001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetes mellitus is a metabolic disorder that causes health concerns worldwide. Patients with diabetes exhibit multisystemic symptoms, including loss of bone quality over time. The progressive deterioration of bone promotes failure to withstand damage and increases the risk of fractures. Much of the molecular and metabolic mechanism(s) in diabetic bone remains unclear. In vitro studies suggest that hyperglycemia inhibits mineralization, affecting bone formation and function. In this study, inhibition of osteoblast differentiation was induced using hyperglycemia to assess whether high glucose promotes mitochondrial impairment along with altered bone matrix formation. It was hypothesized that bone energy metabolism would be altered in these cells as calcium deposition, a key phase for bone function, is suppressed. Early passages of osteoblast like MC3T3-E1 cells were differentiated under normal and high glucose conditions. To investigate osteoblast differentiation, we quantified calcium accumulation by alizarin red staining and analyzed immunoblots of key proteins. To assess mitochondrial function, we quantified mitochondrial DNA (mtDNA), detected expression and function of key proteins from the Tricarboxylic (TCA) cycle, measured mitochondrial respiration, and fuel oxidation of alternative nutrients. Results confirmed previous work showing that mineralization was inhibited and AKT expression was reduced in high glucose-treated bone cells. Unexpectedly, high glucose-treated osteoblast cells utilize both mitochondrial respiration and glycolysis to maintain energy demands with partial help of fatty acid for reliance of baseline bioenergetics. These metabolic shifts suggest that hyperglycemia maintain bone metabolic needs in an early differentiated state concurrent to the inhibition in bone matrix formation.
Collapse
Affiliation(s)
- Claudia Medeiros
- Department of Biomedical Engineering, Indiana University–Purdue Indianapolis (IUPUI), Indianapolis, Indiana, United States of America
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University–Purdue Indianapolis (IUPUI), Indianapolis, Indiana, United States of America,* E-mail:
| |
Collapse
|
93
|
Sautchuk R, Eliseev RA. Cell energy metabolism and bone formation. Bone Rep 2022; 16:101594. [PMID: 35669927 PMCID: PMC9162940 DOI: 10.1016/j.bonr.2022.101594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Energy metabolism plays an important role in cell and tissue ability to effectively function, maintain homeostasis, and perform repair. Yet, the role of energy metabolism in skeletal tissues in general and in bone, in particular, remains understudied. We, here, review the aspects of cell energy metabolism relevant to bone tissue, such as: i) availability of substrates and oxygen; ii) metabolism regulatory mechanisms most active in bone tissue, e.g. HIF and BMP; iii) crosstalk of cell bioenergetics with other cell functions, e.g. proliferation and differentiation; iv) role of glycolysis and mitochondrial oxidative phosphorylation in osteogenic lineage; and v) most significant changes in bone energy metabolism observed in aging and other pathologies. In addition, we review available methods to study energy metabolism on a subcellular, cellular, tissue, and live animal levels.
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Roman A. Eliseev
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, 601 Elmwood Ave, Rochester, NY 14642, United States
| |
Collapse
|
94
|
Maity J, Barthels D, Sarkar J, Prateeksha P, Deb M, Rolph D, Das H. Ferutinin induces osteoblast differentiation of DPSCs via induction of KLF2 and autophagy/mitophagy. Cell Death Dis 2022; 13:452. [PMID: 35552354 PMCID: PMC9098908 DOI: 10.1038/s41419-022-04903-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/29/2022] [Indexed: 01/18/2023]
Abstract
Osteoblast differentiation is critically reduced in various bone-related pathogenesis, including arthritis and osteoporosis. For future development of effective regenerative therapeutics, herein, we reveal the involved molecular mechanisms of a phytoestrogen, ferutinin-induced initiation of osteoblast differentiation from dental pulp-derived stem cell (DPSC). We demonstrate the significantly increased expression level of a transcription factor, Kruppel-like factor 2 (KLF2) along with autophagy-related molecules in DPSCs after induction with ferutinin. The loss-of-function and the gain-of-function approaches of KLF2 confirmed that the ferutinin-induced KLF2 modulated autophagic and OB differentiation-related molecules. Further, knockdown of the autophagic molecule (ATG7 or BECN1) from DPSC resulted not only in a decreased level of KLF2 but also in the reduced levels of OB differentiation-related molecules. Moreover, mitochondrial membrane potential-related molecules were increased and induction of mitophagy was observed in DPSCs after the addition of ferutinin. The reduction of mitochondrial as well as total ROS generations; and induction of intracellular Ca2+ production were also observed in ferutinin-treated DPSCs. To test the mitochondrial respiration in DPSCs, we found that the cells treated with ferutinin showed a reduced extracellular acidification rate (ECAR) than that of their vehicle-treated counterparts. Furthermore, mechanistically, chromatin immunoprecipitation (ChIP) analysis revealed that the addition of ferutinin in DPSCs not only induced the level of KLF2, but also induced the transcriptionally active epigenetic marks (H3K27Ac and H3K4me3) on the promoter region of the autophagic molecule ATG7. These results provide strong evidence that ferutinin stimulates OB differentiation via induction of KLF2-mediated autophagy/mitophagy.
Collapse
Affiliation(s)
- Jyotirindra Maity
- grid.416992.10000 0001 2179 3554Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX USA
| | - Derek Barthels
- grid.416992.10000 0001 2179 3554Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX USA
| | - Jaganmay Sarkar
- grid.416992.10000 0001 2179 3554Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX USA
| | - Prateeksha Prateeksha
- grid.416992.10000 0001 2179 3554Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX USA
| | - Moonmoon Deb
- grid.416992.10000 0001 2179 3554Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX USA
| | - Daniela Rolph
- grid.416992.10000 0001 2179 3554Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX USA
| | - Hiranmoy Das
- grid.416992.10000 0001 2179 3554Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX USA
| |
Collapse
|
95
|
Kandarakov O, Belyavsky A, Semenova E. Bone Marrow Niches of Hematopoietic Stem and Progenitor Cells. Int J Mol Sci 2022; 23:ijms23084462. [PMID: 35457280 PMCID: PMC9032554 DOI: 10.3390/ijms23084462] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
The mammalian hematopoietic system is remarkably efficient in meeting an organism’s vital needs, yet is highly sensitive and exquisitely regulated. Much of the organismal control over hematopoiesis comes from the regulation of hematopoietic stem cells (HSCs) by specific microenvironments called niches in bone marrow (BM), where HSCs reside. The experimental studies of the last two decades using the most sophisticated and advanced techniques have provided important data on the identity of the niche cells controlling HSCs functions and some mechanisms underlying niche-HSC interactions. In this review we discuss various aspects of organization and functioning of the HSC cell niche in bone marrow. In particular, we review the anatomy of BM niches, various cell types composing the niche, niches for more differentiated cells, metabolism of HSCs in relation to the niche, niche aging, leukemic transformation of the niche, and the current state of HSC niche modeling in vitro.
Collapse
|
96
|
Deng L, Yi S, Yin X, Li Y, Luan Q. MFN2 knockdown promotes osteogenic differentiation of iPSC-MSCs through aerobic glycolysis mediated by the Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2022; 13:162. [PMID: 35413941 PMCID: PMC9006575 DOI: 10.1186/s13287-022-02836-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Background Mitofusin-2 (MFN2) is a kind of GTPase that participates in the regulation of mitochondrial fusion, which is related to a variety of physiological and pathological processes, including energy metabolism, cell differentiation, and embryonic development. However, it remains unclear whether MFN2 is involved in the metabolism and osteogenic differentiation of mesenchymal stem cells (MSCs). Methods MFN2 knockdown (MFN2-KD) and MFN2-overexpressing (MFN2-OE) induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) were constructed by lentivirus. The commercial kits were utilized to detect the glycolysis and oxidative phosphorylation (OXPHOS) rate. Flow cytometry, Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), RNA-seq, immunofluorescence, and immunoprecipitation were employed for phenotype and molecular mechanism assessment. Results We demonstrated that MFN2 and Wnt/β-catenin signaling pathway regulated glycolysis of iPSC-MSCs. The lack of MFN2 promoted the osteogenic differentiation of iPSC-MSCs, and aerobic glycolysis in the presence of sufficient oxygen, which increased glucose consumption and lactic acid production, as well as the glycolytic enzyme activity and gene expression. Inhibiting the Wnt/β-catenin signaling pathway normalized the enhanced glycolytic rate and osteogenic differentiation of MFN2-KD iPSC-MSCs. MFN2-OE iPSC-MSCs displayed the opposite phenotype. Conclusions Downregulating MFN2 promotes osteogenic differentiation of iPSC-MSCs through aerobic glycolysis mediated by the Wnt/β-catenin signaling pathway. Our research reveals the new function of MFN2 in regulating the osteogenic differentiation and energy metabolism of MSCs, which will provide a new therapeutic target and theoretical basis for alveolar bone repair and periodontal regenerative treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02836-w.
Collapse
Affiliation(s)
- Lidi Deng
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Siqi Yi
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Xiaohui Yin
- Department of First Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Yang Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing, 100191, People's Republic of China.
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
97
|
Endo- and Exometabolome Crosstalk in Mesenchymal Stem Cells Undergoing Osteogenic Differentiation. Cells 2022; 11:cells11081257. [PMID: 35455937 PMCID: PMC9024772 DOI: 10.3390/cells11081257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
This paper describes, for the first time to our knowledge, a lipidome and exometabolome characterization of osteogenic differentiation for human adipose tissue stem cells (hAMSCs) using nuclear magnetic resonance (NMR) spectroscopy. The holistic nature of NMR enabled the time-course evolution of cholesterol, mono- and polyunsaturated fatty acids (including ω-6 and ω-3 fatty acids), several phospholipids (phosphatidylcholine, phosphatidylethanolamine, sphingomyelins, and plasmalogens), and mono- and triglycerides to be followed. Lipid changes occurred almost exclusively between days 1 and 7, followed by a tendency for lipidome stabilization after day 7. On average, phospholipids and longer and more unsaturated fatty acids increased up to day 7, probably related to plasma membrane fluidity. Articulation of lipidome changes with previously reported polar endometabolome profiling and with exometabolome changes reported here in the same cells, enabled important correlations to be established during hAMSC osteogenic differentiation. Our results supported hypotheses related to the dynamics of membrane remodelling, anti-oxidative mechanisms, protein synthesis, and energy metabolism. Importantly, the observation of specific up-taken or excreted metabolites paves the way for the identification of potential osteoinductive metabolites useful for optimized osteogenic protocols.
Collapse
|
98
|
Jîtcă G, Ősz BE, Tero-Vescan A, Miklos AP, Rusz CM, Bătrînu MG, Vari CE. Positive Aspects of Oxidative Stress at Different Levels of the Human Body: A Review. Antioxidants (Basel) 2022; 11:antiox11030572. [PMID: 35326222 PMCID: PMC8944834 DOI: 10.3390/antiox11030572] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Oxidative stress is the subject of numerous studies, most of them focusing on the negative effects exerted at both molecular and cellular levels, ignoring the possible benefits of free radicals. More and more people admit to having heard of the term "oxidative stress", but few of them understand the meaning of it. We summarized and analyzed the published literature data in order to emphasize the importance and adaptation mechanisms of basal oxidative stress. This review aims to provide an overview of the mechanisms underlying the positive effects of oxidative stress, highlighting these effects, as well as the risks for the population consuming higher doses than the recommended daily intake of antioxidants. The biological dose-response curve in oxidative stress is unpredictable as reactive species are clearly responsible for cellular degradation, whereas antioxidant therapies can alleviate senescence by maintaining redox balance; nevertheless, excessive doses of the latter can modify the redox balance of the cell, leading to a negative outcome. It can be stated that the presence of oxidative status or oxidative stress is a physiological condition with well-defined roles, yet these have been insufficiently researched and explored. The involvement of reactive oxygen species in the pathophysiology of some associated diseases is well-known and the involvement of antioxidant therapies in the processes of senescence, apoptosis, autophagy, and the maintenance of cellular homeostasis cannot be denied. All data in this review support the idea that oxidative stress is an undesirable phenomenon in high and long-term concentrations, but regular exposure is consistent with the hormetic theory.
Collapse
Affiliation(s)
- George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| | - Bianca E. Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (G.J.); (C.E.V.)
- Correspondence:
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.T.-V.); (A.P.M.)
| | - Amalia Pușcaș Miklos
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.T.-V.); (A.P.M.)
| | - Carmen-Maria Rusz
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (C.-M.R.); (M.-G.B.)
| | - Mădălina-Georgiana Bătrînu
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (C.-M.R.); (M.-G.B.)
| | - Camil E. Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| |
Collapse
|
99
|
LncRNA GACAT2 binds with protein PKM1/2 to regulate cell mitochondrial function and cementogenesis in an inflammatory environment. Bone Res 2022; 10:29. [PMID: 35296649 PMCID: PMC8927299 DOI: 10.1038/s41413-022-00197-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/31/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
Periodontal ligament stem cells (PDLSCs) are a key cell type for restoring/regenerating lost/damaged periodontal tissues, including alveolar bone, periodontal ligament and root cementum, the latter of which is important for regaining tooth function. However, PDLSCs residing in an inflammatory environment generally exhibit compromised functions, as demonstrated by an impaired ability to differentiate into cementoblasts, which are responsible for regrowing the cementum. This study investigated the role of mitochondrial function and downstream long noncoding RNAs (lncRNAs) in regulating inflammation-induced changes in the cementogenesis of PDLSCs. We found that the inflammatory cytokine-induced impairment of the cementogenesis of PDLSCs was closely correlated with their mitochondrial function, and lncRNA microarray analysis and gain/loss-of-function studies identified GACAT2 as a regulator of the cellular events involved in inflammation-mediated mitochondrial function and cementogenesis. Subsequently, a comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) and parallel reaction monitoring (PRM) assays revealed that GACAT2 could directly bind to pyruvate kinase M1/2 (PKM1/2), a protein correlated with mitochondrial function. Further functional studies demonstrated that GACAT2 overexpression increased the cellular protein expression of PKM1/2, the PKM2 tetramer and phosphorylated PKM2, which led to enhanced pyruvate kinase (PK) activity and increased translocation of PKM2 into mitochondria. We then found that GACAT2 overexpression could reverse the damage to mitochondrial function and cementoblastic differentiation of PDLSCs induced by inflammation and that this effect could be abolished by PKM1/2 knockdown. Our data indicated that by binding to PKM1/2 proteins, the lncRNA GACAT2 plays a critical role in regulating mitochondrial function and cementogenesis in an inflammatory environment.
Collapse
|
100
|
Velarde F, Ezquerra S, Delbruyere X, Caicedo A, Hidalgo Y, Khoury M. Mesenchymal stem cell-mediated transfer of mitochondria: mechanisms and functional impact. Cell Mol Life Sci 2022; 79:177. [PMID: 35247083 PMCID: PMC11073024 DOI: 10.1007/s00018-022-04207-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022]
Abstract
There is a steadily growing interest in the use of mitochondria as therapeutic agents. The use of mitochondria derived from mesenchymal stem/stromal cells (MSCs) for therapeutic purposes represents an innovative approach to treat many diseases (immune deregulation, inflammation-related disorders, wound healing, ischemic events, and aging) with an increasing amount of promising evidence, ranging from preclinical to clinical research. Furthermore, the eventual reversal, induced by the intercellular mitochondrial transfer, of the metabolic and pro-inflammatory profile, opens new avenues to the understanding of diseases' etiology, their relation to both systemic and local risk factors, and also leads to new therapeutic tools for the control of inflammatory and degenerative diseases. To this end, we illustrate in this review, the triggers and mechanisms behind the transfer of mitochondria employed by MSCs and the underlying benefits as well as the possible adverse effects of MSCs mitochondrial exchange. We relay the rationale and opportunities for the use of these organelles in the clinic as cell-based product.
Collapse
Affiliation(s)
- Francesca Velarde
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
- Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Sarah Ezquerra
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Xavier Delbruyere
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Andres Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Yessia Hidalgo
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile.
| | - Maroun Khoury
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile.
| |
Collapse
|