51
|
Joo EJ, Wasik BR, Parrish C, Paz H, Mϋhlenhoff M, Abdel-Azim H, Groffen J, Heisterkamp N. Pre-B acute lymphoblastic leukemia expresses cell surface nucleolin as a 9-O-acetylated sialoglycoprotein. Sci Rep 2018; 8:17174. [PMID: 30464179 PMCID: PMC6249323 DOI: 10.1038/s41598-018-33873-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/28/2018] [Indexed: 12/21/2022] Open
Abstract
Precursor B acute lymphoblastic leukemias (pre-B ALLs) abnormally express a specific glycan structure, 9-O-acetylated sialic acid (9-O-Ac-Sia), on their cell surface, but glycoproteins that carry this modification have not been identified. Using three different lectins that specifically recognize this structure, we establish that nucleolin (NCL), a protein implicated in cancer, contains 9-O-Ac-Sia. Surprisingly, antibodies against the glycolipid 9-O-Ac-Sia GD3 also detected 9-O-Ac-Sia NCL. NCL is present on the surface of pre-B ALL cells as a sialoglycoprotein that is partly 9-O-acetylated and conversely, 9-O-Ac-Sia-containing structures other than NCL are present on these cells as well. Interestingly, NCL and the 9-O-Ac-Sia signal had less co-localization on normal pre-B cells. We also investigated regulation of NCL on the cell surface and found that sialidase treatment increased the percentage of cells positive for cell surface NCL, suggesting that sialylation of NCL promotes internalization. Treatment of pre-B ALL cells with the chemotherapy drug vincristine also increased the percentage of cells with surface NCL and correlated with increased 9-O-Ac-Sia expression. All tested leukemia cells including primary samples expressed NCL, suggesting it as a possible therapeutic target. We confirmed this by showing inhibition of cell proliferation in some pre-B ALLs by exposure to a NCL-specific aptamer AS1411.
Collapse
Affiliation(s)
- Eun Ji Joo
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, USA
| | - Brian R Wasik
- Department of Microbiology and Immunology, Baker Institute for Animal Health and Feline Health Center, Cornell University, Ithaca, NY, USA
| | - Colin Parrish
- Department of Microbiology and Immunology, Baker Institute for Animal Health and Feline Health Center, Cornell University, Ithaca, NY, USA
| | - Helicia Paz
- Section of Molecular Carcinogenesis, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, USA
- University of California, Los Angeles, CA, 90095, USA
| | - Martina Mϋhlenhoff
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Hisham Abdel-Azim
- Division of Hematology/Oncology and Bone Marrow Transplant, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - John Groffen
- Section of Molecular Carcinogenesis, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, USA
- Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nora Heisterkamp
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, USA.
- Division of Hematology/Oncology and Bone Marrow Transplant, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
52
|
Ruvolo PP. Galectins as regulators of cell survival in the leukemia niche. Adv Biol Regul 2018; 71:41-54. [PMID: 30245264 DOI: 10.1016/j.jbior.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023]
Abstract
The microenvironment within the bone marrow (BM) contains support cells that promote leukemia cell survival and suppress host anti-tumor defenses. Galectins are a family of beta-galactoside binding proteins that are critical components in the tumor microenvironment. Galectin 1 (LGALS1) and Galectin 3 (LGALS3) as regulators of RAS signaling intracellularly and as inhibitors of immune cells extracellularly are perhaps the best studied members for their role in leukemia biology. Interest in Galectin 9 (LGALS9) is growing as this galectin has been identified as an immune checkpoint molecule. LGALS9 also supports leukemia stem cells (LSCs) though a mechanism of action is not clear. LGALS1 and LGALS3 each participate in a diverse number of survival pathways that promote drug resistance by supporting pro-tumor molecules such BCL2, MCL-1, and MYC and blocking tumor suppressors like p53. Acute myeloid leukemia (AML) BM mesenchymal stromal cells (MSC) have protein signatures that differ from healthy donor MSC. Elevated LGALS3 protein in AML MSC is associated with refractory disease/relapse demonstrating that MSC derived galectin impacts patient survival. LGALS3 is a critical determining factor whether MSC differentiate into adipocytes or osteoblasts so the galectin influences the cellular composition of the leukemia niche. Both LGALS3 and LGALS1 when secreted can suppress immune function. Both galectins can induce apoptosis of T cells. LGALS3 also modulates T cell receptor endocytosis and impairs interferon mediated chemokine production by binding glycosylated interferon. LGALS3 as a TIM3 binding partner acts to suppress T cell function. Galectins also impact leukemia cell mobilization and may participate in homing mechanisms. LGALS3 participates in transport mechanism of integrins, receptors, and other molecules that control cell adhesion and cell:cell interactions. The diversity of these various functions demonstrate the importance of these galectins in the leukemia niche. This review will cover the role of LGALS1, LGALS3, and LGALS9 in the various processes that are critical for maintaining leukemia cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Peter P Ruvolo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
53
|
Yao ZY, Chen WB, Shao SS, Ma SZ, Yang CB, Li MZ, Zhao JJ, Gao L. Role of exosome-associated microRNA in diagnostic and therapeutic applications to metabolic disorders. J Zhejiang Univ Sci B 2018; 19:183-198. [PMID: 29504312 DOI: 10.1631/jzus.b1600490] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metabolic disorders are classified clinically as a complex and varied group of diseases including metabolic syndrome, obesity, and diabetes mellitus. Fat toxicity, chronic inflammation, and oxidative stress, which may change cellular functions, are considered to play an essential role in the pathogenetic progress of metabolic disorders. Recent studies have found that cells secrete nanoscale vesicles containing proteins, lipids, nucleic acids, and membrane receptors, which mediate signal transduction and material transport to neighboring and distant cells. Exosomes, one type of such vesicles, are reported to participate in multiple pathological processes including tumor metastasis, atherosclerosis, chronic inflammation, and insulin resistance. Research on exosomes has focused mainly on the proteins they contain, but recently the function of exosome-associated microRNA has drawn a lot of attention. Exosome-associated microRNAs regulate the physiological function and pathological processes of metabolic disorders. They may also be useful as novel diagnostics and therapeutics given their special features of non-immunogenicity and quick extraction. In this paper, we summarize the structure, content, and functions of exosomes and the potential diagnostic and therapeutic applications of exosome-associated microRNAs in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Zhen-Yu Yao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Wen-Bin Chen
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Shan-Shan Shao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Shi-Zhan Ma
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Chong-Bo Yang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Meng-Zhu Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Jia-Jun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Ling Gao
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| |
Collapse
|
54
|
Pang X, Li H, Guan F, Li X. Multiple Roles of Glycans in Hematological Malignancies. Front Oncol 2018; 8:364. [PMID: 30237983 PMCID: PMC6135871 DOI: 10.3389/fonc.2018.00364] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/17/2018] [Indexed: 01/05/2023] Open
Abstract
The three types of blood cells (red blood cells for carrying oxygen, white blood cells for immune protection, and platelets for wound clotting) arise from hematopoietic stem/progenitor cells in the adult bone marrow, and function in physiological regulation and communication with local microenvironments to maintain systemic homeostasis. Hematological malignancies are relatively uncommon malignant disorders derived from the two major blood cell lineages: myeloid (leukemia) and lymphoid (lymphoma). Malignant clones lose their regulatory mechanisms, resulting in production of a large number of dysfunctional cells and destruction of normal hematopoiesis. Glycans are one of the four major types of essential biological macromolecules, along with nucleic acids, proteins, and lipids. Major glycan subgroups are N-glycans, O-glycans, glycosaminoglycans, and glycosphingolipids. Aberrant expression of glycan structures, resulting from dysregulation of glycan-related genes, is associated with cancer development and progression in terms of cell signaling and communication, tumor cell dissociation and invasion, cell-matrix interactions, tumor angiogenesis, immune modulation, and metastasis formation. Aberrant glycan expression occurs in most hematological malignancies, notably acute myeloid leukemia, myeloproliferative neoplasms, and multiple myeloma, etc. Here, we review recent research advances regarding aberrant glycans, their related genes, and their roles in hematological malignancies. Our improved understanding of the mechanisms that underlie aberrant patterns of glycosylation will lead to development of novel, more effective therapeutic approaches targeted to hematological malignancies.
Collapse
Affiliation(s)
- Xingchen Pang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hongjiao Li
- College of Life Science, Northwest University, Xi'an, China
| | - Feng Guan
- School of Biotechnology, Jiangnan University, Wuxi, China.,College of Life Science, Northwest University, Xi'an, China
| | - Xiang Li
- College of Life Science, Northwest University, Xi'an, China.,Wuxi Medical School, Jiangnan University, Wuxi, China
| |
Collapse
|
55
|
Ruvolo PP, Ruvolo VR, Burks JK, Qiu Y, Wang RY, Shpall EJ, Mirandola L, Hail N, Zeng Z, McQueen T, Daver N, Post SM, Chiriva-Internati M, Kornblau SM, Andreeff M. Role of MSC-derived galectin 3 in the AML microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:959-969. [PMID: 29655803 PMCID: PMC5936474 DOI: 10.1016/j.bbamcr.2018.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/16/2022]
Abstract
In acute myeloid leukemia (AML), high Galectin 3 (LGALS3) expression is associated with poor prognosis. The role of LGALS3 derived from mesenchymal stromal cells (MSC) in the AML microenvironment is unclear; however, we have recently found high LGALS3 expression in MSC derived from AML patients is associated with relapse. In this study, we used reverse phase protein analysis (RPPA) to correlate LGALS3 expression in AML MSC with 119 other proteins including variants of these proteins such as phosphorylated forms or cleaved forms to identify biologically relevant pathways. RPPA revealed that LGALS3 protein was positively correlated with expression of thirteen proteins including MYC, phosphorylated beta-Catenin (p-CTNNB1), and AKT2 and negatively correlated with expression of six proteins including integrin beta 3 (ITGB3). String analysis revealed that proteins positively correlated with LGALS3 showed strong interconnectivity. Consistent with the RPPA results, LGALS3 suppression by shRNA in MSC resulted in decreased MYC and AKT expression while ITGB3 was induced. In co-culture, the ability of AML cell to adhere to MSC LGALS3 shRNA transductants was reduced compared to AML cell adhesion to MSC control shRNA transductants. Finally, use of novel specific LGALS3 inhibitor CBP.001 in co-culture of AML cells with MSC reduced viable leukemia cell populations with induced apoptosis and augmented the chemotherapeutic effect of AraC. In summary, the current study demonstrates that MSC-derived LGALS3 may be critical for important biological pathways for MSC homeostasis and for regulating AML cell localization and survival in the leukemia microenvironmental niche.
Collapse
Affiliation(s)
- Peter P Ruvolo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Section of Molecular Hematology, University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Vivian R Ruvolo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Section of Molecular Hematology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jared K Burks
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Section of Molecular Hematology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - YiHua Qiu
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Section of Molecular Hematology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rui-Yu Wang
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Section of Molecular Hematology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Numsen Hail
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Section of Molecular Hematology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhihong Zeng
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Section of Molecular Hematology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Teresa McQueen
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Section of Molecular Hematology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Naval Daver
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sean M Post
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maurizio Chiriva-Internati
- Kiromic Biopharma, Houston, TX, United States; Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven M Kornblau
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Section of Molecular Hematology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael Andreeff
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Section of Molecular Hematology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
56
|
Extracellular galectins as controllers of cytokines in hematological cancer. Blood 2018; 132:484-491. [PMID: 29875102 DOI: 10.1182/blood-2018-04-846014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/31/2018] [Indexed: 12/19/2022] Open
Abstract
Galectins and cytokines are both secreted proteins whose levels are prognosis factors for several cancers. Extracellular galectins bind to the glycans decorating glycoproteins and are overproduced in most cancers. Accumulative evidence shows that galectins regulate cytokines during cancer progression. Although galectins alter cytokine function by binding to the glycans decorating cytokines or their receptors, cytokines could also regulate galectin expression and function. This review revises these complex interactions and their clinical impact, particularly in hematological cancers.
Collapse
|
57
|
Abstract
Galectins are carbohydrate-binding proteins that are involved in many physiological functions, such as inflammation, immune responses, cell migration, autophagy and signalling. They are also linked to diseases such as fibrosis, cancer and heart disease. How such a small family of only 15 members can have such widespread effects remains a conundrum. In this Cell Science at a Glance article, we summarise recent literature on the many cellular activities that have been ascribed to galectins. As shown on the accompanying poster, these include carbohydrate-independent interactions with cytosolic or nuclear targets and carbohydrate-dependent interactions with extracellular glycoconjugates. We discuss how these intra- and extracellular activities might be linked and point out the importance of unravelling molecular mechanisms of galectin function to gain a true understanding of their contributions to the physiology of the cell. We close with a short outlook on the organismal functions of galectins and a perspective on the major challenges in the field.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie, PSL Research University, Cellular and Chemical Biology unit, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Ralf Jacob
- Philipps-Universität Marburg, Institut für Zytobiologie, Robert-Koch-Str. 6, 35037 Marburg, Germany
| | - Hakon Leffler
- Sect. MIG (Microbiology, Immunology, Glycobiology), Dept Laboratory Medicine, Lund University, POB 117, 22100 Lund, Sweden
| |
Collapse
|
58
|
Molecular mechanism to recruit galectin-3 into multivesicular bodies for polarized exosomal secretion. Proc Natl Acad Sci U S A 2018; 115:E4396-E4405. [PMID: 29686075 DOI: 10.1073/pnas.1718921115] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The beta-galactoside binding lectin galectin-3 (Gal3) is found intracellularly and in the extracellular space. Secretion of this lectin is mediated independently of the secretory pathway by a not yet defined nonclassical mechanism. Here, we found Gal3 in the lumen of exosomes. Superresolution and electron microscopy studies visualized Gal3 recruitment and sorting into intraluminal vesicles. Exosomal Gal3 release depends on the endosomal sorting complex required for transport I (ESCRT-I) component Tsg101 and functional Vps4a. Either Tsg101 knockdown or expression of dominant-negative Vps4aE228Q causes an intracellular Gal3 accumulation at multivesicular body formation sites. In addition, we identified a highly conserved tetrapeptide P(S/T)AP motif in the amino terminus of Gal3 that mediates a direct interaction with Tsg101. Mutation of the P(S/T)AP motif results in a loss of interaction and a dramatic decrease in exosomal Gal3 secretion. We conclude that Gal3 is a member of endogenous non-ESCRT proteins which are P(S/T)AP tagged for exosomal release.
Collapse
|
59
|
Paz H, Joo EJ, Chou CH, Fei F, Mayo KH, Abdel-Azim H, Ghazarian H, Groffen J, Heisterkamp N. Treatment of B-cell precursor acute lymphoblastic leukemia with the Galectin-1 inhibitor PTX008. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:67. [PMID: 29580262 PMCID: PMC5870532 DOI: 10.1186/s13046-018-0721-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 02/25/2018] [Indexed: 02/06/2023]
Abstract
Background Drug resistance of B-cell precursor acute lymphoblastic leukemia (BP-ALL) cells is conferred by both intrinsic and extrinsic factors, which could be targeted to promote chemo-sensitization. Our previous studies showed that Galectin-3, a lectin that clusters galactose-modified glycoproteins and that has both an intracellular and extracellular location, protects different subtypes of BP-ALL cells against chemotherapy. Galectin-1 is related to Galectin-3 and its expression was previously reported to be restricted to the MLL subtype of BP-ALL. Methods and results Here, we report that Galectin-1 is expressed at different levels in and on different subclasses of BP-ALLs. Bone marrow plasma also contains high levels of Galectin-1. PTX008 is an allosteric inhibitor which inhibits Galectin-1 but not Galectin-3-mediated agglutination. The compound reduces migration of BP-ALL cells to CXCL12 and OP9 stromal cells and inhibits fibronectin-mediated adhesion. It also affects cell cycle progression of BCP-ALL cells. PTX008 is cytostatic for BP-ALL cells even when these are co-cultured with protective stroma, and can sensitize ALL cells to vincristine chemotherapy in vitro and in mice. Conclusions PTX008 inhibits multiple functions that contribute to BP-ALL survival. The effects of Galectin-1 inhibition on both BP-ALL cell proliferation and migration suggest both the leukemia cells as well as the microenvironment that protects these cells may be targeted. Electronic supplementary material The online version of this article (10.1186/s13046-018-0721-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helicia Paz
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.,Department of Surgical Oncology, UCLA, Los Angeles, CA, 90095, USA
| | - Eun Ji Joo
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, USA
| | - Chih-Hsing Chou
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Fei Fei
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.,Pathology Department, University of Alabama, Birmingham, AL, USA
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN, 55455, USA
| | - Hisham Abdel-Azim
- Division of Hematology/Oncology and Bone Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Haike Ghazarian
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, USA
| | - John Groffen
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Nora Heisterkamp
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, USA.
| |
Collapse
|
60
|
Kumar R, Godavarthy PS, Krause DS. The bone marrow microenvironment in health and disease at a glance. J Cell Sci 2018; 131:131/4/jcs201707. [PMID: 29472498 DOI: 10.1242/jcs.201707] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The bone marrow microenvironment (BMM) is the 'domicile' of hematopoietic stem cells, as well as of malignant processes that can develop there. Multiple and complex interactions with the BMM influence hematopoietic stem cell (HSC) physiology, but also the pathophysiology of hematological malignancies. Reciprocally, hematological malignancies alter the BMM, in order to render it more hospitable for malignant progression. In this Cell Science at a Glance article and accompanying poster, we highlight concepts of the normal and malignant hematopoietic stem cell niches. We present the intricacies of the BMM in malignancy and provide approaches for targeting the interactions between malignant cells and their BMM. This is done in an effort to augment existing treatment strategies in the future.
Collapse
Affiliation(s)
- Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, D-60596 Frankfurt am Main, Germany
| | - P Sonika Godavarthy
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, D-60596 Frankfurt am Main, Germany
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
61
|
Karantanou C, Godavarthy PS, Krause DS. Targeting the bone marrow microenvironment in acute leukemia. Leuk Lymphoma 2018; 59:2535-2545. [PMID: 29431560 DOI: 10.1080/10428194.2018.1434886] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite individual differences between certain leukemias, the overall survival rate in acute leukemia remains low at approximately 40%. Novel therapeutics, including targeted therapies like tyrosine kinase inhibitors, have been incorporated into treatment regimens, but most have failed at eradicating leukemic stem cells (LSCs). The causes of disease relapse, progression, and resistance to chemotherapy are as yet not entirely clear but thought to be linked to protection in the bone marrow microenvironment (BMM). In this review, we summarize current knowledge on the BMM in acute leukemias and examine the ongoing efforts to target the BMM, which include treatment strategies targeting (a) leukemia-BMM interactions, (b) leukemia-cell intrinsic pathways influenced by the BMM, and (c) direct BMM targeting strategies. It is likely that the future ploy against leukemia will involve these and other innovative strategies designed to eradicate the last remaining warrior - the LSC.
Collapse
Affiliation(s)
- Christina Karantanou
- a Institute for Tumor Biology and Experimental Therapy , Georg-Speyer-Haus , Frankfurt am Main , Germany
| | - Parimala Sonika Godavarthy
- a Institute for Tumor Biology and Experimental Therapy , Georg-Speyer-Haus , Frankfurt am Main , Germany
| | - Daniela S Krause
- a Institute for Tumor Biology and Experimental Therapy , Georg-Speyer-Haus , Frankfurt am Main , Germany
| |
Collapse
|
62
|
Zöller M. Janus-Faced Myeloid-Derived Suppressor Cell Exosomes for the Good and the Bad in Cancer and Autoimmune Disease. Front Immunol 2018; 9:137. [PMID: 29456536 PMCID: PMC5801414 DOI: 10.3389/fimmu.2018.00137] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells originally described to hamper immune responses in chronic infections. Meanwhile, they are known to be a major obstacle in cancer immunotherapy. On the other hand, MDSC can interfere with allogeneic transplant rejection and may dampen autoreactive T cell activity. Whether MDSC-Exosomes (Exo) can cope with the dangerous and potentially therapeutic activities of MDSC is not yet fully explored. After introducing MDSC and Exo, it will be discussed, whether a blockade of MDSC-Exo could foster the efficacy of immunotherapy in cancer and mitigate tumor progression supporting activities of MDSC. It also will be outlined, whether application of native or tailored MDSC-Exo might prohibit autoimmune disease progression. These considerations are based on the steadily increasing knowledge on Exo composition, their capacity to distribute throughout the organism combined with selectivity of targeting, and the ease to tailor Exo and includes open questions that answers will facilitate optimizing protocols for a MDSC-Exo blockade in cancer as well as for strengthening their therapeutic efficacy in autoimmune disease.
Collapse
Affiliation(s)
- Margot Zöller
- Tumor Cell Biology, University Hospital of Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
63
|
The emerging roles of exosomes in leukemogeneis. Oncotarget 2018; 7:50698-50707. [PMID: 27191983 PMCID: PMC5226614 DOI: 10.18632/oncotarget.9333] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 05/05/2016] [Indexed: 12/21/2022] Open
Abstract
Communication between leukemia cells and their environment is essential for the development and progression of leukemia. Exosomes are microvesicles secreted by many types of cells that contain protein and RNA and mediate intercellular communication. The involvement of exosomes has been demonstrated in the crosstalk between leukemic cells, stromal cells and endothelial cells, consequently promoting the survival of leukemic cells, protection of leukemic cells from the cytotoxic effects of chemotherapeutic drugs, angiogenesis and cell migration. At the same time, exosomes can be used for the detection and monitoring of leukemia, with some advantage over current methods of detection and surveillance. As they are involved in immune response towards leukemic cells, exosomes can also potentially be exploited to augment immunotherapy in leukemia. In this review, we first describe the general characteristics of exosomes and biogenesis of exosomes. We then highlight the emerging role of exosomes in different types of leukemia. Finally, the clinical value of exosomes as biomarkers, in vivo drug carriers and novel exosome-based immunotherapy are discussed.
Collapse
|
64
|
Ball S, Nugent K. Microparticles in Hematological Malignancies: Role in Coagulopathy and Tumor Pathogenesis. Am J Med Sci 2017; 355:207-214. [PMID: 29549921 DOI: 10.1016/j.amjms.2017.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/09/2017] [Accepted: 11/25/2017] [Indexed: 12/12/2022]
Abstract
Microparticles (MP) are submicron vesicles released from various cells in response to activation, injury or apoptosis. They contain different structural and functional proteins and RNAs, which contribute to physiological intercellular "crosstalk" and to the pathogenesis of various diseases including cancer. In hematological malignancies, these MPs participate in the initiation and propagation of thrombosis through different pathways. They have a role in the angiogenesis, malignant cell survival and metastasis. MPs act as a mediator of resistance of leukemic cells to chemotherapy. The number of MPs is one of the prognostic factors following stem cell transplant, and studies have also found they contribute to the pathogenesis of graft versus host disease. MPs are being tested as therapeutic options in leukemias and graft versus host disease. Future studies should help us understand the interactions between MPs and cancer cells better, thereby opening new approaches for treatment of hematological malignancies.
Collapse
Affiliation(s)
- Somedeb Ball
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas.
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
65
|
Pando A, Reagan JL, Quesenberry P, Fast LD. Extracellular vesicles in leukemia. Leuk Res 2017; 64:52-60. [PMID: 29190514 DOI: 10.1016/j.leukres.2017.11.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 11/12/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EV) are nano-sized membrane enclosed vehicles that are involved in cell-to-cell communication and carry cargo that is representative of the parent cell. Recent studies have highlighted the significant roles leukemia EVs play in tumor progression, and ways in which they can lead to treatment evasion, thus meriting further investigation. Leukemia EVs are involved in crosstalk between the leukemia cell and its surroundings, transforming it into a cancer favorable microenvironment. Due to the diverse biological content found in leukemia EVs, they have an assortment of effects on the cells they interact with and can be harnessed as candidates for diagnostic and therapeutic treatments. This review focuses on EVs in the context of leukemia and the means by which they modulate their microenvironment, hematopoiesis, and the immune system to facilitate malignancy. We will also address current and prospective EV-based therapeutics.
Collapse
Affiliation(s)
- Alejandro Pando
- Division of Hematology and Oncology, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - John L Reagan
- Division of Hematology and Oncology, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Peter Quesenberry
- Division of Hematology and Oncology, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Loren D Fast
- Division of Hematology and Oncology, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
66
|
Samuel P, Fabbri M, Carter DRF. Mechanisms of Drug Resistance in Cancer: The Role of Extracellular Vesicles. Proteomics 2017; 17. [PMID: 28941129 DOI: 10.1002/pmic.201600375] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/11/2017] [Indexed: 12/11/2022]
Abstract
Drug resistance remains a major barrier to the successful treatment of cancer. The mechanisms by which therapeutic resistance arises are multifactorial. Recent evidence has shown that extracellular vesicles (EVs) play a role in mediating drug resistance. EVs are small vesicles carrying a variety of macromolecular cargo released by cells into the extracellular space and can be taken up into recipient cells, resulting in transfer of cellular material. EVs can mediate drug resistance by several mechanisms. They can serve as a pathway for sequestration of cytotoxic drugs, reducing the effective concentration at target sites. They can act as decoys carrying membrane proteins and capturing monoclonal antibodies intended to target receptors at the cell surface. EVs from resistant tumor cells can deliver mRNA, miRNA, long noncoding RNA, and protein inducing resistance in sensitive cells. This provides a new model for how resistance that arises can then spread through a heterogeneous tumor. EVs also mediate cross-talk between cancer cells and stromal cells in the tumor microenvironment, leading to tumor progression and acquisition of therapeutic resistance. In this review, we will describe what is known about how EVs can induce drug resistance, and discuss the ways in which EVs could be used as therapeutic targets or diagnostic markers for managing cancer treatment. While further characterization of the vesiculome and the mechanisms of EV function are still required, EVs offer an exciting opportunity in the fight against cancer.
Collapse
Affiliation(s)
- Priya Samuel
- Department of Biological and Medical Sciences Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Muller Fabbri
- Department of Pediatrics and Microbiology & Molecular Immunology University of Southern California-Keck School of Medicine Norris Comprehensive Cancer Center Children's Center for Cancer and Blood Diseases, Children's Hospital, Los Angeles, CA, USA
| | - David Raul Francisco Carter
- Department of Biological and Medical Sciences Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
67
|
Barwe SP, Quagliano A, Gopalakrishnapillai A. Eviction from the sanctuary: Development of targeted therapy against cell adhesion molecules in acute lymphoblastic leukemia. Semin Oncol 2017; 44:101-112. [PMID: 28923207 DOI: 10.1053/j.seminoncol.2017.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/10/2017] [Accepted: 06/29/2017] [Indexed: 02/04/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant hematological disease afflicting hematopoiesis in the bone marrow. While 80%-90% of patients diagnosed with ALL will achieve complete remission at some point during treatment, ALL is associated with high relapse rate, with a 5-year overall survival rate of 68%. The initial remission failure and the high rate of relapse can be attributed to intrinsic chemoprotective mechanisms that allow persistence of ALL cells despite therapy. These mechanisms are mediated, at least in part, through the engagement of cell adhesion molecules (CAMs) within the bone marrow microenvironment. This review assembles CAMs implicated in protection of leukemic cells from chemotherapy. Such studies are limited in ALL. Therefore, CAMs that are associated with poor outcomes or are overexpressed in ALL and have been shown to be involved in chemoprotection in other hematological cancers are also included. It is likely that these molecules play parallel roles in ALL because the CAMs identified to be a factor in ALL chemoresistance also work similarly in other hematological malignancies. We review the signaling mechanisms activated by the engagement of CAMs that provide protection from chemotherapy. Development of targeted therapies against CAMs could improve outcome and raise the overall cure rate in ALL.
Collapse
Affiliation(s)
- Sonali P Barwe
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE.
| | - Anthony Quagliano
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE
| | | |
Collapse
|
68
|
Caivano A, La Rocca F, Laurenzana I, Trino S, De Luca L, Lamorte D, Del Vecchio L, Musto P. Extracellular Vesicles in Hematological Malignancies: From Biology to Therapy. Int J Mol Sci 2017; 18:E1183. [PMID: 28574430 PMCID: PMC5486006 DOI: 10.3390/ijms18061183] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of particles, between 15 nanometers and 10 microns in diameter, released by almost all cell types in physiological and pathological conditions, including tumors. EVs have recently emerged as particularly interesting informative vehicles, so that they could be considered a true "cell biopsy". Indeed, EV cargo, including proteins, lipids, and nucleic acids, generally reflects the nature and status of the origin cells. In some cases, EVs are enriched of peculiar molecular cargo, thus suggesting at least a degree of specific cellular packaging. EVs are identified as important and critical players in intercellular communications in short and long distance interplays. Here, we examine the physiological role of EVs and their activity in cross-talk between bone marrow microenvironment and neoplastic cells in hematological malignancies (HMs). In these diseases, HM EVs can modify tumor and bone marrow microenvironment, making the latter "stronger" in supporting malignancy, inducing drug resistance, and suppressing the immune system. Moreover, EVs are abundant in biologic fluids and protect their molecular cargo against degradation. For these and other "natural" characteristics, EVs could be potential biomarkers in a context of HM liquid biopsy and therapeutic tools. These aspects will be also analyzed in this review.
Collapse
Affiliation(s)
- Antonella Caivano
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 858028 Rionero in Vulture, Italy.
| | - Francesco La Rocca
- Laboratory of Clinical Research and Advanced Diagnostics, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| | - Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 858028 Rionero in Vulture, Italy.
| | - Stefania Trino
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 858028 Rionero in Vulture, Italy.
| | - Luciana De Luca
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 858028 Rionero in Vulture, Italy.
| | - Daniela Lamorte
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 858028 Rionero in Vulture, Italy.
| | - Luigi Del Vecchio
- CEINGE-Biotecnologie Avanzate scarl, Federico II University, 80138 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, 80138 Naples, Italy.
| | - Pellegrino Musto
- Scientific Direction, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| |
Collapse
|
69
|
Bürgler S, Nadal D. Pediatric precursor B acute lymphoblastic leukemia: are T helper cells the missing link in the infectious etiology theory? Mol Cell Pediatr 2017; 4:6. [PMID: 28508352 PMCID: PMC5432458 DOI: 10.1186/s40348-017-0072-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/25/2017] [Indexed: 01/09/2023] Open
Abstract
Precursor B acute lymphoblastic leukemia (BCP-ALL), the most common childhood malignancy, arises from an expansion of malignant B cell precursors in the bone marrow. Epidemiological studies suggest that infections or immune responses to infections may promote such an expansion and thus BCP-ALL development. Nevertheless, a specific pathogen responsible for this process has not been identified. BCP-ALL cells critically depend on interactions with the bone marrow microenvironment. The bone marrow is also home to memory T helper (Th) cells that have previously expanded during an immune response in the periphery. In secondary lymphoid organs, Th cells can interact with malignant cells of mature B cell origin, while such interactions between Th cells and malignant immature B cell in the bone marrow have not been described yet. Nevertheless, literature supports a model where Th cells—expanded during an infection in early childhood—migrate to the bone marrow and support BCP-ALL cells as they support normal B cells. Further research is required to mechanistically confirm this model and to elucidate the interaction pathways between leukemia cells and cells of the tumor microenvironment. As benefit, targeting these interactions could be included in current treatment regimens to increase therapeutic efficiency and to reduce relapses.
Collapse
Affiliation(s)
- Simone Bürgler
- Experimental Infectious Diseases and Cancer Research, University Children's Hospital Zürich, 8008, Zürich, Switzerland.
| | - David Nadal
- Experimental Infectious Diseases and Cancer Research, University Children's Hospital Zürich, 8008, Zürich, Switzerland
| |
Collapse
|
70
|
French KC, Antonyak MA, Cerione RA. Extracellular vesicle docking at the cellular port: Extracellular vesicle binding and uptake. Semin Cell Dev Biol 2017; 67:48-55. [PMID: 28104520 DOI: 10.1016/j.semcdb.2017.01.002] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/22/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs), lipid bilayer-enclosed structures that contain a variety of biological molecules shed by cells, are increasingly becoming appreciated as a major form of cell-to-cell communication. Indeed, EVs have been shown to play important roles in several physiological processes, as well as diseases such as cancer. EVs dock on to the surfaces of recipient cells where they transmit signals from the cell surface and/or transfer their contents into cells to elicit functional responses. EV docking and uptake by cells represent critical, but poorly understood processes. Here, we focus on the mechanisms by which EVs dock and transfer their contents to cells. Moreover, we highlight how these findings may provide new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Kinsley C French
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14850, United States
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14850, United States
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14850, United States.
| |
Collapse
|
71
|
Sison EAR, Kurre P, Kim YM. Understanding the bone marrow microenvironment in hematologic malignancies: A focus on chemokine, integrin, and extracellular vesicle signaling. Pediatr Hematol Oncol 2017; 34:365-378. [PMID: 29211600 PMCID: PMC6516746 DOI: 10.1080/08880018.2017.1395938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling between leukemia cells and nonhematopoietic cells in the bone marrow microenvironment contributes to leukemia cell growth and survival. This complicated extrinsic mechanism of chemotherapy resistance relies on a number of pathways and factors, some of which have yet to be determined. Research on cell-cell crosstalk the bone marrow microenvironment in acute leukemia was presented at the 2016 annual Therapeutic Advances in Childhood Leukemia (TACL) investigator meeting. This review summarizes the mini-symposium proceedings and focuses on chemokine signaling via the cell surface receptor CXCR4, adhesion molecule signaling via integrin α4, and crosstalk between leukemia cells and the bone marrow microenvironment that is mediated through extracellular vesicles.
Collapse
Affiliation(s)
| | - Peter Kurre
- Doernbecher Children’s Hospital, Oregon Health and Science University, Portland, Oregon
| | - Yong-Mi Kim
- Children’s Hospital of Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
72
|
Galectin-3 Induces a Pro-degradative/inflammatory Gene Signature in Human Chondrocytes, Teaming Up with Galectin-1 in Osteoarthritis Pathogenesis. Sci Rep 2016; 6:39112. [PMID: 27982117 PMCID: PMC5159921 DOI: 10.1038/srep39112] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/17/2016] [Indexed: 02/06/2023] Open
Abstract
Inflammatory chemo- and cytokines and matrix-degrading proteases underlie the progression of osteoarthritis (OA). Aiming to define upstream regulators for these disease markers, we pursued initial evidence for an upregulation of members of the adhesion/growth-regulatory galectin family. Immunohistochemical localization of galectin-3 (Gal-3) in sections of human cartilage with increasing levels of degeneration revealed a linear correlation reaching a chondrocyte positivity of 60%. Presence in situ was cytoplasmic, the lectin was secreted from OA chondrocytes in culture and binding of Gal-3 yielded lactose-inhibitable surface staining. Exposure of cells to the lectin led to enhanced gene expression and secretion of functional disease markers. Genome-wide transcriptomic analysis broadened this result to reveal a pro-degradative/inflammatory gene signature under the control of NF-κB. Fittingly, targeting this route of activation by inhibitors impaired the unfavourable response to Gal-3 binding, as also seen by shortening the lectin’s collagen-like repeat region. Gal-3’s activation profile overlaps with that of homodimeric galectin-1 (Gal-1) and also has distinctive (supplementing) features. Tested at subsaturating concentrations in a mixture, we found cooperation between the two galectins, apparently able to team up to promote OA pathogenesis. In summary, our results suggest that a network of endogenous lectins is relevant for initiating this process cascade.
Collapse
|
73
|
Erasmus MF, Matlawska-Wasowska K, Kinjyo I, Mahajan A, Winter SS, Xu L, Horowitz M, Lidke DS, Wilson BS. Dynamic pre-BCR homodimers fine-tune autonomous survival signals in B cell precursor acute lymphoblastic leukemia. Sci Signal 2016; 9:ra116. [PMID: 27899526 DOI: 10.1126/scisignal.aaf3949] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The pre-B cell receptor (pre-BCR) is an immature form of the BCR critical for early B lymphocyte development. It is composed of the membrane-bound immunoglobulin (Ig) heavy chain, surrogate light chain components, and the signaling subunits Igα and Igβ. We developed monovalent quantum dot (QD)-labeled probes specific for Igβ to study the behavior of pre-BCRs engaged in autonomous, ligand-independent signaling in live B cells. Single-particle tracking revealed that QD-labeled pre-BCRs engaged in transient, but frequent, homotypic interactions. Receptor motion was correlated at short separation distances, consistent with the formation of dimers and higher-order oligomers. Repeated encounters between diffusing pre-BCRs appeared to reflect transient co-confinement in plasma membrane domains. In human B cell precursor acute lymphoblastic leukemia (BCP-ALL) cells, we showed that frequent, short-lived, homotypic pre-BCR interactions stimulated survival signals, including expression of BCL6, which encodes a transcriptional repressor. These survival signals were blocked by inhibitory monovalent antigen-binding antibody fragments (Fabs) specific for the surrogate light chain components of the pre-BCR or by inhibitors of the tyrosine kinases Lyn and Syk. For comparison, we evaluated pre-BCR aggregation mediated by dimeric galectin-1, which has binding sites for carbohydrate and for the surrogate light chain λ5 component. Galectin-1 binding resulted in the formation of large, highly immobile pre-BCR aggregates, which was partially relieved by the addition of lactose to prevent the cross-linking of galectin-BCR complexes to other glycosylated membrane components. Analysis of the pre-BCR and its signaling partners suggested that they could be potential targets for combination therapy in BCP-ALL.
Collapse
Affiliation(s)
- M Frank Erasmus
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Ksenia Matlawska-Wasowska
- UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Ichiko Kinjyo
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Avanika Mahajan
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Stuart S Winter
- UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Li Xu
- Sea Lane Biotechnologies, 2450 Bayshore Parkway, Mountain View, CA 94043, USA
| | - Michael Horowitz
- Sea Lane Biotechnologies, 2450 Bayshore Parkway, Mountain View, CA 94043, USA
| | - Diane S Lidke
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA. .,UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
74
|
Tian C, Zheng G, Zhuang H, Li X, Hu D, Zhu L, Wang T, You MJ, Zhang Y. MicroRNA-494 Activation Suppresses Bone Marrow Stromal Cell-Mediated Drug Resistance in Acute Myeloid Leukemia Cells. J Cell Physiol 2016; 232:1387-1395. [PMID: 27696394 DOI: 10.1002/jcp.25628] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/30/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Chen Tian
- Department of Hematology; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin People's Republic of China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology; Institute of Hematology and Blood Diseases Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin People's Republic of China
| | - Hongqing Zhuang
- Department of Hematology; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin People's Republic of China
| | - Xubin Li
- Department of Hematology; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin People's Republic of China
| | - Dongzhi Hu
- Department of Hematology; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin People's Republic of China
| | - Lei Zhu
- Department of Hematology; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin People's Republic of China
| | - Tengteng Wang
- Department of Hematology; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin People's Republic of China
| | - Mingjian James You
- Department of Hematopathology; University of Texas MD Anderson Cancer Center; Houston Texas
| | - Yizhuo Zhang
- Department of Hematology; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin People's Republic of China
| |
Collapse
|
75
|
Gao N, Yu WZ, Guo NJ, Wang XX, Sun JR. Clinical significance of galectin-3 in patients with adult acute myeloid leukemia: a retrospective cohort study with long-term follow-up and formulation of risk scoring system. Leuk Lymphoma 2016; 58:1394-1402. [PMID: 27736291 DOI: 10.1080/10428194.2016.1243677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Galectin-3 plays an increasingly important role in development and progression of tumor. However, little is known about the clinical impact of galectin-3 in non-acute promyelocytic leukemia (non-M3 AML). Peripheral blood of 298 patients with primary non-M3 AML and 30 normal donors was collected for measurement of galectin-3. Galectin-3 levels were significantly higher compared with the control group (p < .001). Patients with higher galectin-3 levels had lower CR rates (p = .001) and 1-year overall survival (OS) rates (p = .002). The Kaplan-Meier survival analysis showed that higher galectin-3 levels group had significantly shorter OS. Cox regression model revealed high galectin-3 level was an independent poor prognostic factor. A scoring system incorporating galectin-3 and other prognostic factors (age, WBC, karyotype, NPM1/FLT3-ITD, CEBPAdouble-mutation and c-KIT, WT1) was formulated to predict prognosis. In conclusion, galectin-3 may be a reliable prognostic marker in AML patients. The multifactorial scoring system was more powerful than a single factor to predict clinical outcome.
Collapse
Affiliation(s)
- Na Gao
- a Department of hematology , Binzhou Medical University Hospital , Binzhou , Shandong , PR China
| | - Wen-Zheng Yu
- a Department of hematology , Binzhou Medical University Hospital , Binzhou , Shandong , PR China
| | - Nong-Jian Guo
- b Department of hematology, Central Hospital of Jinan , Shandong University School of Medicine , Jinan , Shandong , PR China
| | - Xue-Xia Wang
- a Department of hematology , Binzhou Medical University Hospital , Binzhou , Shandong , PR China
| | - Jian-Rong Sun
- a Department of hematology , Binzhou Medical University Hospital , Binzhou , Shandong , PR China
| |
Collapse
|
76
|
Wang L, Gao CJ. [Role of extracellular vesicles in hematological malignancies]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 37:258-261. [PMID: 27033771 PMCID: PMC7342940 DOI: 10.3760/cma.j.issn.0253-2727.2016.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 06/05/2023]
Affiliation(s)
| | - C J Gao
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
77
|
Chiarini F, Lonetti A, Evangelisti C, Buontempo F, Orsini E, Evangelisti C, Cappellini A, Neri LM, McCubrey JA, Martelli AM. Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:449-463. [PMID: 26334291 DOI: 10.1016/j.bbamcr.2015.08.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023]
Abstract
The bone marrow (BM) microenvironment regulates the properties of healthy hematopoietic stem cells (HSCs) localized in specific niches. Two distinct microenvironmental niches have been identified in the BM, the "osteoblastic (endosteal)" and "vascular" niches. Nevertheless, these niches provide sanctuaries where subsets of leukemic cells escape chemotherapy-induced death and acquire a drug-resistant phenotype. Moreover, it is emerging that leukemia cells are able to remodel the BM niches into malignant niches which better support neoplastic cell survival and proliferation. This review focuses on the cellular and molecular biology of microenvironment/leukemia interactions in acute lymphoblastic leukemia (ALL) of both B- and T-cell lineage. We shall also highlight the emerging role of exosomes/microvesicles as efficient messengers for cell-to-cell communication in leukemia settings. Studies on the interactions between the BM microenvironment and ALL cells have led to the discovery of potential therapeutic targets which include cytokines/chemokines and their receptors, adhesion molecules, signal transduction pathways, and hypoxia-related proteins. The complex interplays between leukemic cells and BM microenvironment components provide a rationale for innovative, molecularly targeted therapies, designed to improve ALL patient outcome. A better understanding of the contribution of the BM microenvironment to the process of leukemogenesis and leukemia persistence after initial remission, may provide new targets that will allow destruction of leukemia cells without adversely affecting healthy HSCs. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis,Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
Affiliation(s)
- Francesca Chiarini
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Annalisa Lonetti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Human Social and Health Sciences, University of Cassino, Cassino, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
78
|
Ruvolo PP. Galectin 3 as a guardian of the tumor microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:427-437. [PMID: 26264495 DOI: 10.1016/j.bbamcr.2015.08.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 01/12/2023]
Abstract
Galectin 3 is a member of a family of β-galactoside binding proteins and has emerged as an important regulator of diverse functions critical in cancer biology including apoptosis, metastasis, immune surveillance, molecular trafficking, mRNA splicing, gene expression, and inflammation. Galectin 3's ability to support cancer cell survival by intra-cellular and extra-cellular mechanisms suggests this molecule is an important component of the tumor microenvironment that potentially could be targeted for therapy. Data is emerging that Galectin 3 is elevated in many cancers including solid tumors and the cancers of the blood. Galectin 3 also appears to be a key molecule produced by tumor microenvironment support cells including mesenchymal stromal cells (MSC) to suppress immune surveillance by killing T cells and interfering with NK cell function and by supporting metastasis. Levels of Galectin 3 increase in the MSC of aging mice and perhaps this contributes to the development of cancer in the elderly. Galectin 3 modulates surface protein expression of a diverse set of glycoproteins including CD44 by regulating endocytosis of these proteins. In addition, Galectin 3 binding to receptor kinases such as CD45 and the T cell receptor is critical in the regulation of their function. In this review I will examine the various mechanisms how Galectin 3 supports chemoresistance and metastasis in solid tumors and in leukemia and lymphoma. I will also discuss possible therapeutic strategies to target this Galectin for cancer therapy. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
Affiliation(s)
- Peter P Ruvolo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, United States.
| |
Collapse
|