51
|
Abstract
Low-grade diffuse gliomas are a heterogeneous group of primary glial brain tumors with highly variable survival. Currently, patients with low-grade diffuse gliomas are stratified into risk subgroups by subjective histopathologic criteria with significant interobserver variability. Several key molecular signatures have emerged as diagnostic, prognostic, and predictor biomarkers for tumor classification and patient risk stratification. In this review, we discuss the effect of the most critical molecular alterations described in diffuse (IDH1/2, 1p/19q codeletion, ATRX, TERT, CIC, and FUBP1) and circumscribed (BRAF-KIAA1549, BRAF(V600E), and C11orf95-RELA fusion) gliomas. These molecular features reflect tumor heterogeneity and have specific associations with patient outcome that determine appropriate patient management. This has led to an important, fundamental shift toward developing a molecular classification of World Health Organization grade II-III diffuse glioma.
Collapse
Affiliation(s)
- Adriana Olar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Erik P Sulman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
52
|
Brat DJ, Verhaak RGW, Aldape KD, Yung WKA, Salama SR, Cooper LAD, Rheinbay E, Miller CR, Vitucci M, Morozova O, Robertson AG, Noushmehr H, Laird PW, Cherniack AD, Akbani R, Huse JT, Ciriello G, Poisson LM, Barnholtz-Sloan JS, Berger MS, Brennan C, Colen RR, Colman H, Flanders AE, Giannini C, Grifford M, Iavarone A, Jain R, Joseph I, Kim J, Kasaian K, Mikkelsen T, Murray BA, O'Neill BP, Pachter L, Parsons DW, Sougnez C, Sulman EP, Vandenberg SR, Van Meir EG, von Deimling A, Zhang H, Crain D, Lau K, Mallery D, Morris S, Paulauskis J, Penny R, Shelton T, Sherman M, Yena P, Black A, Bowen J, Dicostanzo K, Gastier-Foster J, Leraas KM, Lichtenberg TM, Pierson CR, Ramirez NC, Taylor C, Weaver S, Wise L, Zmuda E, Davidsen T, Demchok JA, Eley G, Ferguson ML, Hutter CM, Mills Shaw KR, Ozenberger BA, Sheth M, Sofia HJ, Tarnuzzer R, Wang Z, Yang L, Zenklusen JC, Ayala B, Baboud J, Chudamani S, Jensen MA, Liu J, Pihl T, Raman R, Wan Y, Wu Y, Ally A, Auman JT, Balasundaram M, Balu S, Baylin SB, Beroukhim R, Bootwalla MS, Bowlby R, Bristow CA, Brooks D, Butterfield Y, Carlsen R, Carter S, Chin L, Chu A, Chuah E, Cibulskis K, Clarke A, Coetzee SG, Dhalla N, Fennell T, Fisher S, Gabriel S, Getz G, Gibbs R, Guin R, Hadjipanayis A, Hayes DN, Hinoue T, Hoadley K, Holt RA, Hoyle AP, Jefferys SR, Jones S, Jones CD, Kucherlapati R, Lai PH, Lander E, Lee S, Lichtenstein L, Ma Y, Maglinte DT, Mahadeshwar HS, Marra MA, Mayo M, Meng S, Meyerson ML, Mieczkowski PA, Moore RA, Mose LE, Mungall AJ, Pantazi A, Parfenov M, Park PJ, Parker JS, Perou CM, Protopopov A, Ren X, Roach J, Sabedot TS, Schein J, Schumacher SE, Seidman JG, Seth S, Shen H, Simons JV, Sipahimalani P, Soloway MG, Song X, Sun H, Tabak B, Tam A, Tan D, Tang J, Thiessen N, Triche T, Van Den Berg DJ, Veluvolu U, Waring S, Weisenberger DJ, Wilkerson MD, Wong T, Wu J, Xi L, Xu AW, Yang L, Zack TI, Zhang J, Aksoy BA, Arachchi H, Benz C, Bernard B, Carlin D, Cho J, DiCara D, Frazer S, Fuller GN, Gao J, Gehlenborg N, Haussler D, Heiman DI, Iype L, Jacobsen A, Ju Z, Katzman S, Kim H, Knijnenburg T, Kreisberg RB, Lawrence MS, Lee W, Leinonen K, Lin P, Ling S, Liu W, Liu Y, Liu Y, Lu Y, Mills G, Ng S, Noble MS, Paull E, Rao A, Reynolds S, Saksena G, Sanborn Z, Sander C, Schultz N, Senbabaoglu Y, Shen R, Shmulevich I, Sinha R, Stuart J, Sumer SO, Sun Y, Tasman N, Taylor BS, Voet D, Weinhold N, Weinstein JN, Yang D, Yoshihara K, Zheng S, Zhang W, Zou L, Abel T, Sadeghi S, Cohen ML, Eschbacher J, Hattab EM, Raghunathan A, Schniederjan MJ, Aziz D, Barnett G, Barrett W, Bigner DD, Boice L, Brewer C, Calatozzolo C, Campos B, Carlotti CG, Chan TA, Cuppini L, Curley E, Cuzzubbo S, Devine K, DiMeco F, Duell R, Elder JB, Fehrenbach A, Finocchiaro G, Friedman W, Fulop J, Gardner J, Hermes B, Herold-Mende C, Jungk C, Kendler A, Lehman NL, Lipp E, Liu O, Mandt R, McGraw M, Mclendon R, McPherson C, Neder L, Nguyen P, Noss A, Nunziata R, Ostrom QT, Palmer C, Perin A, Pollo B, Potapov A, Potapova O, Rathmell WK, Rotin D, Scarpace L, Schilero C, Senecal K, Shimmel K, Shurkhay V, Sifri S, Singh R, Sloan AE, Smolenski K, Staugaitis SM, Steele R, Thorne L, Tirapelli DPC, Unterberg A, Vallurupalli M, Wang Y, Warnick R, Williams F, Wolinsky Y, Bell S, Rosenberg M, Stewart C, Huang F, Grimsby JL, Radenbaugh AJ, Zhang J. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N Engl J Med 2015; 372:2481-98. [PMID: 26061751 PMCID: PMC4530011 DOI: 10.1056/nejmoa1402121] [Citation(s) in RCA: 2219] [Impact Index Per Article: 246.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. METHODS We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. RESULTS Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. CONCLUSIONS The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most lower-grade gliomas without an IDH mutation were molecularly and clinically similar to glioblastoma. (Funded by the National Institutes of Health.).
Collapse
|
53
|
Ichimura K, Narita Y, Hawkins CE. Diffusely infiltrating astrocytomas: pathology, molecular mechanisms and markers. Acta Neuropathol 2015; 129:789-808. [PMID: 25975377 DOI: 10.1007/s00401-015-1439-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 04/26/2015] [Accepted: 04/30/2015] [Indexed: 11/28/2022]
Abstract
Diffusely infiltrating astrocytomas include diffuse astrocytomas WHO grade II and anaplastic astrocytomas WHO grade III and are classified under astrocytic tumours according to the current WHO Classification. Although the patients generally have longer survival as compared to those with glioblastoma, the timing of inevitable malignant progression ultimately determines the prognosis. Recent advances in molecular genetics have uncovered that histopathologically diagnosed astrocytomas may consist of two genetically different groups of tumours. The majority of diffusely infiltrating astrocytomas regardless of WHO grade have concurrent mutations of IDH1 or IDH2, TP53 and ATRX. Among these astrocytomas, no other genetic markers that may distinguish grade II and grade III tumours have been identified. Those astrocytomas without IDH mutation tend to have a distinct genotype and a poor prognosis comparable to that of glioblastomas. On the other hand, diffuse astrocytomas that arise in children do not harbour IDH/TP53 mutations, but instead display mutations of BRAF or structural alterations involving MYB/MYBL1 or FGFR1. A molecular classification may thus help delineate diffusely infiltrating astrocytomas into distinct pathogenic and prognostic groups, which could aid in determining individualised therapeutic strategies.
Collapse
Affiliation(s)
- Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan,
| | | | | |
Collapse
|
54
|
Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome- and transcriptome-wide profiling improves stratification of prognostically distinct patient groups. Acta Neuropathol 2015; 129:679-93. [PMID: 25783747 DOI: 10.1007/s00401-015-1409-0] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 01/20/2023]
Abstract
Cerebral gliomas of World Health Organization (WHO) grade II and III represent a major challenge in terms of histological classification and clinical management. Here, we asked whether large-scale genomic and transcriptomic profiling improves the definition of prognostically distinct entities. We performed microarray-based genome- and transcriptome-wide analyses of primary tumor samples from a prospective German Glioma Network cohort of 137 patients with cerebral gliomas, including 61 WHO grade II and 76 WHO grade III tumors. Integrative bioinformatic analyses were employed to define molecular subgroups, which were then related to histology, molecular biomarkers, including isocitrate dehydrogenase 1 or 2 (IDH1/2) mutation, 1p/19q co-deletion and telomerase reverse transcriptase (TERT) promoter mutations, and patient outcome. Genomic profiling identified five distinct glioma groups, including three IDH1/2 mutant and two IDH1/2 wild-type groups. Expression profiling revealed evidence for eight transcriptionally different groups (five IDH1/2 mutant, three IDH1/2 wild type), which were only partially linked to the genomic groups. Correlation of DNA-based molecular stratification with clinical outcome allowed to define three major prognostic groups with characteristic genomic aberrations. The best prognosis was found in patients with IDH1/2 mutant and 1p/19q co-deleted tumors. Patients with IDH1/2 wild-type gliomas and glioblastoma-like genomic alterations, including gain on chromosome arm 7q (+7q), loss on chromosome arm 10q (-10q), TERT promoter mutation and oncogene amplification, displayed the worst outcome. Intermediate survival was seen in patients with IDH1/2 mutant, but 1p/19q intact, mostly astrocytic gliomas, and in patients with IDH1/2 wild-type gliomas lacking the +7q/-10q genotype and TERT promoter mutation. This molecular subgrouping stratified patients into prognostically distinct groups better than histological classification. Addition of gene expression data to this genomic classifier did not further improve prognostic stratification. In summary, DNA-based molecular profiling of WHO grade II and III gliomas distinguishes biologically distinct tumor groups and provides prognostically relevant information beyond histological classification as well as IDH1/2 mutation and 1p/19q co-deletion status.
Collapse
|
55
|
Olar A, Wani KM, Alfaro-Munoz KD, Heathcock LE, van Thuijl HF, Gilbert MR, Armstrong TS, Sulman EP, Cahill DP, Vera-Bolanos E, Yuan Y, Reijneveld JC, Ylstra B, Wesseling P, Aldape KD. IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol 2015; 129:585-96. [PMID: 25701198 PMCID: PMC4369189 DOI: 10.1007/s00401-015-1398-z] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/31/2022]
Abstract
Diffuse gliomas are up till now graded based upon morphology. Recent findings indicate that isocitrate dehydrogenase (IDH) mutation status defines biologically distinct groups of tumors. The role of tumor grade and mitotic index in patient outcome has not been evaluated following stratification by IDH mutation status. To address this, we interrogated 558 WHO grade II-III diffuse gliomas for IDH1/2 mutations and investigated the prognostic impact of WHO grade within IDH-mutant and IDH-wild type tumor subsets independently. The prognostic impact of grade was modest in IDH-mutant [hazard ratio (HR) = 1.21, 95 % confidence interval (CI) = 0.91-1.61] compared to IDH-wild type tumors (HR = 1.74, 95 % CI = 0.95-3.16). Using a dichotomized mitotic index cut-off of 4/1000 tumor cells, we found that while mitotic index was significantly associated with outcome in IDH-wild type tumors (log-rank p < 0.0001, HR = 4.41, 95 % CI = 2.55-7.63), it was not associated with outcome in IDH-mutant tumors (log-rank p = 0.5157, HR = 1.10, 95 % CI = 0.80-1.51), and could demonstrate a statistical interaction (p < 0.0001) between IDH mutation and mitotic index (i.e., suggesting that the effect of mitotic index on patient outcome is dependent on IDH mutation status). Patient age, an established prognostic factor in diffuse glioma, was significantly associated with outcome only in the IDH-wild type subset, and consistent with prior data, 1p/19q co-deletion conferred improved outcome in the IDH-mutant cohort. These findings suggest that stratification of grade II-III gliomas into subsets defined by the presence or absence of IDH mutation leads to subgroups with distinct prognostic characteristics. Further evaluation of grading criteria and prognostic markers is warranted within IDH-mutant versus IDH-wild type diffuse grade II-III gliomas as independent entities.
Collapse
Affiliation(s)
- Adriana Olar
- Department of Pathology, G1.3510, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Rhun EL, Taillibert S, Chamberlain MC. The future of high-grade glioma: Where we are and where are we going. Surg Neurol Int 2015; 6:S9-S44. [PMID: 25722939 PMCID: PMC4338495 DOI: 10.4103/2152-7806.151331] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/15/2014] [Indexed: 01/12/2023] Open
Abstract
High-grade glioma (HGG) are optimally treated with maximum safe surgery, followed by radiotherapy (RT) and/or systemic chemotherapy (CT). Recently, the treatment of newly diagnosed anaplastic glioma (AG) has changed, particularly in patients with 1p19q codeleted tumors. Results of trials currenlty ongoing are likely to determine the best standard of care for patients with noncodeleted AG tumors. Trials in AG illustrate the importance of molecular characterization, which are germane to both prognosis and treatment. In contrast, efforts to improve the current standard of care of newly diagnosed glioblastoma (GB) with, for example, the addition of bevacizumab (BEV), have been largely disappointing and furthermore molecular characterization has not changed therapy except in elderly patients. Novel approaches, such as vaccine-based immunotherapy, for newly diagnosed GB are currently being pursued in multiple clinical trials. Recurrent disease, an event inevitable in nearly all patients with HGG, continues to be a challenge. Both recurrent GB and AG are managed in similar manner and when feasible re-resection is often suggested notwithstanding limited data to suggest benefit from repeat surgery. Occassional patients may be candidates for re-irradiation but again there is a paucity of data to commend this therapy and only a minority of selected patients are eligible for this approach. Consequently systemic therapy continues to be the most often utilized treatment in recurrent HGG. Choice of therapy, however, varies and revolves around re-challenge with temozolomide (TMZ), use of a nitrosourea (most often lomustine; CCNU) or BEV, the most frequently used angiogenic inhibitor. Nevertheless, no clear standard recommendation regarding the prefered agent or combination of agents is avaliable. Prognosis after progression of a HGG remains poor, with an unmet need to improve therapy.
Collapse
Affiliation(s)
- Emilie Le Rhun
- Department of Neuro-oncology, Roger Salengro Hospital, University Hospital, Lille, and Neurology, Department of Medical Oncology, Oscar Lambret Center, Lille, France, Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Lille 1 University, Villeneuve D’Ascq, France
| | - Sophie Taillibert
- Neurology, Mazarin and Radiation Oncology, Pitié Salpétrière Hospital, University Pierre et Marie Curie, Paris VI, Paris, France
| | - Marc C. Chamberlain
- Department of Neurology and Neurological Surgery, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
57
|
Hayes J, Thygesen H, Droop A, Hughes TA, Westhead D, Lawler SE, Wurdak H, Short SC. Prognostic microRNAs in high-grade glioma reveal a link to oligodendrocyte precursor differentiation. Oncoscience 2014; 2:252-62. [PMID: 25897422 PMCID: PMC4394131 DOI: 10.18632/oncoscience.112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/22/2014] [Indexed: 12/31/2022] Open
Abstract
MicroRNA expression can be exploited to define tumor prognosis and stratification for precision medicine. It remains unclear whether prognostic microRNA signatures are exclusively tumor grade and/or molecular subtype-specific, or whether common signatures of aggressive clinical behavior can be identified. Here, we defined microRNAs that are associated with good and poor prognosis in grade III and IV gliomas using data from The Cancer Genome Atlas. Pathway analysis of microRNA targets that are differentially expressed in good and poor prognosis glioma identified a link to oligodendrocyte development. Notably, a microRNA expression profile that is characteristic of a specific oligodendrocyte precursor cell type (OP1) correlates with microRNA expression from 597 of these tumors and is consistently associated with poor patient outcome in grade III and IV gliomas. Our study reveals grade-independent and subtype-independent prognostic molecular signatures in high-grade glioma and provides a framework for investigating the mechanisms of brain tumor aggressiveness.
Collapse
Affiliation(s)
- Josie Hayes
- Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, UK
| | - Helene Thygesen
- Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, UK
| | - Alastair Droop
- Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, UK
| | - Thomas A Hughes
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, UK
| | - David Westhead
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sean E Lawler
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Heiko Wurdak
- Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, UK
| | - Susan C Short
- Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, UK
| |
Collapse
|
58
|
Borodovsky A, Meeker AK, Kirkness EF, Zhao Q, Eberhart CG, Gallia GL, Riggins GJ. A model of a patient-derived IDH1 mutant anaplastic astrocytoma with alternative lengthening of telomeres. J Neurooncol 2014; 121:479-87. [PMID: 25471051 DOI: 10.1007/s11060-014-1672-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 11/23/2014] [Indexed: 12/12/2022]
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1) have been found in the vast majority of low grade and progressive infiltrating gliomas and are characterized by the production of 2-hydroxyglutarate from α-ketoglutarate. Recent investigations of malignant gliomas have identified additional genetic and chromosomal abnormalities which cluster with IDH1 mutations into two distinct subgroups. The astrocytic subgroup was found to have frequent mutations in ATRX, TP53 and displays alternative lengthening of telomeres. The second subgroup with oligodendrocytic morphology has frequent mutations in CIC or FUBP1, and is linked to co-deletion of the 1p/19q arms. These mutations reflect the development of two distinct molecular pathways representing the majority of IDH1 mutant gliomas. Unfortunately, due to the scarcity of endogenously derived IDH1 mutant models, there is a lack of accurate models to study mechanism and develop new therapy. Here we report the generation of an endogenous IDH1 anaplastic astrocytoma in vivo model with concurrent mutations in TP53, CDKN2A and ATRX. The model has a similar phenotype and histopathology as the original patient tumor, expresses the IDH1 (R132H) mutant protein and exhibits an alternative lengthening of telomeres phenotype. The JHH-273 model is characteristic of anaplastic astrocytoma and represents a valuable tool for investigating the pathogenesis of this distinct molecular subset of gliomas and for preclinical testing of compounds targeting IDH1 mutations or alternative lengthening of telomeres.
Collapse
Affiliation(s)
- Alexandra Borodovsky
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, 1550 Orleans Street, Room 257 CRB2, Baltimore, MD, 21231, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Labussière M, Di Stefano AL, Gleize V, Boisselier B, Giry M, Mangesius S, Bruno A, Paterra R, Marie Y, Rahimian A, Finocchiaro G, Houlston RS, Hoang-Xuan K, Idbaih A, Delattre JY, Mokhtari K, Sanson M. TERT promoter mutations in gliomas, genetic associations and clinico-pathological correlations. Br J Cancer 2014; 111:2024-32. [PMID: 25314060 PMCID: PMC4229642 DOI: 10.1038/bjc.2014.538] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/18/2014] [Accepted: 09/12/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The role of telomerase reverse transcriptase (TERT) in gliomagenesis has been recently further strengthened by the frequent occurrence of TERT promoter mutations (TERTp-mut) in gliomas and evidence that the TERT SNP genetic rs2736100 influences glioma risk. TERTp-mut creates a binding site for Ets/TCF transcription factors, whereas the common rs2853669 polymorphism disrupts another Ets/TCF site on TERT promoter. METHODS We sequenced for TERTp-mut in 807 glioma DNAs and in 235 blood DNAs and analysed TERT expression by RT-PCR in 151 samples. TERTp-mut status and TERTp polymorphism rs2853669 were correlated with histology, genomic profile, TERT mRNA expression, clinical outcome and rs2736100 genotype. RESULTS TERTp-mut identified in 60.8% of gliomas (491 out of 807) was globally associated with poorer outcome (Hazard ratio (HR)=1.50). We defined, based on TERTp-mut and IDH mutation status, four prognostic groups: (1) TERTp-mut and IDH-mut associated with 1p19q codeletion, overall survival (OS)>17 years; (2) TERTp-wt and IDH-mut, associated with TP53 mutation, OS=97.5 months; (3) TERTp-wt and IDH-wt, with no specific association, OS=31.6 months; (4) TERTp-mut and IDH-wt, associated with EGFR amplification, OS=15.4 months. TERTp-mut was associated with higher TERT mRNA expression, whereas the rs2853669 variant was associated with lower TERT mRNA expression. The mutation of CIC (a repressor of ETV1-5 belonging to the Ets/TCF family) was also associated with TERT mRNA upregulation. CONCLUSIONS In addition to IDH mutation status, defining the TERTp-mut status of glial tumours should afford enhanced prognostic stratification of patients with glioma. We also show that TERTp-mut, rs2853669 variant and CIC mutation influence Tert expression. This effect could be mediated by Ets/TCF transcription factors.
Collapse
Affiliation(s)
- M Labussière
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France
| | - A L Di Stefano
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France [4] National Neurological Institute C. Mondino, University of Pavia, 27100 Pavia, Italy
| | - V Gleize
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France
| | - B Boisselier
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France [4] Institut du Cerveau et de la Moelle épinière (ICM), Plateforme de Génotypage Séquençage, Paris 75013, France
| | - M Giry
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France
| | - S Mangesius
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France
| | - A Bruno
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France
| | - R Paterra
- Dipartimento di Neuro Oncologia Molecolare Fondazione I.R.C.C.S. Istituto Neurologico C. Besta, Milano 20134, Italy
| | - Y Marie
- 1] Institut du Cerveau et de la Moelle épinière (ICM), Plateforme de Génotypage Séquençage, Paris 75013, France [2] Onconeurothèque, Paris 75013, France
| | - A Rahimian
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France [4] Onconeurothèque, Paris 75013, France
| | - G Finocchiaro
- Dipartimento di Neuro Oncologia Molecolare Fondazione I.R.C.C.S. Istituto Neurologico C. Besta, Milano 20134, Italy
| | - R S Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, Surrey SM2 5NG, UK
| | - K Hoang-Xuan
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France [4] AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2, Paris 75013, France
| | - A Idbaih
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France [4] AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2, Paris 75013, France
| | - J-Y Delattre
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France [4] Onconeurothèque, Paris 75013, France [5] AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2, Paris 75013, France
| | - K Mokhtari
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France [4] Onconeurothèque, Paris 75013, France [5] AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Laboratoire de Neuropathologie R. Escourolle, Paris 75013, France
| | - M Sanson
- 1] Sorbonne Universités, UMPC Univ Paris 06, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris 75013, France [2] INSERM U 1127, Paris 75013, France [3] CNRS, UMR 7225, Paris 75013, France [4] Onconeurothèque, Paris 75013, France [5] AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2, Paris 75013, France
| |
Collapse
|
60
|
Clinical Neuropathology practice news 2-2014: ATRX, a new candidate biomarker in gliomas. Clin Neuropathol 2014; 33:108-11. [PMID: 24559763 PMCID: PMC3967248 DOI: 10.5414/np300758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Genome-wide molecular approaches have substantially elucidated molecular alterations and pathways involved in the oncogenesis of brain tumors. In gliomas, several molecular biomarkers including IDH mutation, 1p/19q co-deletion, and MGMT promotor methylation status have been introduced into neuropathological practice. Recently, mutations of the ATRX gene have been found in various subtypes and grades of gliomas and were shown to refine the prognosis of malignant gliomas in combination with IDH and 1p/19q status. Mutations of ATRX are associated with loss of nuclear ATRX protein expression, detectable by a commercially available antibody, thus turning ATRX into a promising prognostic candidate biomarker in the routine neuropathological setting.
Collapse
|