51
|
Odobasic D, Yang Y, Muljadi RCM, O'Sullivan KM, Kao W, Smith M, Morand EF, Holdsworth SR. Endogenous myeloperoxidase is a mediator of joint inflammation and damage in experimental arthritis. Arthritis Rheumatol 2014; 66:907-17. [PMID: 24757143 DOI: 10.1002/art.38299] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 11/26/2013] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Myeloperoxidase (MPO) is implicated as a local mediator of tissue damage when released extracellularly in many chronic inflammatory diseases. The purpose of this study was to explore the role of endogenous MPO in experimental rheumatoid arthritis (RA). METHODS K/BxN serum-transfer arthritis was induced in C57BL/6 wild-type (WT) and MPO knockout (MPO(-/-) ) mice, and disease development was assessed. MPO activity was measured in joint tissues from mice with or without K/BxN arthritis. Collagen-induced arthritis (CIA) was induced in WT and MPO(-/-) mice, and disease development and immune responses were examined. MPO expression was assessed in synovial biopsy samples from patients with active RA, and the effect of MPO on synovial fibroblasts was tested in vitro. RESULTS MPO was up-regulated in the joints of mice with K/BxN arthritis, and MPO deficiency attenuated the severity of the disease without affecting circulating cytokine levels. In CIA, MPO(-/-) mice had enhanced CD4+ T cell responses and reduced frequency of regulatory T cells in the lymph nodes and spleen, as well as augmented interleukin-17A and diminished interferon-γ secretion by collagen-stimulated splenocytes, without an effect on circulating anticollagen antibody levels. Despite enhanced adaptive immunity in secondary lymphoid organs, CIA development was attenuated in MPO(-/-) mice. Intracellular and extracellular MPO was detected in the synovium of patients with active RA, and human MPO enhanced the proliferation and decreased the apoptosis of synovial fibroblasts in vitro. CONCLUSION MPO contributes to the development of arthritis despite suppressing adaptive immunity in secondary lymphoid organs. This suggests distinct effects of local MPO on arthritogenic effector responses.
Collapse
Affiliation(s)
- Dragana Odobasic
- Monash University and Monash Medical Centre, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Kitching AR. Dendritic cells in progressive renal disease: some answers, many questions. Nephrol Dial Transplant 2014; 29:2185-93. [DOI: 10.1093/ndt/gfu076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
53
|
Kluger MA, Luig M, Wegscheid C, Goerke B, Paust HJ, Brix SR, Yan I, Mittrücker HW, Hagl B, Renner ED, Tiegs G, Wiech T, Stahl RAK, Panzer U, Steinmetz OM. Stat3 programs Th17-specific regulatory T cells to control GN. J Am Soc Nephrol 2014; 25:1291-302. [PMID: 24511136 DOI: 10.1681/asn.2013080904] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A pathogenic role for Th17 cells in inflammatory renal disease is well established. The mechanisms underlying their counter-regulation are, however, largely unknown. Recently, Th17 lineage-specific regulatory T cells (Treg17) that depend on activation of the transcription factor Stat3 were identified. We studied the function of Treg17 in the nephrotoxic nephritis (NTN) model of crescentic GN. The absence of Treg17 cells in Foxp3(Cre)×Stat3(fl/fl) mice resulted in the aggravation of NTN and skewing of renal and systemic immune responses toward Th17. Detailed analysis of Stat3-deficient Tregs revealed that the survival, activation, proliferation, and suppressive function of these cells remained intact. However, Tregs from Foxp3(Cre)×Stat3(fl/fl) mice lacked surface expression of the chemokine receptor CCR6, which resulted in impaired renal trafficking. Furthermore, aggravation of NTN was reversible in the absence of Th17 responses, as shown in CD4(Cre)×Stat3(fl/fl) mice lacking both Treg17 and Th17 cells, suggesting that Th17 cells are indeed the major target of Treg17 cells. Notably, immunohistochemistry revealed CCR6-bearing Treg17 cells in kidney biopsy specimens of patients with GN. CCR6 expression on human Treg17 cells also appears dependent on STAT3, as shown by analysis of Tregs from patients with dominant-negative STAT3 mutations. Our data indicate the presence and involvement of Stat3/STAT3-dependent Treg17 cells that specifically target Th17 cells in murine and human crescentic GN, and suggest the kidney-specific action of these Treg17 cells is regulated by CCR6-directed migration into areas of Th17 inflammation.
Collapse
Affiliation(s)
| | | | - Claudia Wegscheid
- Institut für Experimentelle Hepatologie und Immunologie, Universitätsklinikum Eppendorf, Hamburg, Germany; and
| | | | | | | | | | | | - Beate Hagl
- University Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Ellen D Renner
- University Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Gisa Tiegs
- Institut für Experimentelle Hepatologie und Immunologie, Universitätsklinikum Eppendorf, Hamburg, Germany; and
| | | | | | | | | |
Collapse
|
54
|
Qu N, Xu M, Mizoguchi I, Furusawa JI, Kaneko K, Watanabe K, Mizuguchi J, Itoh M, Kawakami Y, Yoshimoto T. Pivotal roles of T-helper 17-related cytokines, IL-17, IL-22, and IL-23, in inflammatory diseases. Clin Dev Immunol 2013; 2013:968549. [PMID: 23956763 PMCID: PMC3728507 DOI: 10.1155/2013/968549] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/25/2013] [Indexed: 12/20/2022]
Abstract
T-helper 17 (Th17) cells are characterized by producing interleukin-17 (IL-17, also called IL-17A), IL-17F, IL-21, and IL-22 and potentially TNF- α and IL-6 upon certain stimulation. IL-23, which promotes Th17 cell development, as well as IL-17 and IL-22 produced by the Th17 cells plays essential roles in various inflammatory diseases, such as experimental autoimmune encephalomyelitis, rheumatoid arthritis, colitis, and Concanavalin A-induced hepatitis. In this review, we summarize the characteristics of the functional role of Th17 cells, with particular focus on the Th17 cell-related cytokines such as IL-17, IL-22, and IL-23, in mouse models and human inflammatory diseases.
Collapse
Affiliation(s)
- Ning Qu
- Department of Anatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Mingli Xu
- Division of Cellular Signaling, Institute for Advanced Medical Research School of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo160-8402, Japan
| | - Jun-ichi Furusawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo160-8402, Japan
| | - Kotaro Kaneko
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo160-8402, Japan
| | - Kazunori Watanabe
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo160-8402, Japan
| | - Junichiro Mizuguchi
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Masahiro Itoh
- Department of Anatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research School of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo160-8402, Japan
| |
Collapse
|
55
|
Eller K, Schroll A, Banas M, Kirsch AH, Huber JM, Nairz M, Skvortsov S, Weiss G, Rosenkranz AR, Theurl I. Lipocalin-2 expressed in innate immune cells is an endogenous inhibitor of inflammation in murine nephrotoxic serum nephritis. PLoS One 2013; 8:e67693. [PMID: 23861783 PMCID: PMC3701542 DOI: 10.1371/journal.pone.0067693] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/19/2013] [Indexed: 12/12/2022] Open
Abstract
Lipocalin-2 (Lcn-2) is involved in divergent processes such as acute kidney injury or bacterial host defence. Our study was designed to evaluate the functional role of Lcn-2 in nephrotoxic serum nephritis (NTS). Since Lcn-2 is expressed in tubular epithelial cells as well as in cells of innate immunity such as macrophages and polymorphonuclear neutrophils (PMN), we induced NTS in wild-type (WT), Lcn-2 knock-out (KO) mice and WT/Lcn-2 KO chimeras. Mice lacking Lcn-2 exhibited more glomerular damage with increased proteinuria and interstitial leukocyte accumulation compared to WT mice. Chimeras able to express Lcn-2 in macrophages and PMN but not in epithelial cells were found to develop NTS comparable to wild-type controls. In contrast, chimeras expressing Lcn-2 in tubular epithelial cells with no expression in innate immune cells developed increased NTS due to decreased concerted apoptosis but increased necrosis and formation of damage-associated molecular patterns (DAMPs) such as high-mobility group box 1 (HMGB-1) in the kidney. In vivo blockade of HMGB-1, a toll-like receptor (TLR)-2 agonist, significantly reduced inflammation and NTS in Lcn-2 knock-out mice. In parallel, TLR-2 signalling was found to drive Lcn-2 transcription in vitro. Taken together, Lcn-2 expressed in innate immune cells is protective in NTS by inducing concerted apoptosis and inhibiting the formation of HMGB-1 thereby limiting cytokine production via TLR-2 signalling. In parallel, TLR-2 dependent transcription of Lcn-2 is an endogenous inhibitor of inflammation in NTS.
Collapse
Affiliation(s)
- Kathrin Eller
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- * E-mail: (KE); (IT)
| | - Andrea Schroll
- Clinical Immunology and Infectious Diseases, Department of Internal Medicine VI, Innsbruck Medical University, Innsbruck, Austria
| | - Miriam Banas
- Department of Nephrology, Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Alexander H. Kirsch
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Julia M. Huber
- Laboratory for Molecular Cell Biology, Internal Medicine I, Innsbruck Medical University, Innsbruck, Austria
| | - Manfred Nairz
- Clinical Immunology and Infectious Diseases, Department of Internal Medicine VI, Innsbruck Medical University, Innsbruck, Austria
| | - Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria
| | - Günter Weiss
- Clinical Immunology and Infectious Diseases, Department of Internal Medicine VI, Innsbruck Medical University, Innsbruck, Austria
| | - Alexander R. Rosenkranz
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Igor Theurl
- Clinical Immunology and Infectious Diseases, Department of Internal Medicine VI, Innsbruck Medical University, Innsbruck, Austria
- * E-mail: (KE); (IT)
| |
Collapse
|
56
|
Regulation of pathogenic Th17 cell differentiation by IL-10 in the development of glomerulonephritis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:402-12. [PMID: 23747510 DOI: 10.1016/j.ajpath.2013.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 12/31/2022]
Abstract
Although it is clear that T helper (Th)17 cells play a pathologic role in the pathogenesis of several inflammatory diseases, the contribution and regulation of pathogenic Th17 cells in the development of glomerulonephritis are still not fully understood. Herein, we show that IL-10-deficient mice exhibit exacerbation of glomerulonephritis after induction with anti-glomerular basement membrane globulin, with enhanced pathogenic Th17 immune responses. We further demonstrate that Rag1(-/-) mice reconstituted with IL-10(-/-) CD4(+) T cells develop more severe glomerulonephritis after induction of anti-glomerular basement membrane disease, with more infiltration of inflammatory cells into the kidneys. Finally, IL-17 and interferon γ double-positive cells were significantly increased in IL-10(-/-) CD4(+) T-cell cultures under pathogenic Th17 conditions compared with wild-type cell cultures. These findings suggest that T-cell-derived IL-10 plays a critical suppressive role in the control of pathogenic Th17 cell differentiation and highlights the importance of IL-10 as protection against glomerulonephritis development.
Collapse
|
57
|
Lim HX, Hong HJ, Jung MY, Cho D, Kim TS. Principal role of IL-12p40 in the decreased Th1 and Th17 responses driven by dendritic cells of mice lacking IL-12 and IL-18. Cytokine 2013; 63:179-86. [PMID: 23697689 DOI: 10.1016/j.cyto.2013.04.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/08/2013] [Accepted: 04/24/2013] [Indexed: 02/02/2023]
Abstract
IL-12 and IL-18 are cytokines which are mainly secreted by endothelial cells and monocytes including dendritic cells. The well-known effects of IL-12 and IL-18 in the protection against bacteria and virus infection as well as tumor development are associated with their characteristics in synergistically driving the development of T helper type 1 (Th1) cells and inducing IFN-γ production. In this study, we compared the knockout effects of IL-12 and/or IL-18 genes on phenotypes and functional capabilities of dendritic cells (DCs) including their ability to polarize naive CD4(+) T cells. The expression levels of surface molecules such as MHC II, CD80, CD86 and ICOSL, and endocytic capacity were not significantly differences between DCs of wild type (WT) mice and double knockout (DKO) mice of IL-12p40 and IL-18. Additionally, DCs lacking IL-12p40 and/or IL-18 genes were equivalently efficient in inducing T cell proliferation, compared with the WT-DCs. Interestingly, IL-10 production significantly decreased in DKO-DCs, while production of other inflammation-related cytokines were unaffected in WT-DCs and DKO-DCs. Importantly, IL-12p40(-/-)-DCs and DKO-DCs severely impaired the ability to induce IFN-γ and IL-17 production from CD4(+) T cells. IL-18(-/-)-DCs also moderately decreased IL-17 production and IL-17-expressing CD4(+) T cells when co-cultured with CD4(+) T cells, demonstrating the involvement of IL-18 in driving IL-17 differentiation. Taken together, these results suggest the principal contribution of IL-12p40 in inducing Th1 and Th17 polarization, regardless of similar surface phenotypes of DCs.
Collapse
Affiliation(s)
- Hui Xuan Lim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | |
Collapse
|
58
|
Ngo D, Beaulieu E, Gu R, Leaney A, Santos L, Fan H, Yang Y, Kao W, Xu J, Escriou V, Loiler S, Vervoordeldonk MJ, Morand EF. Divergent Effects of Endogenous and Exogenous Glucocorticoid-Induced Leucine Zipper in Animal Models of Inflammation and Arthritis. ACTA ACUST UNITED AC 2013; 65:1203-12. [DOI: 10.1002/art.37858] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 01/03/2013] [Indexed: 12/26/2022]
|
59
|
Neutrophil myeloperoxidase regulates T-cell-driven tissue inflammation in mice by inhibiting dendritic cell function. Blood 2013; 121:4195-204. [PMID: 23509155 DOI: 10.1182/blood-2012-09-456483] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Myeloperoxidase (MPO) is important in intracellular microbial killing by neutrophils but extracellularly causes tissue damage. Its role in adaptive immunity and T-cell-mediated diseases is poorly understood. Here, T-cell responses in lymph nodes (LNs) were enhanced by MPO deletion or in vivo inhibition, causing enhanced skin delayed-type hypersensitivity and antigen (Ag)-induced arthritis. Responses of adoptively transferred OT-II T cells were greater in MPO-deficient than wild-type (WT) recipients. MPO, deposited by neutrophils in LNs after Ag injection, interacted with dendritic cells (DCs) in vivo. Culture of murine or human DCs with purified MPO or neutrophil supernatant showed that enzymatically dependent MPO-mediated inhibition of DC activation occurs via MPO-generated reactive intermediates and involves DC Mac-1. Transfer of DCs cultured with WT, but not MPO-deficient, neutrophil supernatant attenuated Ag-specific immunity in vivo. MPO deficiency or in vivo inhibition increased DC activation in LNs after immunization. Studies with DQ-ovalbumin showed that MPO inhibits Ag uptake/processing by DCs. In vivo DC transfer and in vitro studies showed that MPO inhibits DC migration to LNs by reducing their expression of CCR7. Therefore, MPO, via its catalytic activity, inhibits the generation of adaptive immunity by suppressing DC activation, Ag uptake/processing, and migration to LNs to limit pathological tissue inflammation.
Collapse
|
60
|
Roth AJ, Ooi JD, Hess JJ, van Timmeren MM, Berg EA, Poulton CE, McGregor J, Burkart M, Hogan SL, Hu Y, Winnik W, Nachman PH, Stegeman CA, Niles J, Heeringa P, Kitching AR, Holdsworth S, Jennette JC, Preston GA, Falk RJ. Epitope specificity determines pathogenicity and detectability in ANCA-associated vasculitis. J Clin Invest 2013; 123:1773-83. [PMID: 23549081 DOI: 10.1172/jci65292] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/22/2013] [Indexed: 11/17/2022] Open
Abstract
Anti-neutrophil cytoplasmic antibody-associated (ANCA-associated) small vessel necrotizing vasculitis is caused by immune-mediated inflammation of the vessel wall and is diagnosed in some cases by the presence of myeloperoxidase-specific antibodies (MPO-ANCA). This multicenter study sought to determine whether differences in ANCA epitope specificity explain why, in some cases, conventional serologic assays do not correlate with disease activity, why naturally occurring anti-MPO autoantibodies can exist in disease-free individuals, and why ANCA are undetected in patients with ANCA-negative disease. Autoantibodies from human and murine samples were epitope mapped using a highly sensitive epitope excision/mass spectrometry approach. Data indicated that MPO autoantibodies from healthy individuals had epitope specificities different from those present in ANCA disease. Importantly, this methodology led to the discovery of MPO-ANCA in ANCA-negative disease that reacted against a sole linear sequence. Autoantibodies against this epitope had pathogenic properties, as demonstrated by their capacity to activate neutrophils in vitro and to induce nephritis in mice. The confounder for serological detection of these autoantibodies was the presence of a fragment of ceruloplasmin in serum, which was eliminated in purified IgG, allowing detection. These findings implicate immunodominant epitopes in the pathology of ANCA-associated vasculitis and suggest that autoantibody diversity may be common to other autoimmune diseases.
Collapse
Affiliation(s)
- Aleeza J Roth
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Ooi JD, Chang J, O'Sullivan KM, Pedchenko V, Hudson BG, Vandenbark AA, Fugger L, Holdsworth SR, Kitching AR. The HLA-DRB1*15:01-restricted Goodpasture's T cell epitope induces GN. J Am Soc Nephrol 2013; 24:419-31. [PMID: 23411782 DOI: 10.1681/asn.2012070705] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Human anti-glomerular basement membrane (GBM) disease strongly associates with HLA-DRB1*15:01. The target autoantigen in this disease is the noncollagenous domain of the α3 chain of type IV collagen, α3(IV)NC1, but critical early T cell epitopes presented by this human MHC class II molecule are unknown. Here, by immunizing HLA-DRB1*15:01 transgenic mice with whole recombinant α3(IV)NC1 and with overlapping α3(IV)NC1 peptides, we defined a HLA-DRB1*15:01-restricted α3(IV)NC1 T cell epitope (α3136-146) with four critical residues. This peptide was not immunogenic in HLA-DRB1*01:01 transgenic or C57BL/6 mice. The T cell epitope is naturally processed from α3(IV)NC1. CD4(+) T cell clones, generated from HLA-DRB1*15:01 transgenic mice and specific for α3136-146, transferred disease into naive HLA-DRB1*15:01 transgenic mice, evidenced by the development of necrotizing crescentic GN, albuminuria, renal impairment, and accumulation of CD4(+) T cells and macrophages in glomeruli. Because Fcγ receptors are implicated in disease susceptibility, we crossed HLA transgenic mice onto an FcγRIIb-deficient background. Immunization with either α3136-146 or α3(IV)NC1 induced GN in HLA-DRB1*15:01 transgenic FcγRIIb-deficient mice, but HLA-DRB1*01:01 transgenic FcγRIIb-deficient mice were unaffected. Taken together, these results demonstrate that the HLA-DRB1*15:01-restricted T cell epitope α3136-146 can induce T cell responses and injury in anti-GBM GN.
Collapse
Affiliation(s)
- Joshua D Ooi
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Synergistic effects of interleukin-1β and interleukin-17A antibodies on collagen-induced arthritis mouse model. Int Immunopharmacol 2013; 15:199-205. [DOI: 10.1016/j.intimp.2012.12.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 12/07/2012] [Accepted: 12/14/2012] [Indexed: 01/28/2023]
|
63
|
Yang YH, Song W, Deane JA, Kao W, Ooi JD, Ngo D, Kitching AR, Morand EF, Hickey MJ. Deficiency of annexin A1 in CD4+ T cells exacerbates T cell-dependent inflammation. THE JOURNAL OF IMMUNOLOGY 2012; 190:997-1007. [PMID: 23267026 DOI: 10.4049/jimmunol.1202236] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Annexin A1 (AnxA1) is recognized as an endogenous anti-inflammatory molecule. However, its effects on the adaptive immune response and, in particular, on T cells remain unclear. In this study, we investigated the actions of AnxA1 in three distinct models of T cell-mediated inflammation. In contact hypersensitivity, collagen-induced arthritis, and inflammation induced by OT-II TCR transgenic T cells responding to OVA, AnxA1 deficiency significantly increased Ag-induced T cell proliferation and the resultant level of inflammation. In the contact hypersensitivity model, this was associated with increased adhesion of CD4(+) T cells, CD8(+) T cells, and neutrophils in the dermal microvasculature, as well as increased T cell expression of RORγt and IL-17A. In collagen-induced arthritis, deficiency of endogenous AnxA1 increased susceptibility to arthritis and Ag-specific T cell activation. Deficiency of AnxA1 also increased OVA-induced cutaneous delayed-type hypersensitivity and IFN-γ and IL-17 release. Transfer experiments using CD4(+) T cells from AnxA1(-/-) mice demonstrated that the absence of AnxA1 solely in T cells resulted in increased inflammatory responses in wild-type recipients. Similarly, experiments using AnxA1(-/-) OT-II CD4(+) T cells demonstrated that the absence of AnxA1 in T cells was sufficient to induce increased Ag-specific CD4(+) T cell proliferation in vivo, augment T cell production of IFN-γ, IL-17, TNF, and IL-6, and increase Akt, ERK, and p38 activation. Together, these findings indicate that T cell-expressed AnxA1 functions to attenuate T cell-driven inflammatory responses via T cell-intrinsic effects on intracellular signaling, proliferation, and Th1/Th17 cytokine release.
Collapse
Affiliation(s)
- Yuan H Yang
- Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Clayton, Victoria 3168, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Ngalamika O, Zhang Y, Yin H, Zhao M, Gershwin ME, Lu Q. Epigenetics, autoimmunity and hematologic malignancies: a comprehensive review. J Autoimmun 2012; 39:451-65. [PMID: 23084980 DOI: 10.1016/j.jaut.2012.09.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/24/2012] [Indexed: 12/17/2022]
Abstract
The relationships between immunological dysfunction, loss of tolerance and hematologic malignancies have been a focus of attention in attempts to understand the appearance of a higher degree of autoimmune disease and lymphoma in children with congenital immunodeficiency. Although multiple hypotheses have been offered, it is clear that stochastic processes play an important role in the immunopathology of these issues. In particular, accumulating evidence is defining a role of epigenetic mechanisms as being critical in this continuous spectrum between autoimmunity and lymphoma. In this review, we focus attention predominantly on the relationships between T helper 17 (Th17) and T regulatory populations that alter local microenvironments and ultimately the expression or transcription factors involved in cell activation and differentiation. Abnormal expression in any of the molecules involved in Th17 and/or Treg development alter immune homeostasis and in genetically susceptible hosts may lead to the appearance of autoimmunity and/or lymphoma. These observations have clinical significance in explaining the discordance of autoimmunity in identical twins. They are also particularly important in the relationships between primary immune deficiency syndromes, immune dysregulation and an increased risk of lymphoma. Indeed, defining the factors that determine epigenetic alterations and their relationships to immune homeostasis will be a challenge greater or even equal to the human genome project.
Collapse
Affiliation(s)
- Owen Ngalamika
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, #139 Renmin Middle Rd, Changsha, Hunan 410011, PR China
| | | | | | | | | | | |
Collapse
|
65
|
Turner JE, Krebs C, Tittel AP, Paust HJ, Meyer-Schwesinger C, Bennstein SB, Steinmetz OM, Prinz I, Magnus T, Korn T, Stahl RAK, Kurts C, Panzer U. IL-17A production by renal γδ T cells promotes kidney injury in crescentic GN. J Am Soc Nephrol 2012; 23:1486-95. [PMID: 22797181 DOI: 10.1681/asn.2012010040] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Th17 immune response appears to contribute to the pathogenesis of human and experimental crescentic GN, but the cell types that produce IL-17A in the kidney, the mechanisms involved in its induction, and the IL-17A-mediated effector functions that promote renal tissue injury are incompletely understood. Here, using a murine model of crescentic GN, we found that CD4(+) T cells, γδ T cells, and a population of CD3(+)CD4(-)CD8(-)γδT cell receptor(-)NK1.1(-) T cells all produce IL-17A in the kidney. A time course analysis identified γδ T cells as a major source of IL-17A in the early phase of disease, before the first CD4(+) Th17 cells arrived. The production of IL-17A by renal γδ T cells depended on IL-23p19 signaling and retinoic acid-related orphan receptor-γt but not on IL-1β or IL-6. In addition, depletion of dendritic cells, which produce IL-23 in the kidney, reduced IL-17A production by renal γδ T cells. Furthermore, the lack of IL-17A production in γδ T cells, as well as the absence of all γδ T cells, reduced neutrophil recruitment into the kidney and ameliorated renal injury. Taken together, these data suggest that γδ T cells produce IL-17A in the kidney, induced by IL-23, promoting neutrophil recruitment, and contributing to the immunopathogenesis of crescentic GN.
Collapse
Affiliation(s)
- Jan-Eric Turner
- Universitätsklinikum Hamburg-Eppendorf, III Medizinische Klinik, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Chemokines play a critical role in the cross-regulation of Th1 and Th17 immune responses in murine crescentic glomerulonephritis. Kidney Int 2012; 82:72-83. [PMID: 22495297 DOI: 10.1038/ki.2012.101] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Th1 and Th17 subtype effector CD4(+) T cells are thought to play a critical role in the pathogenesis of human and experimental crescentic glomerulonephritis. The time course, mechanism, and functions of Th1 and Th17 cell recruitment, and their potential interaction in glomerulonephritis, however, remain to be elucidated. We performed interventional studies using IL-17- and IFN-γ-gene-deficient mice, as well as neutralizing antibodies that demonstrated the importance of the Th17-mediated immune response during the early phase of the disease. At a later stage, we found that Th1 cells were critical mediators of renal tissue injury. Early recruitment of IL-17-producing Th17 cells triggered expression of the chemokine CXCL9 in the kidney that drove the infiltration of Th1 cells bearing its receptor CXCR3. At a later stage, Th1 cell-derived IFN-γ was found to inhibit local chemokine CCL20 expression, acting through its receptor CCR6 on Th17 cells, thereby limiting the renal Th17 immune response. Thus, our findings provide mechanistic evidence for a cytokine-chemokine-driven feedback loop that orchestrates the observed differential Th1 and Th17 cell infiltration into the inflamed kidney. This contributes to the observed time-dependent function of these two major pathogenic effector CD4(+) T cell subsets in crescentic glomerulonephritis.
Collapse
|
67
|
Velden J, Paust HJ, Hoxha E, Turner JE, Steinmetz OM, Wolf G, Jabs WJ, Özcan F, Beige J, Heering PJ, Schröder S, Kneißler U, Disteldorf E, Mittrücker HW, Stahl RAK, Helmchen U, Panzer U. Renal IL-17 expression in human ANCA-associated glomerulonephritis. Am J Physiol Renal Physiol 2012; 302:F1663-73. [PMID: 22442208 DOI: 10.1152/ajprenal.00683.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Interleukin-17A (IL-17) promotes inflammatory renal tissue damage in mouse models of crescentic glomerulonephritis, including murine experimental autoimmune anti-myeloperoxidase glomerulonephritis, which most likely depends on IL-17-producing Th17 cells. In human anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis, however, the cellular sources of IL-17 remain to be elucidated. Therefore, we analyzed human kidney biopsies of active necrotizing and crescentic ANCA-associated glomerulonephritis by immunohistochemistry using an IL-17-specific antibody and by immunofluorescent colocalization with cell type markers. We detected numerous IL-17-expressing (IL-17(+)) cells in the glomeruli and in the tubulointerstitium. Unexpectedly, most of these IL-17(+) cells were polymorphonuclear neutrophilic granulocytes, while IL-17(+) T cells and IL-17(+) mast cells were present at significantly lower frequencies. IL-17 was not detected in other infiltrating or resident kidney cells. In those patients who had not received immunosuppressive treatment before biopsy, serum creatinine levels were positively correlated with tubulointerstitial IL-17(+) neutrophils as well as IL-17(+) T cells. Furthermore, we could demonstrate that purified human blood neutrophils expressed IL-17 protein and released it upon stimulation in vitro. In conclusion, these results support a pathogenic role for IL-17 in human ANCA-associated glomerulonephritis. Our data suggest that in the acute stage of the disease neutrophils may act as an important immediate-early innate source of IL-17 and may thereby initiate and promote ongoing renal inflammation. IL-17 may thus be a target for treating acute ANCA-associated glomerulonephritis.
Collapse
Affiliation(s)
- Joachim Velden
- Nierenregister, Institut für Pathologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Hopfer H, Holzer J, Hünemörder S, Paust HJ, Sachs M, Meyer-Schwesinger C, Turner JE, Panzer U, Mittrücker HW. Characterization of the renal CD4+ T-cell response in experimental autoimmune glomerulonephritis. Kidney Int 2012; 82:60-71. [PMID: 22437418 DOI: 10.1038/ki.2012.73] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Autoimmunity against the Goodpasture antigen α3IV-NC1 results in antiglomerular basement membrane glomerulonephritis. Although antibodies are central to the pathogenesis, there is good evidence for the participation of T cells in this disease. To define the contribution of T cells, we used the model of experimental autoimmune glomerulonephritis. Immunization of DBA/1 mice with α3IV-NC1 resulted in proteinuria, a biphasic course of the disease, and an eventual loss of kidney function. In the initial phase, the mice developed an α3IV-NC1-specific IgG response, had IgG deposition along the glomerular basement membrane, and steadily increased proteinuria, but only marginal signs of inflammation with limited leukocyte infiltration. After 9-13 weeks, mice proceeded to develop crescentic glomerulonephritis, extensive tubulointerstitial damage, and massive macrophage infiltration. T-cell infiltration was less pronounced, mostly confined to the interstitium, and T cells displayed an activated phenotype with a significant fraction of Th1 or Th17 CD4(+) T cells. Close examination revealed the presence of autoreactive T cells producing IFNγ upon restimulation with α3IV-NC1. Thus, our results suggest that accumulation of effector T cells, including autoreactive T cells, represents a critical step in the progression from mild glomerulonephritis, with limited glomerular damage, to severe crescentic glomerulonephritis accompanied by tubulointerstitial inflammation and loss of kidney function.
Collapse
Affiliation(s)
- Helmut Hopfer
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Couser WG. Basic and translational concepts of immune-mediated glomerular diseases. J Am Soc Nephrol 2012; 23:381-99. [PMID: 22282593 DOI: 10.1681/asn.2011030304] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetically modified immune responses to infections and self-antigens initiate most forms of GN by generating pathogen- and danger-associated molecular patterns that stimulate Toll-like receptors and complement. These innate immune responses activate circulating monocytes and resident glomerular cells to release inflammatory mediators and initiate adaptive, antigen-specific immune responses that collectively damage glomerular structures. CD4 T cells are needed for B cell-driven antibody production that leads to immune complex formation in glomeruli, complement activation, and injury induced by both circulating inflammatory and resident glomerular effector cells. Th17 cells can also induce glomerular injury directly. In this review, information derived from studies in vitro, well characterized experimental models, and humans summarize and update likely pathogenic mechanisms involved in human diseases presenting as nephritis (postinfectious GN, IgA nephropathy, antiglomerular basement membrane and antineutrophil cytoplasmic antibody-mediated crescentic GN, lupus nephritis, type I membranoproliferative GN), and nephrotic syndrome (minimal change/FSGS, membranous nephropathy, and C3 glomerulopathies). Advances in understanding the immunopathogenesis of each of these entities offer many opportunities for future therapeutic interventions.
Collapse
Affiliation(s)
- William G Couser
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
70
|
[Alemtuzumab: a further option for treatment of multiple sclerosis]. DER NERVENARZT 2011; 83:487-501. [PMID: 22038387 DOI: 10.1007/s00115-011-3393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Alemtuzumab is a humanized monoclonal therapeutic antibody that targets the CD52 antigen which s expressed on most cells of the lymphoid lineage, exclusive of precursors. Alemtuzumab rapidly depletes CD52(+) cells from the peripheral blood. This depletion is long-lasting, and cells repopulate in a specific pattern with B cells and regulatory T cells peaking first. Alemtuzumab was examined for clinical utility in two open-labelled intervention trials in multiple sclerosis (MS). Because of very promising results its clinical efficacy was further explored in a clinical phase-II trial using s.c. interferon beta-1a as the active comparator. Severe or opportunistic infections were surprisingly rare given the long-term lymphopenia. However, up to 30% of patients developed some antibody-mediated autoimmunity. The thyroid gland was the most frequently affected organ. Immune-mediated thrombocytopenic purpura and Goodpasture's syndrome were additionally observed. This review summarizes the pre-clinical and clinical development of alemtuzumab and discusses potential modes of action as well as the pathogenetic link to the treatment emergent autoimmune phenomena.
Collapse
|
71
|
Rong C, Hu W, Wu FR, Cao XJ, Chen FH. Interleukin-23 as a potential therapeutic target for rheumatoid arthritis. Mol Cell Biochem 2011; 361:243-8. [PMID: 22012611 DOI: 10.1007/s11010-011-1109-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/07/2011] [Indexed: 01/02/2023]
Abstract
Cytokine-mediated immunity plays a crucial role in the pathogenesis of various autoimmune diseases, including rheumatoid arthritis (RA). Increasing evidence has revealed the importance of IL-23, which closely resembles IL-12 structurally and immunologically, in linking innate and adaptive immunity. IL-23, a newly identified heterodimeric pro-inflammatory cytokine, is composed of a p40 subunit in common with IL-12 and a unique p19 subunit. Recent evidence suggests that IL-23, rather than IL-12, is the crucial factor in the pathogenesis of various immune-mediated disorders. In addition, recent studies have explored the role of IL-23 in patients with RA. An elevated expression of IL-23 has been demonstrated in the synovial fibroblasts and plasma of patients with RA. Moreover, an association between IL-23 and IL-23R polymorphisms with susceptibility to RA has been reported. Therefore, the targeting of IL-23 or the IL-23 receptor has been proposed as a potential therapeutic approach for RA. In this review we will discuss the biological features of IL-23, and summarize recent advances in our understanding of the role of IL-23 in the pathogenesis and treatment of RA.
Collapse
Affiliation(s)
- Chao Rong
- College of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | | | | | | | | |
Collapse
|
72
|
Pindjakova J, Hanley SA, Duffy MM, Sutton CE, Weidhofer GA, Miller MN, Nath KA, Mills KHG, Ceredig R, Griffin MD. Interleukin-1 accounts for intrarenal Th17 cell activation during ureteral obstruction. Kidney Int 2011; 81:379-90. [PMID: 21975862 DOI: 10.1038/ki.2011.348] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin 17A-secreting T-helper 17 (Th17) cells are pathogenic in inflammatory kidney diseases, but their intrarenal regulation is poorly understood. In order to better define Th17 cell dynamics during interstitial inflammation, we utilized the mouse unilateral ureteral obstruction model to analyze inflammatory cell subtypes by multicolor flow cytometry and cell sorting and by effects on in vitro-generated Th17 cells. Interleukin 17A expression localized to CCR6(+)CCR4(+/-)CD4(+) T-cells and progressively increased in obstructed kidneys. The number of CCR6(+)CD4(+) T-cells increased over 10-fold by 72 h, were enriched for interleukin 17A production, and were highly proliferative based on in vivo bromodeoxyuridine incorporation. Secreted products of leukocytes isolated from obstructed kidneys enhanced the interleukin 17A production of in vitro-generated Th17 cells. This Th17-enhancing activity was identified as interleukin-1 produced by renal dendritic cells and monocytes. The in vivo validity of these findings was confirmed in mice lacking the interleulin-1 receptor and in mice treated with a recombinant interleukin-1 receptor antagonist, each of which exhibited reduced intrarenal Th17 activity compared with control mice. Thus, the inflamed kidney accumulates CCR6(+) Th17 cells that undergo activation and proliferation. Production of interleukin 1 family cytokines by resident dendritic cells and infiltrating monocytes enhances intrarenal Th17 activation in acute kidney injury.
Collapse
Affiliation(s)
- Jana Pindjakova
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and School of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
|
74
|
Olson SW, Arbogast CB, Baker TP, Owshalimpur D, Oliver DK, Abbott KC, Yuan CM. Asymptomatic autoantibodies associate with future anti-glomerular basement membrane disease. J Am Soc Nephrol 2011; 22:1946-52. [PMID: 21868497 DOI: 10.1681/asn.2010090928] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The pathophysiology of anti-glomerular basement membrane (anti-GBM) disease before clinical presentation is unknown. The presence of anti-GBM, anti-proteinase 3 (PR3), and anti-myeloperoxidase (MPO) antibodies associate with the disease at the time of diagnosis, but little is known about the presence of these autoantibodies before diagnosis. We used serum samples from the Department of Defense Serum Repository to conduct a case-control study involving 30 patients diagnosed with anti-GBM disease and 30 healthy controls matched for the age, gender, race, and age of the serum samples. We analyzed a maximum of three samples from each subject: the most recent sample before diagnosis, the penultimate sample before diagnosis, and the oldest sample available; the average time between the most recent sample and diagnosis was 195 days (range, 4 to 1346 days). Elevated anti-GBM levels (≥3 U/ml) were present in four patients, all less than 1 year before diagnosis but in no controls. Detectable anti-GBM antibody levels (≥1 U/ml but <3 U/ml) in a single serum sample before diagnosis were more frequent in cases than controls (70% versus 17%, P < 0.001). Only study patients had detectable anti-GBM levels in multiple samples before diagnosis (50% versus 0%, P < 0.001). Almost all patients had detectable anti-PR3 and/or anti-MPO that preceded the onset of disease. Among patients with a clear antecedent antibody, anti-PR3 or anti-MPO always became detectable before the anti-GBM antibody. In summary, our data describe the subclinical formation of autoantibodies, which improves our understanding of the pathophysiology of anti-GBM disease.
Collapse
Affiliation(s)
- Stephen W Olson
- Department of Nephrology, Walter Reed Army Medical Center, Washington, DC 20307, USA.
| | | | | | | | | | | | | |
Collapse
|
75
|
|
76
|
Odobasic D, Gan PY, Summers SA, Semple TJ, Muljadi RCM, Iwakura Y, Kitching AR, Holdsworth SR. Interleukin-17A promotes early but attenuates established disease in crescentic glomerulonephritis in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1188-98. [PMID: 21741931 DOI: 10.1016/j.ajpath.2011.05.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/18/2011] [Accepted: 05/06/2011] [Indexed: 02/07/2023]
Abstract
T helper (Th)17 cells might contribute to immune-mediated renal injury. Thus, we sought to define the time course of IL-17A-induced kidney damage and examined the relation between Th17 and Th1 cells in a model of crescentic anti-glomerular basement membrane glomerulonephritis. Renal injury and immune responses were assessed in wild-type and in IL-17A-deficient mice on days 6, 14, and 21 of disease development. On day 6, when mild glomerulonephritis developed, IL-17A-deficient mice were protected from renal injury. On day 14, when more severe disease developed, protection from renal injury due to IL-17A deficiency was less evident. On day 21, when crescentic glomerulonephritis was fully established, disease was enhanced in IL-17A(-/-) mice, with increased glomerular T-cell accumulation and fibrin deposition, and augmented Th1 responses. Mice lacking the Th17-promoting cytokine, IL-23 (p19), also developed more severe disease than wild-type animals on day 21. In contrast, mice deficient in the key Th1-promoting cytokine, IL-12 (p35), had decreased Th1 and increased Th17 responses and developed less severe crescentic glomerulonephritis than wild-type animals. These studies show that IL-17A contributes to early glomerular injury, but it attenuates established crescentic glomerulonephritis by suppressing Th1 responses. They provide further evidence that Th1 cells mediate crescentic injury in this model and that Th1 and Th17 cells counterregulate each other during disease development.
Collapse
Affiliation(s)
- Dragana Odobasic
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Monash Medical Centre, Clayton, Australia
| | | | | | | | | | | | | | | |
Collapse
|
77
|
SHIN JAEIL, PARK SEJIN, KIM JIHONG. Coexistent Wegener’s Granulomatosis and Goodpasture’s Disease: What Is the Mechanism? J Rheumatol 2011; 38:1521. [DOI: 10.3899/jrheum.101213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
78
|
Torok N, Assaly R. Reply. Nephrol Dial Transplant 2011. [DOI: 10.1093/ndt/gfr037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
79
|
Reynolds J. Strain differences and the genetic basis of experimental autoimmune anti-glomerular basement membrane glomerulonephritis. Int J Exp Pathol 2011; 92:211-7. [PMID: 21342299 PMCID: PMC3101493 DOI: 10.1111/j.1365-2613.2011.00763.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 12/28/2010] [Indexed: 11/30/2022] Open
Abstract
Goodpasture's, or anti-glomerular basement membrane (GBM), disease presents with rapidly progressive glomerulonephritis, caused by autoimmunity to a component of the GBM, the non-collagenous domain of the α3 chain of type IV collagen [α3(IV)NC1]. To investigate the mechanisms of inflammation in glomerulonephritis and to test new approaches to treatment, animal models of glomerulonephritis, termed experimental autoimmune glomerulonephritis (EAG), have been developed in susceptible strains of rats and mice. This review article describes how these models of EAG have been developed over the past three decades, discusses the evidence for the involvement of both humoral and cell-mediated immunity in the induction and pathogenesis of glomerulonephritis in these models and highlights recent, emerging data that have identified potential candidate genes that may control the genetic susceptibility in these different strains of rats and mice. The identification of these susceptibility genes has lead to a better understanding of the genetic basis of this model of anti-GBM disease, which may be relevant to the immunopathogenesis of Goodpasture's disease, and more generally to the progression from autoimmunity to target-organ damage.
Collapse
MESH Headings
- Animals
- Anti-Glomerular Basement Membrane Disease/genetics
- Anti-Glomerular Basement Membrane Disease/immunology
- Anti-Glomerular Basement Membrane Disease/physiopathology
- Disease Models, Animal
- Genetic Predisposition to Disease/genetics
- Immunity, Cellular/physiology
- Immunity, Humoral/physiology
- Mice
- Mice, Inbred AKR
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Inbred DBA
- Rats
- Rats, Inbred BN
- Rats, Inbred F344
- Rats, Inbred Lew
- Rats, Inbred WKY
Collapse
Affiliation(s)
- John Reynolds
- Division of Science, Park Square Campus, University of Bedfordshire, Luton, UK.
| |
Collapse
|
80
|
Abstract
The main function of chemokines is to guide inflammatory cells in their migration to sites of inflammation. During the last 2 decades, an expanding number of chemokines and their receptors have driven broad inquiry into how inflammatory cells are recruited in a variety of diseases. Although this review focuses on chemokines and their receptors in renal injury, proinflammatory IL-17, TGFβ, and TWEAK signaling pathways also play a critical role in their expression. Recent studies in transgenic mice as well as blockade of chemokine signaling by neutralizing ligands or receptor antagonists now allow direct interrogation of chemokine action. The emerging role of regulatory T cells and Th17 cells during renal injury also forges tight relationships between chemokines and T cell infiltration in the development of kidney disease. As chemokine receptor blockade inches toward clinical use, the field remains an attractive area with potential for unexpected opportunity in the future.
Collapse
Affiliation(s)
- Arthur C K Chung
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
81
|
Kitching AR, Holdsworth SR. The emergence of TH17 cells as effectors of renal injury. J Am Soc Nephrol 2011; 22:235-8. [PMID: 21289213 DOI: 10.1681/asn.2010050536] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
IL-17-producing Th17 effector cells directly induce renal inflammation by activating neutrophils or by participating in macrophage-mediated tissue injury. Th17 cells and cytokines participate in human and experimental renal disease, especially in proliferative glomerulonephritis where Th17 effector cells are active. Although growing evidence suggests Th17 cells are particularly relevant to effector responses involving neutrophils, there are still important questions to address before the complete functions of Th17 cells in renal disease are understood fully.
Collapse
Affiliation(s)
- A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Center, 246 Clayton Road, Clayton, Victoria 3168, Australia.
| | | |
Collapse
|
82
|
ISN Forefronts Symposium 2010 in Sylt, Germany: 'Induction and Resolution of Renal Inflammation'. Kidney Int 2011; 79:807-13. [PMID: 21289596 DOI: 10.1038/ki.2010.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The International Society of Nephrology (ISN) Forefronts Symposium 'Induction and Resolution of Renal Inflammation' took place in May 2010 on the Island of Sylt, Germany. The program included basic and clinical aspects of inflammation with a special focus on human and experimental glomerulonephritis. Distinguished scientists from different fields of inflammation research reported their recent discoveries and discussed emerging topics including the role of resolution for inflammatory processes; the 'new and old' cellular players of innate immunity and their mediators; the fundamental role of T-cell subtypes and chemokines; new aspects of B cell-mediated immune responses; and finally the potential implication of results from basic science for human inflammatory renal disease.
Collapse
|
83
|
|
84
|
Steinmetz OM, Summers SA, Gan PY, Semple T, Holdsworth SR, Kitching AR. The Th17-defining transcription factor RORγt promotes glomerulonephritis. J Am Soc Nephrol 2010; 22:472-83. [PMID: 21183590 DOI: 10.1681/asn.2010040435] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although Th17 responses may contribute to the pathogenesis of glomerulonephritis, whether the key transcription factor in Th17 cell development, RORγt, also promotes glomerulonephritis is unknown. Here, we induced crescentic glomerulonephritis in wild-type and RORγt-deficient (RORγt(-/-)) mice. RORγt(-/-) mice were protected from disease, with reduced histologic and functional injury and decreased leukocyte infiltration. Because RORγt(-/-) mice lack lymph nodes, which may influence the development of nephritis, we performed cell-transfer studies. We reconstituted Rag1(-/-) mice, which lack adaptive immunity but otherwise have normal architecture of the lymphatic system, with splenocytes from naïve wild-type or RORγt(-/-) mice. Mice receiving wild-type splenocytes exhibited high mortality from renal failure after induction of nephritis whereas mice receiving RORγt(-/-) cells were protected. To determine the effect of RORγt deficiency specifically in T helper cells, we isolated naïve CD4(+) T cells from wild-type and RORγt(-/-) mice and transferred them into Rag1(-/-) animals. Recipients of wild-type CD4(+) T cells developed severe glomerulonephritis whereas recipients of RORγt(-/-) cells developed less severe disease. To exclude effects of altered regulatory T cell (Treg) development caused by RORγt deficiency, we transferred naïve CD4(+) T cells depleted of Tregs into Rag1(-/-) mice. Recipients of wild-type, Treg-depleted, CD4(+) T cells developed severe glomerulonephritis whereas recipients of RORγt(-/-), Treg-depleted CD4(+) T cells did not. Taken together, this study demonstrates that RORγt promotes the development of crescentic glomerulonephritis by directing nephritogenic Th17 responses.
Collapse
Affiliation(s)
- Oliver M Steinmetz
- Centre for Inflammatory Diseases, Monash University Department of Medicine, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | | | | | | | | | | |
Collapse
|
85
|
Hochheiser K, Engel DR, Hammerich L, Heymann F, Knolle PA, Panzer U, Kurts C. Kidney Dendritic Cells Become Pathogenic during Crescentic Glomerulonephritis with Proteinuria. J Am Soc Nephrol 2010; 22:306-16. [PMID: 21164025 DOI: 10.1681/asn.2010050548] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It is unclear why kidney dendritic cells attenuate some models of kidney disease but aggravate others. Kidney dendritic cells ameliorate the early phase of nonaccelerated nephrotoxic nephritis, a murine model of crescentic glomerulonephritis, but their effect on the later phase is unknown. Here, we report that kidney dendritic cells at later stages of nephrotoxic nephritis expressed higher levels of costimulatory molecules but lower levels of the cosuppressor molecule ICOS-L and started production of IL-12/23p40 and TNF-α. Furthermore, we noted that kidney dendritic cells captured more filterable antigen in proteinuric mice at late time points of nephrotoxic nephritis and started to capture molecules that were too large for filtration by a healthy kidney. They presented filtered antigen to Th cells, which responded by producing the proinflammatory cytokines IL-2, IFN-γ, TNF-α, IL-6, and IL-17. Notably, production of the suppressive cytokine IL-10 further increased in late nephrotoxic nephritis. Depletion of kidney dendritic cells at a late stage attenuated nephrotoxic nephritis, in contrast to the exacerbation observed with depletion at an early stage, indicating that their acquired proinflammatory phenotype adversely affected disease. These findings indicate that the intrarenal inflammatory microenvironment determines how kidney dendritic cells affect nephritis. In addition, proteinuria may harm the kidney by providing dendritic cells with more antigens to stimulate potentially pathogenic Th cells.
Collapse
Affiliation(s)
- Katharina Hochheiser
- Institute of Experimental Immunology (IMMEI), Friedrich-Wilhelms-Universität, 53105 Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|
86
|
Current world literature. Curr Opin Rheumatol 2010; 23:125-30. [PMID: 21124095 DOI: 10.1097/bor.0b013e3283422cce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
87
|
Eller K, Wolf D, Huber JM, Metz M, Mayer G, McKenzie ANJ, Maurer M, Rosenkranz AR, Wolf AM. IL-9 production by regulatory T cells recruits mast cells that are essential for regulatory T cell-induced immune suppression. THE JOURNAL OF IMMUNOLOGY 2010; 186:83-91. [PMID: 21115728 DOI: 10.4049/jimmunol.1001183] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Both mast cells (MCs) and regulatory T cells (Tregs) have gained attention as immunosuppressive cell populations. To investigate a possible interaction, we used the Th1- and Th17-dependent model of nephrotoxic serum nephritis (NTS), in which both MCs and Tregs have been shown to play a protective role. Transfer of wild-type (wt) Tregs into wt recipients almost completely prevents development of NTS and leads to a profound increase of MCs in the renal draining lymph nodes (LNs). By contrast, transfer of wt Tregs into animals deficient in MCs, which are characterized by an exaggerated susceptibility to NTS, no longer exhibited protective effects. Blocking the pleiotropic cytokine IL-9, known to be involved in MC recruitment and proliferation, by means of a mAb in mice receiving Tregs abrogated protection from NTS. Moreover, transfer of IL-9-deficient Tregs also failed to protect from NTS. In the absence of Treg-derived IL-9, MCs fail to accumulate in the LNs, despite the fact that IL-9 deficiency does not alter the general suppressive activity of Tregs. In summary, to our knowledge, we provide the first direct in vivo evidence that the nephroprotective, anti-inflammatory effects of Tregs critically depend on IL-9-mediated attraction of MCs into kidney-draining LNs.
Collapse
Affiliation(s)
- Kathrin Eller
- Division of Nephrology and Hypertension, Department of Internal Medicine IV, Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Ooi JD, Kitching AR, Holdsworth SR. Review: T helper 17 cells: their role in glomerulonephritis. Nephrology (Carlton) 2010; 15:513-21. [PMID: 20649870 DOI: 10.1111/j.1440-1797.2010.01343.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
T helper (Th) cells are an integral part of the host's immune response to eliminate invading pathogens. However, autoimmune or 'autoinflammatory' diseases can develop if Th cell responses are not effectively regulated. Several subsets of Th cells exist, including the Th17 subset that produces interleukin-17A, important in experimental models of organ-specific autoimmune inflammation. Its discovery has explained paradoxical observations in model systems thought to be Th1 mediated but were exacerbated in the absence of interferon-gamma, the prototypic Th1 effector cytokine. Th17 cells express unique transcription factors and secrete a unique pattern of cytokines. Interleukin-17A induces pro-inflammatory cytokines and chemokines and mediates neutrophil recruitment. Th17 cells have a reciprocal relationship with T regulatory cells and can also mediate suppression of Th1 responses. Recent studies also suggest that Th17 cells are not terminally differentiated but can switch into Th1 cells. Th17 cells have themselves been recently shown to induce antigen-specific cell-mediated proliferative glomerulonephritis. There is increasing evidence implicating Th17 cells in anti-glomerular basement membrane disease, lupus nephritis and pauci-immune glomerulonephritis. This review will review the discovery of the Th17 subset, its properties, its relationship with other Th subsets and assess the current evidence implicating Th17 cells in glomerulonephritis.
Collapse
Affiliation(s)
- Joshua D Ooi
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, Vic 3168, Australia
| | | | | |
Collapse
|
89
|
Abstract
IMPORTANCE OF THE FIELD IL-23 is one of the most intriguing cytokine for its many immunological functions, which are the basis of its important role in host defense but also of its possible contribution to the pathogenesis of several diseases. AREAS COVERED IN THIS REVIEW The literature and patents about IL-23 pathway and their targeting in therapeutic potential applications. Findings published within the last 5 years receive particular attention. WHAT THE READER WILL GAIN An overview of the emerging role of IL-23 in physiological and pathological conditions and a review of the different approaches (IL-23 pathway-based) currently used for autoimmune diseases and cancer therapies and the results obtained both in preclinical models and in clinical trials. TAKE HOME MESSAGE Inhibition/targeting of IL-23 may be a good and novel therapeutic strategy, especially in the treatment of diseases like psoriasis, for which current treatments show more pronounced side effects than those of IL-23-blocking and employed as part of specific patient-tailored therapies in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Mario M D'Elios
- University of Florence, Department of Internal Medicine, Viale Morgagni 85, 50134 Florence, Italy
| | | | | |
Collapse
|
90
|
Turner JE, Paust HJ, Steinmetz OM, Panzer U. The Th17 immune response in renal inflammation. Kidney Int 2010; 77:1070-5. [DOI: 10.1038/ki.2010.102] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
91
|
Mycophenolic acid suppresses granulopoiesis by inhibition of interleukin-17 production. Kidney Int 2010; 78:79-88. [PMID: 20375992 DOI: 10.1038/ki.2010.84] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mycophenolic acid is a commonly used immunosuppressant after organ transplantation and in autoimmune diseases; however, myelosuppression is a major complication despite its largely favorable side-effect profile. Mycophenolic acid targets inosine monophosphate dehydrogenase, which is essential for T-cell proliferation. The T-cell cytokine interleukin-17 (IL-17 or IL-17A) and its receptor maintain normal neutrophilic granulocyte numbers in mice by induction of granulocyte-colony-stimulating factor. To test whether mycophenolic acid induces neutropenia by inhibiting IL-17-producing T cells, we treated C57Bl/6 mice with mycophenolate-mofetil (the orally available pro-drug) and found a dose-dependent decrease in blood neutrophils. This myelosuppressive effect was completely abolished in mice that lack the IL-17 receptor. Mycophenolic acid delayed myeloid recovery after bone marrow transplantation and decreased the percentage of IL-17-producing T cells in the spleen and thymus, and inhibited IL-17 production in human and mouse T cells in vitro. Injection of IL-17 during mycophenolic acid treatment overcame the suppression of the circulating neutrophil levels. Our study shows that mycophenolic acid suppresses neutrophil production by inhibiting IL-17 expression, suggesting that measurement of this interleukin might be useful in estimating the risk of neutropenia in clinical settings.
Collapse
|
92
|
Zimmerman DH, Taylor P, Bendele A, Carambula R, Duzant Y, Lowe V, O'Neill SP, Talor E, Rosenthal KS. CEL-2000: A therapeutic vaccine for rheumatoid arthritis arrests disease development and alters serum cytokine/chemokine patterns in the bovine collagen type II induced arthritis in the DBA mouse model. Int Immunopharmacol 2010; 10:412-21. [DOI: 10.1016/j.intimp.2009.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 12/18/2009] [Accepted: 12/24/2009] [Indexed: 11/16/2022]
|
93
|
Leng RX, Pan HF, Chen GM, Wang C, Qin WZ, Chen LL, Tao JH, Ye DQ. IL-23: A Promising Therapeutic Target for Systemic Lupus Erythematosus. Arch Med Res 2010; 41:221-5. [DOI: 10.1016/j.arcmed.2010.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 02/05/2010] [Indexed: 12/18/2022]
|
94
|
Gan PY, Steinmetz OM, Tan DSY, O'Sullivan KM, Ooi JD, Iwakura Y, Kitching AR, Holdsworth SR. Th17 cells promote autoimmune anti-myeloperoxidase glomerulonephritis. J Am Soc Nephrol 2010; 21:925-31. [PMID: 20299361 DOI: 10.1681/asn.2009070763] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A major target autoantigen in anti-neutrophil cytoplasmic antibody-associated vasculitis is myeloperoxidase (MPO). Although MPO-specific CD4+ Th cells seem to orchestrate renal injury, the role of the Th17 subset is unknown. We hypothesized that Th17 cells direct injurious anti-MPO autoimmunity in experimental murine anti-MPO-induced glomerulonephritis (GN). We immunized mice with MPO to establish autoimmunity, resulting in systemic IL-17A production with MPO-specific dermal delayed-type hypersensitivity. We triggered disease using antibodies to the glomerular basement membrane to induce glomerular deposition of MPO by neutrophils. Wild-type mice developed necrotizing GN with an influx of glomerular leukocytes and albuminuria. In contrast, mice deficient in the key Th17 effector cytokine IL-17A were nearly completely protected. The protective effects resulted partly from reduced neutrophil recruitment, which led to less disposition of glomerular MPO. To test whether IL-17A also drives autoimmune delayed-type hypersensitivity in the kidney, we injected MPO into the kidneys of MPO-sensitized mice. IL-17A deficiency reduced accumulation of renal macrophages and renal CCL5 mRNA expression. In conclusion, IL-17A contributes to the pathophysiology of autoimmune anti-MPO GN, suggesting that it may be a viable therapeutic target for this disease.
Collapse
Affiliation(s)
- Poh-Yi Gan
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Turner JE, Paust HJ, Steinmetz OM, Peters A, Riedel JH, Erhardt A, Wegscheid C, Velden J, Fehr S, Mittrücker HW, Tiegs G, Stahl RAK, Panzer U. CCR6 recruits regulatory T cells and Th17 cells to the kidney in glomerulonephritis. J Am Soc Nephrol 2010; 21:974-85. [PMID: 20299360 DOI: 10.1681/asn.2009070741] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
T cells recruited to the kidney contribute to tissue damage in crescentic and proliferative glomerulonephritides. Chemokines and their receptors regulate T cell trafficking, but the expression profile and functional importance of chemokine receptors for renal CD4+ T cell subsets are incompletely understood. In this study, we observed that renal FoxP3+CD4+ regulatory T cells (Tregs) and IL-17-producing CD4+ T (Th17) cells express the chemokine receptor CCR6, whereas IFNgamma-producing Th1 cells are CCR6-. Induction of experimental glomerulonephritis (nephrotoxic nephritis) in mice resulted in upregulation of the only CCR6 ligand, CCL20, followed by T cell recruitment, renal tissue injury, albuminuria, and loss of renal function. CCR6 deficiency aggravated renal injury and increased mortality (from uremia) among nephritic mice. Compared with wild-type (WT) mice, CCR6 deficiency reduced infiltration of Tregs and Th17 cells but did not affect recruitment of Th1 cells in the setting of glomerulonephritis. Adoptive transfer of WT but not CCR6-deficient Tregs attenuated morphologic and functional renal injury in nephritic mice. Furthermore, reconstitution with WT Tregs protected CCR6-/- mice from aggravated nephritis. Taken together, these data suggest that CCR6 mediates renal recruitment of both Tregs and Th17 cells and that the reduction of anti-inflammatory Tregs in the presence of a fully functional Th1 response aggravates experimental glomerulonephritis.
Collapse
|
96
|
Atorvastatin attenuates murine anti-glomerular basement membrane glomerulonephritis. Kidney Int 2010; 77:428-35. [DOI: 10.1038/ki.2009.478] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
97
|
Nogueira E, Hamour S, Sawant D, Henderson S, Mansfield N, Chavele KM, Pusey CD, Salama AD. Serum IL-17 and IL-23 levels and autoantigen-specific Th17 cells are elevated in patients with ANCA-associated vasculitis. Nephrol Dial Transplant 2010; 25:2209-17. [DOI: 10.1093/ndt/gfp783] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
98
|
Summers SA, Steinmetz OM, Li M, Kausman JY, Semple T, Edgtton KL, Borza DB, Braley H, Holdsworth SR, Kitching AR. Th1 and Th17 cells induce proliferative glomerulonephritis. J Am Soc Nephrol 2009; 20:2518-24. [PMID: 19820122 DOI: 10.1681/asn.2009030337] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Th1 effector CD4+ cells contribute to the pathogenesis of proliferative and crescentic glomerulonephritis, but whether effector Th17 cells also contribute is unknown. We compared the involvement of Th1 and Th17 cells in a mouse model of antigen-specific glomerulonephritis in which effector CD4+ cells are the only components of adaptive immunity that induce injury. We planted the antigen ovalbumin on the glomerular basement membrane of Rag1(-/-) mice using an ovalbumin-conjugated non-nephritogenic IgG1 monoclonal antibody against alpha3(IV) collagen. Subsequent injection of either Th1- or Th17-polarized ovalbumin-specific CD4+ effector cells induced proliferative glomerulonephritis. Mice injected with Th1 cells developed progressive albuminuria over 21 d, histologic injury including 5.5 +/- 0.9% crescent formation/segmental necrosis, elevated urinary nitrate, and increased renal NOS2, CCL2, and CCL5 mRNA. Mice injected with Th17 cells developed albuminuria by 3 d; compared with Th1-injected mice, their glomeruli contained more neutrophils and greater expression of renal CXCL1 mRNA. In conclusion, Th1 and Th17 effector cells can induce glomerular injury. Understanding how these two subsets mediate proliferative forms of glomerulonephritis may lead to targeted therapies.
Collapse
Affiliation(s)
- Shaun A Summers
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
T cell cross-talk with kidney dendritic cells in glomerulonephritis. J Mol Med (Berl) 2009; 88:19-26. [DOI: 10.1007/s00109-009-0541-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/04/2009] [Accepted: 09/07/2009] [Indexed: 12/28/2022]
|
100
|
Steinmetz OM, Turner JE, Paust HJ, Lindner M, Peters A, Heiss K, Velden J, Hopfer H, Fehr S, Krieger T, Meyer-Schwesinger C, Meyer TN, Helmchen U, Mittrücker HW, Stahl RAK, Panzer U. CXCR3 mediates renal Th1 and Th17 immune response in murine lupus nephritis. THE JOURNAL OF IMMUNOLOGY 2009; 183:4693-704. [PMID: 19734217 DOI: 10.4049/jimmunol.0802626] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Infiltration of T cells into the kidney is a typical feature of human and experimental lupus nephritis that contributes to renal tissue injury. The chemokine receptor CXCR3 is highly expressed on Th1 cells and is supposed to be crucial for their trafficking into inflamed tissues. In this study, we explored the functional role of CXCR3 using the MRL/MpJ-Fas(lpr) (MRL/lpr) mouse model of systemic lupus erythematosus that closely resembles the human disease. CXCR3(-/-) mice were generated and backcrossed into the MRL/lpr background. Analysis of 20-wk-old CXCR3(-/-) MRL/lpr mice showed amelioration of nephritis with reduced glomerular tissue damage and decreased albuminuria and T cell recruitment. Most importantly, not only the numbers of renal IFN-gamma-producing Th1 cells, but also of IL-17-producing Th17 cells were significantly reduced. Unlike in inflamed kidneys, there was no reduction in the numbers of IFN-gamma- or IL-17-producing T cells in spleens, lymph nodes, or the small intestine of MRL/lpr CXCR3(-/-) mice. This observation suggests impaired trafficking of effector T cells to injured target organs, rather than the inability of CXCR3(-/-) mice to mount efficient Th1 and Th17 immune responses. These findings show a crucial role for CXCR3 in the development of experimental lupus nephritis by directing pathogenic effector T cells into the kidney. For the first time, we demonstrate a beneficial effect of CXCR3 deficiency through attenuation of both the Th1 and the newly defined Th17 immune response. Our data therefore identify the chemokine receptor CXCR3 as a promising therapeutic target in lupus nephritis.
Collapse
|