51
|
Götte M, Kovalszky I. Extracellular matrix functions in lung cancer. Matrix Biol 2018; 73:105-121. [DOI: 10.1016/j.matbio.2018.02.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
|
52
|
Jiang P, Xu H, Xu C, Chen A, Chen L, Zhou M, Haq IU, Wu X, Mariyam Z, Feng Q. NEAT1 contributes to the CSC-like traits of A549/CDDP cells via activating Wnt signaling pathway. Chem Biol Interact 2018; 296:154-161. [PMID: 30291867 DOI: 10.1016/j.cbi.2018.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been identified to exert crucial roles in tumorigenesis and can serve as novel biomarkers for cancer therapy including lung cancer. Cisplatin is a first-line chemotherapeutic agent in non-small cell lung cancer (NSCLC), but the therapeutic effect is unsatisfactory, partly due to drug resistance. Emerging evidence showed that chemo-resistance is associated with acquisition of cancer stem cell (CSC)-like properties. Cisplatin resistance remains a major obstacle in the treatment of lung cancer, and its mechanism is still not fully elucidated. Meanwhile, CSCs have been involved in tumor metastasis, tumor recurrence and chemotherapy resistance. So far, the mechanism of nuclear enriched abundant transcript 1 (NEAT1) in modulating CSCs in lung cancer remains barely known. Therefore, we aimed to explore the correlation between NEAT1 and cancer stem cells in lung cancer. In our current study, we observed that CSC-like traits were much more enriched in cisplatin-resistant A549/CDDP cells. In addition, NEAT1 was obviously up-regulated in A549/CDDP cells compared with parental A549 cells. Knockdown of NEAT1 decreased the CSC-like properties of A549/CDDP cells through inhibiting tumor cell sphere volume, repressing CSC-like biomarkers levels and restraining CD44 positive cell ratios. Oppositely, overexpression of NEAT1 enhanced the stemness respectively. Moreover, it has been reported that Wnt pathway is implicated in many vital cellular functions including cancer stem cells. Here, it was exhibited that Wnt signal pathway was inactivated by knockdown of NEAT1 whereas activated by NEAT1 overexpression in A549/CDDP cells. Taken these together, it was indicated that NEAT1 could exert a novel biological role in NSCLC chemo-resistance.
Collapse
Affiliation(s)
- Pan Jiang
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hai Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuyue Xu
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aochang Chen
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lijun Chen
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming Zhou
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ijaz Ul Haq
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyue Wu
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zahula Mariyam
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
53
|
Botti G, De Chiara A, Di Bonito M, Cerrone M, Malzone MG, Collina F, Cantile M. Noncoding RNAs within the
HOX
gene network in tumor pathogenesis and progression. J Cell Physiol 2018; 234:395-413. [DOI: 10.1002/jcp.27036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Gerardo Botti
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Anna De Chiara
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Maurizio Di Bonito
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Margherita Cerrone
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Maria Gabriella Malzone
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Francesca Collina
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Monica Cantile
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| |
Collapse
|
54
|
Zhou JC, Zhang JJ, Ma W, Zhang W, Ke ZY, Ma LG. Anti-tumor effect of HOTAIR-miR-613-SNAI2 axis through suppressing EMT and drug resistance in laryngeal squamous cell carcinoma. RSC Adv 2018; 8:29879-29889. [PMID: 35547289 PMCID: PMC9085281 DOI: 10.1039/c8ra04514c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is the main pathological type of laryngeal cancer, which attacks the head and neck. Our present study aims to investigate the effect of long non-coding RNA (LncRNA) HOX transcript antisense RNA (HOTAIR) on epithelial mesenchymal transition (EMT) and drug resistance in LSCC. Firstly, the level of HOTAIR was found to be overexpressed in LSCC tissues compared with normal healthy tissues. Then, increased EMT and drug resistance were suppressed by specific HOTAIR shRNA effectively in LSCC cell lines. Besides, miR-613 was predicted to be a target of HOTAIR through bioinformatics analysis. Meanwhile, we found that a down-regulated level of miR-613 could be increased by HOTAIR shRNA and suppressed by LncRNA HOTAIR transfection in LSCC cells. The targeting relationship between miR-613 and HOTAIR was further demonstrated by a luciferase report assay. What is more, the inhibiting effect of HOTAIR shRNA on EMT and drug resistance was obviously abolished by the miR-613 inhibitor. Moreover, SNAI2, a critical regulator of EMT, was predicted as a target of miR-613 through bioinformatics analysis and luciferase report assays. As expected, the level of SNAI2 could be suppressed by HOTAIR shRNA and increased by the miR-613 inhibitor. Additionally, we discovered that SANI2 shRNA had similar inhibiting effect on EMT and drug resistance with HOTAIR shRNA in LSCC cells. Finally, the in vivo experiment further demonstrated that HOTAIR shRNA restricted tumor growth, EMT and drug resistance. Additionally, HOTAIR shRNA transfection could also increase the level of miR-613 and decrease the level of SNAI2 in vivo. Taken together, our research for the first time revealed the effect of the HOTAIR-miR-613-SNAI2 axis on EMT and drug resistance in LSCC, providing new targets for LSCC diagnosis and treatment.
Collapse
Affiliation(s)
- Jing-Chun Zhou
- Department of Otorhinolaryngology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital No. 1017 Dongmen North Road, Luohu District Shenzhen Guangdong 518020 China +86-755-25533018
| | - Jing-Jing Zhang
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital Guangdong 518036 China
| | - Wei Ma
- Translational Medicine Collaorative Innovation Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital Guangdong 518020 China
| | - Wei Zhang
- Department of Otorhinolaryngology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital No. 1017 Dongmen North Road, Luohu District Shenzhen Guangdong 518020 China +86-755-25533018
| | - Zhao-Yang Ke
- Department of Otorhinolaryngology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital No. 1017 Dongmen North Road, Luohu District Shenzhen Guangdong 518020 China +86-755-25533018
| | - Ling-Guo Ma
- Department of Otorhinolaryngology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital No. 1017 Dongmen North Road, Luohu District Shenzhen Guangdong 518020 China +86-755-25533018
| |
Collapse
|
55
|
Cui Y, Li G, Zhang X, Dai F, Zhang R. Increased MALAT1 expression contributes to cisplatin resistance in non-small cell lung cancer. Oncol Lett 2018; 16:4821-4828. [PMID: 30250547 PMCID: PMC6144744 DOI: 10.3892/ol.2018.9293] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/04/2018] [Indexed: 12/17/2022] Open
Abstract
Cisplatin-based chemotherapy is commonly used for the clinical treatment of patients with non-small cell lung cancer (NSCLC). However, the anti-tumor efficacy of cisplatin is limited by poor clinical response and the development of chemoresistance. At present, the underlying mechanism for cisplatin resistance remains unclear. In the present study, it was identified that metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long non-coding RNA that has been demonstrated to function as an oncogene, was increased in tumor tissues from patients with cisplatin-resistant NSCLC. In addition, the MALAT1 level was increased in A549rCDDP cells compared with the parental A549 cells. Silencing of MALAT1 sensitized A549rCDDP cells to cisplatin treatment, while overexpression of MALAT1 in A549 cells decreased their sensitivity towards cisplatin. Through analysis of the gene expression in patient samples, a decrease in miR-145 and an increase in Kruppel-like factor 4 (KLF4) in tumor tissues compared with adjacent normal tissues was observed. A negative association between MALAT1 and miR-145 was also identified in A549 cells and A549rCDDP cells. Furthermore, reverse transcription quantitative polymerase chain reaction and western blotting identified that KLF4 was positively and negatively regulated by MALAT1 and miR-145, respectively. The direct regulatory association between MALAT1 and miR-145 and the target gene KLF4 was additionally confirmed using a luciferase reporter assay. Knockdown of MALAT1 reversed cisplatin resistance in A549rCDDP cells. Taken together, these data indicated that MALAT1 decreased the sensitivity of NSCLC to cisplatin via the regulation of miR-145 and KLF4.
Collapse
Affiliation(s)
- Yong Cui
- The Third Department of Oncology, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Guanlong Li
- The Third Department of Oncology, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Xin Zhang
- The Third Department of Oncology, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Fangfang Dai
- The Third Department of Oncology, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Rongxiang Zhang
- The Third Department of Oncology, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| |
Collapse
|
56
|
Hu Y, Zhu QN, Deng JL, Li ZX, Wang G, Zhu YS. Emerging role of long non-coding RNAs in cisplatin resistance. Onco Targets Ther 2018; 11:3185-3194. [PMID: 29881292 PMCID: PMC5983019 DOI: 10.2147/ott.s158104] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cisplatin (CDDP) is one of the most commonly used chemotherapy drugs for the treatment of various cancers. Although platinum-based therapies are highly efficacious against rapidly proliferating malignant tumors, the development of CDDP resistance results in significant relapse as well as decreased overall survival rates, which is a significant obstacle in CDDP-based cancer therapy. Long non-coding RNAs (lncRNAs) are involved in cancer development and progression by the regulation of processes related to chromatin remodeling, transcription, and posttranscriptional processing. Emerging evidence has recently highlighted the roles of lncRNAs in the development of CDDP resistance. In this review, we discuss the roles and mechanisms of lncRNAs in CDDP chemoresistance, including changes in cellular uptake or efflux of a drug, intracellular detoxification, DNA repair, apoptosis, autophagy, cell stemness, and the related signaling pathways, aiming to provide potential lncRNA-targeted strategies for overcoming drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Yang Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, People's Republic of China
| | - Qiong-Ni Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, People's Republic of China
| | - Jun-Li Deng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, People's Republic of China
| | - Zhi-Xing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, People's Republic of China
| | - Guo Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, People's Republic of China
| | - Yuan-Shan Zhu
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
57
|
Guo L, Zhou Y, Chen Y, Sun H, Wang Y, Qu Y. LncRNA ASAP1-IT1 positively modulates the development of cholangiocarcinoma via hedgehog signaling pathway. Biomed Pharmacother 2018; 103:167-173. [PMID: 29653361 DOI: 10.1016/j.biopha.2018.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/15/2022] Open
Abstract
Over the past decades, lncRNAs have attracted more and more attentions of researchers. It has been verified that lncRNAs can modulate multiple biological behaviors in various human cancers. LncRNA ASAP1-IT1 has been certified to be a tumor facilitator in several malignant tumors. This study aims to investigate the effects of dysregulated ASAP1-IT1 on biological processes of Cholangiocarcinoma. The high expression level of ASAP1-IT1 was tested in Cholangiocarcinoma tissues and cells with qRT-PCR. Upregulation of ASAP1-IT predicted the unfavorable prognosis for Cholangiocarcinoma patients. Next, ASAP1-IT1 was knocked down in cancerous cells for loss-of function assay. MTT, colony formation and transwell and western bot assays were performed to demonstrate the specific impacts of ASAP1-IT1 on proliferation, migration and EMT progression of Cholangiocarcinoma. Cells. As a results, the Cholangiocarcinoma progression was inhibited. Hedgehog signaling pathway has been discovered to be a treatment target in Cholangiocarcinoma. In this study, the interaction between ASAP1-IT1 and hedgehog pathway was specifically investigated. Smo and Gli1, two hedgehog-related proteins were examined in Cholangiocarcinoma cells. The results of qRT-PCR and western blot assay suggested that ASAP1-IT1 could positively modulate Smo and Gli1 in Cholangiocarcinoma. Finally, rescue assays were carried out to prove that ASAP1-IT1 could improve Cholangiocarcinoma progression and development via hedgehog signaling pathway.
Collapse
Affiliation(s)
- Linqi Guo
- Department of General surgery, First Affiliated Hospital of Jiamusi University, Jiamusi City 154003, China
| | - Yu Zhou
- Department of Tumor surgery, First Affiliated Hospital of Jiamusi University, Jiamusi City 154003, China
| | - Ying Chen
- Department of Critical care medicine, First Affiliated Hospital of Jiamusi University, Jiamusi City 154003, China
| | - Huawei Sun
- Department of Radiochemotherapy, First Affiliated Hospital of Jiamusi University, Jiamusi City 154003, China
| | - Yue Wang
- Department of pharmacology and toxicology, Wright State University, Fairborn, OH, 45435, USA
| | - Yikun Qu
- Department of General surgery, First Affiliated Hospital of Jiamusi University, Jiamusi City 154003, China.
| |
Collapse
|
58
|
Cai H, Yao J, An Y, Chen X, Chen W, Wu D, Luo B, Yang Y, Jiang Y, Sun D, He X. LncRNA HOTAIR acts a competing endogenous RNA to control the expression of notch3 via sponging miR-613 in pancreatic cancer. Oncotarget 2018; 8:32905-32917. [PMID: 28415631 PMCID: PMC5464837 DOI: 10.18632/oncotarget.16462] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/11/2017] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is one of the most deadly cancers with a poor prognosis. Though studies have implicated the roles of microRNAs in pancreatic cancer progression, little is known about the role of miR-613 in pancreatic cancer. In the present study, the expression of miR-613 was down-regulated in pancreatic cancer tissues and cancer cell lines. Down-regulation of miR-613 was positively correlated with tumor differentiation, advanced TNM stage, nodal metastasis and shorter overall survival in patients with pancreatic cancer. Overexpression of miR-613 suppressed cell proliferation, invasion and migration, and induced cell apoptosis and cell cycle arrest at G0/G1 phase in pancreatic cancer cells. Bioinformatics analysis, luciferase reporter assay and rescue experiments showed that notch3 was a direct target of miR-613. MiR-613 was inversely correlated with notch3 expression in pancreatic cancer tissues. The long non-coding RNA, HOX transcript antisense RNA (HOTAIR) was up-regulated in both pancreatic cancer tissues and cancer cell lines, and HOTAIR suppressed the expression of miR-613 via functioning as a competing endogenous RNA. In vivo studies showed that stable overexpression of miR-613 or knock-down of HOTAIR suppressed tumor growth and also reduced the expression of notch3. In conclusion, these results suggest that HOTAIR functions as a competing endogenous RNA to regulate notch3 expression via sponging miR-613 in pancreatic cancer.
Collapse
Affiliation(s)
- Huihua Cai
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, China
| | - Jie Yao
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital, The Clinic Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yong An
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, China
| | - Xuemin Chen
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, China
| | - Weibo Chen
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, China
| | - Di Wu
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, China
| | - Boyang Luo
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, China
| | - Yong Yang
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, China
| | - Yong Jiang
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, China
| | - Donglin Sun
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, China
| | - Xiaozhou He
- Department of Urology, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
59
|
Chen L, Dzakah EE, Shan G. Targetable long non-coding RNAs in cancer treatments. Cancer Lett 2018; 418:119-124. [PMID: 29341880 DOI: 10.1016/j.canlet.2018.01.042] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/25/2017] [Accepted: 01/09/2018] [Indexed: 02/09/2023]
Abstract
Aberrant expression of many long non-coding RNAs has been observed in various types of cancer, implicating their crucial roles in tumorigenesis and cancer progression. Emerging knowledge with regard to the critical physiological and pathological roles of long non-coding RNAs in cancers makes them potential targets in cancer treatments. In this review, we present a summary of the relatively well studied long non-coding RNAs that are involved in oncogenesis and outline their functions and functional mechanisms. Recent findings that may be utilized in therapeutic intervention are also highlighted. With the fast development in nucleic acid-based therapeutic reagents that can target disease associated RNAs, lncRNAs should be explored as potential targets in cancer treatments.
Collapse
Affiliation(s)
- Liang Chen
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China.
| | - Emmanuel Enoch Dzakah
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Ge Shan
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China.
| |
Collapse
|
60
|
Li L, Yin JY, He FZ, Huang MS, Zhu T, Gao YF, Chen YX, Zhou DB, Chen X, Sun LQ, Zhang W, Zhou HH, Liu ZQ. Long noncoding RNA SFTA1P promoted apoptosis and increased cisplatin chemosensitivity via regulating the hnRNP-U-GADD45A axis in lung squamous cell carcinoma. Oncotarget 2017; 8:97476-97489. [PMID: 29228625 PMCID: PMC5722577 DOI: 10.18632/oncotarget.22138] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/24/2017] [Indexed: 01/05/2023] Open
Abstract
Chemotherapeutic insensitivity remains one of the major obstacles in clinical treatment of lung squamous cell carcinoma (LSCC). Recently, increasing evidence has suggested that long non-coding RNAs (lncRNAs) promote tumorigenesis in many cancer types. However, the potential biological roles and regulatory mechanisms of lncRNAs in response to cisplatin treatment are poorly understood. Here, we found that lncRNA SFTA1P (surfactant associated 1, pseudogene), highly expressed in lung, was down-regulated in LSCC tissues and could be induced upon cisplatin treatment in LSCC cells. Elevated SFTA1P induced apoptosis and enhanced the sensitivity to cisplatin of LSCC cells. We further identified that hnRNP-U (heterogeneous nuclear ribonucleoprotein U) was down-regulated in LSCCs and positively correlated with patients' poor prognosis as well as SFTA1P. Mechanistic studies revealed that SFTA1P could up-regulate hnRNP-U expression. In addition, we identified that hnRNP-U enhanced cisplatin-induced apoptosis through up-regulation of GADD45A, high expression of which was correlated with good prognosis in LSCC patients. Our findings demonstrated that SFTA1P might serve as a useful biomarker for LSCC diagnosis and a predictor for cisplatin chemotherapy response in patients with LSCC.
Collapse
Affiliation(s)
- Ling Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, P. R. China
| | - Fa-Zhong He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, P. R. China
| | - Ma-Sha Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, P. R. China
| | - Tao Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, P. R. China
| | - Yuan-Feng Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, P. R. China
| | - Yi-Xin Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, P. R. China
| | - Dong-Bo Zhou
- Department of Gerontology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Central South University, Changsha 410008, P. R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, P. R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, P. R. China
| |
Collapse
|
61
|
Malhotra A, Jain M, Prakash H, Vasquez KM, Jain A. The regulatory roles of long non-coding RNAs in the development of chemoresistance in breast cancer. Oncotarget 2017; 8:110671-110684. [PMID: 29299178 PMCID: PMC5746413 DOI: 10.18632/oncotarget.22577] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/13/2017] [Indexed: 01/01/2023] Open
Abstract
Chemoresistance is one of the major hurdles in the treatment of breast cancer, which limits the effect of both targeted and conventional therapies in clinical settings. Therefore, understanding the mechanisms underpinning resistance is paramount for developing strategies to circumvent resistance in breast cancer patients. Several published reports have indicated that lncRNAs play a dynamic role in the regulation of both intrinsic and acquired chemoresistance through a variety of mechanisms that endow cells with a drug-resistant phenotype. Although a number of lncRNAs have been implicated in chemoresistance of breast cancer, their mechanistic roles have not been systematically reviewed. Thus, here we present a detailed review on the latest research findings and discoveries on the mechanisms of acquisition of chemoresistance in breast cancer related to lncRNAs, and how lncRNAs take part in various cancer signalling pathways involved in breast cancer cells. Knowledge obtained from this review could assist in the development of new strategies to avoid or reverse drug resistance in breast cancer chemotherapy.
Collapse
Affiliation(s)
- Akshay Malhotra
- Center for Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Manju Jain
- Center for Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Hridayesh Prakash
- Laboratory of Translational Medicine, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, TX, USA
| | - Aklank Jain
- Center for Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
62
|
Lu MY, Liao YW, Chen PY, Hsieh PL, Fang CY, Wu CY, Yen ML, Peng BY, Wang DP, Cheng HC, Wu CZ, Shih YH, Wang DJ, Yu CC, Tsai LL. Targeting LncRNA HOTAIR suppresses cancer stemness and metastasis in oral carcinomas stem cells through modulation of EMT. Oncotarget 2017; 8:98542-98552. [PMID: 29228709 PMCID: PMC5716749 DOI: 10.18632/oncotarget.21614] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/26/2017] [Indexed: 12/25/2022] Open
Abstract
Increasing evidence indicates that long non-coding RNAs (lncRNAs) regulate diverse cellular processes, such as cell growth, apoptosis and tumorigenesis. However, the functional roles of lncRNAs and mechanistic analysis of their interplays with oncogenic pathways in oral cancer remain largely unknown. In the current study, we examined the significance of lncRNA HOTAIR (HOX transcript antisense RNA) in tumor progression of oral squamous cell carcinomas (OSCC). We found the expression of HOTAIR was upregulated in tumor tissues, especially in the metastatic samples. And it was also observed in metastatic OSCC cell lines. Silence of HOTAIR in oral carcinomas stem cells (OCSC) significantly inhibited their cancer stemness, invasiveness and tumourigenicity in xenotransplantation models. By contrast, overexpression of HOTAIR in OSCC enhanced their metastatic potential and epithelial-mesenchymal transition (EMT) characteristics. And we showed that the expression of HOTAIR was positively related to mesenchymal markers and inversely correlated with epithelial marker in clinical samples. Moreover, Kaplan-Meier survival analysis suggested that high level of HOTAIR was a strong predictor of poor survival in OSCC patients. Collectively, our data demonstrated that HOTAIR-mediated cancer stemness and metastasis are associated with the regulation of EMT and HOTAIR may serve as a therapeutic target in OSCC.
Collapse
Affiliation(s)
- Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Yin Chen
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Yuan Fang
- Department of Dentistry, Taipei Municipal Wanfang Hospital, Taipei, Taiwan.,School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yu Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ming-Liang Yen
- Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Bou-Yue Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Dayen Peter Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ching-Zong Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yung-Hsun Shih
- Department of Dentistry, Taipei Municipal Wanfang Hospital, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Duen-Jeng Wang
- Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Lo-Lin Tsai
- Department of Dentistry, Taipei Municipal Wanfang Hospital, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
63
|
Zhang L, Wang Y, Li X, Xia X, Li N, He R, He H, Han C, Zhao W. ZBTB7A Enhances Osteosarcoma Chemoresistance by Transcriptionally Repressing lncRNALINC00473-IL24 Activity. Neoplasia 2017; 19:908-918. [PMID: 28942243 PMCID: PMC5609875 DOI: 10.1016/j.neo.2017.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/14/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022] Open
Abstract
Chemoresistance remains a major drawback to osteosarcoma treatment. ZBTB7A, a member of the POK transcription repressor family, was shown to play an important role in tumorigenesis. However, the effect of ZBTB7A on osteosarcoma chemoresistance is completely unknown. In this study, we found that ZBTB7A is increased in cisplatin-resistant osteosarcoma cells and that elevated ZBTB7A inhibits cisplatin-induced apoptosis by repressing LINC00473 expression. Further mechanistic studies revealed that ZBTB7A directly binds to the promoter and suppresses the transcription of LINC00473. Additionally, our data indicate that LINC00473 interacts with the transcript factor C/EBPβ, facilitating its binding to the promoter of IL24, leading to decrease chemoresistance. Thus, these findings indicate that the ZBTB7A-mediated LINC00473-C/EBPβ-IL24 pathway is a promising novel target for overcoming cisplatin resistance in osteosarcoma.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Orthopedics, Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian116027, China
| | - Yuan Wang
- Department of Orthopedics, Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian116027, China
| | - Xiaojie Li
- College of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Xin Xia
- Department of Orthopedics, Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian116027, China
| | - Na Li
- Pathology Department of College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Ruiping He
- Department of Orthopedics, Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian116027, China
| | - Hongtao He
- Department of Orthopedics, Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian116027, China
| | - Chuanchun Han
- Department of Orthopedics, Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian116027, China.
| | - Wenzhi Zhao
- Department of Orthopedics, Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian116027, China.
| |
Collapse
|
64
|
Herrera-Solorio AM, Armas-López L, Arrieta O, Zúñiga J, Piña-Sánchez P, Ávila-Moreno F. Histone code and long non-coding RNAs (lncRNAs) aberrations in lung cancer: implications in the therapy response. Clin Epigenetics 2017; 9:98. [PMID: 28904641 PMCID: PMC5591558 DOI: 10.1186/s13148-017-0398-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/29/2017] [Indexed: 01/14/2023] Open
Abstract
Respiratory diseases hold several genome, epigenome, and transcriptional aberrations as a cause of the accumulated damage promoted by, among others, environmental risk factors. Such aberrations can also come about as an adaptive response when faced with therapeutic oncological drugs. In epigenetic terms, aberrations in DNA methylation patterns, histone code marks balance, and/or chromatin-remodeling complexes recruitment, among Polycomb Repressive Complex-2 (PRC2) versus Trithorax (TRX) Activator Complex, have been proposed to be affected by several previously characterized functional long non-coding RNAs (lncRNAs). Such molecules are involved in modulating and/or controlling lung cancer epigenome and genome expression, as well as in malignancy and clinical progression in lung cancer. Several recent reports have described diverse epigenetic modifications in lung cancer cells and solid tumors, among others genomic DNA methylation and post-translational modifications (PTMs) on histone tails, as well as lncRNAs patterns and levels of expression. However, few systematic approaches have attempted to demonstrate a biological function and clinical association, aiming to improve therapeutic decisions in basic research and lung clinical oncology. A widely used example is the lncRNA HOTAIR and its functional histone mark H3K27me3, which is directly associated to the PRC2; however, few systematic pieces of solid evidence have been experimentally performed, conducted and/or validated to predict lung oncological therapeutic efficacy. Recent evidence suggests that chromatin-remodeling complexes accompanied by lncRNAs profiles are involved in several comprehensive lung carcinoma clinical parameters, including histopathology progression, prognosis, and/or responsiveness to unique or combined oncological therapies. The present manuscript offers a systematic revision of the current knowledge about the major epigenetic aberrations represented by changes in histone PTMs and lncRNAs expression levels and patterns in human lung carcinomas in cancer drug-based treatments, as an important comprehensive knowledge focusing on better oncological therapies. In addition, a new future direction must be refocusing on several gene target therapies, mainly on pharmaceutical EGFR-TKIs compounds, widely applied in lung cancer, currently the leading cause of death by malignant diseases.
Collapse
Affiliation(s)
- Abril Marcela Herrera-Solorio
- Cancer Epigenomics and Lung Diseases Laboratory-12 (UNAM-INER), Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México (UNAM), Mexico State, Mexico
| | - Leonel Armas-López
- Cancer Epigenomics and Lung Diseases Laboratory-12 (UNAM-INER), Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México (UNAM), Mexico State, Mexico
| | - Oscar Arrieta
- Thoracic Oncology Unit and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Joaquín Zúñiga
- Research Unit, Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, Mexico City, Mexico
| | - Patricia Piña-Sánchez
- Molecular Oncology Laboratory, Unidad de Investigación Médica en Enfermedades Oncológicas (UIMEO), CMN., SXXI., IMSS, Mexico City, Mexico
| | - Federico Ávila-Moreno
- Cancer Epigenomics and Lung Diseases Laboratory-12 (UNAM-INER), Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México (UNAM), Mexico State, Mexico
- Research Unit, Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
65
|
Zhan Y, Zang H, Feng J, Lu J, Chen L, Fan S. Long non-coding RNAs associated with non-small cell lung cancer. Oncotarget 2017; 8:69174-69184. [PMID: 28978188 PMCID: PMC5620328 DOI: 10.18632/oncotarget.20088] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/26/2017] [Indexed: 12/17/2022] Open
Abstract
Lung cancer, with 80–85% being non-small cell lung cancer (NSCLC), is the leading cause of cancer-related death in both men and women. Long non-coding RNAs (lncRNAs), always defined as non-protein-coding RNA molecules longer than 200 nucleotides, are now thought as a new frontier in the study of human malignant diseases including NSCLC. As researches continue, increasing number of roles that lncRNAs play in NSCLC has been found, and more and more evidences show lncRNAs have a close relationship with patients’ response to radiochemotherapy or molecular therapy. The aim of this review is to disclose the roles that lncRNAs play in NSCLC and how lncRANs influence the treatment of NSCLC.
Collapse
Affiliation(s)
- Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Feng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junmi Lu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingjiao Chen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
66
|
Li N, Wang Y, Liu X, Luo P, Jing W, Zhu M, Tu J. Identification of Circulating Long Noncoding RNA HOTAIR as a Novel Biomarker for Diagnosis and Monitoring of Non-Small Cell Lung Cancer. Technol Cancer Res Treat 2017; 16:1060-1066. [PMID: 28784052 PMCID: PMC5762071 DOI: 10.1177/1533034617723754] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Long noncoding RNA (LncRNA) homeotic genes (HOX) transcript antisense RNA (HOTAIR) has been reported to play a vital role in various cancers. It has been found that HOTAIR was upregulated in non–small cell lung cancer (NSCLC) and involved in cell invasion and metastasis. The aberrant expression of HOTAIR is expected to serve as a potential biomarker for patients with NSCLC. Our aim in this study was to detect the plasma levels of HOTAIR and further evaluate its diagnostic value for NSCLC. The levels of HOTAIR were measured in 105 patients with NSCLC and 80 healthy controls by quantitative real-time polymerase chain reaction. The results indicated that plasma HOTAIR levels were higher in NSCLC than in healthy controls. Besides, plasma HOTAIR levels were associated with histology subtype (P = .039) and tumor-node-metastasis stage (P = .022). The ROC curves showed that plasma HOTAIR has high diagnostic accuracy for NSCLC, and the area under curve (AUC) for NSCLC versus healthy was 0.791 (95% CI: 0.727-0.855) which was higher than carcinoembryonic antigen (CEA) (AUC = 0.737, 95% CI: 0.666-0.808). Moreover, the combination of HOTAIR and CEA could provide a more accurate diagnosis than HOTAIR or CEA alone (AUC = 0.841, 95% CI: 0.783-0.898). Plasma HOTAIR levels were significantly lower in postoperative samples than in preoperative samples. Plasma HOTAIR could serve as a promising biomarker for diagnosing and monitoring NSCLC.
Collapse
Affiliation(s)
- Nandi Li
- Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingchao Wang
- Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuefang Liu
- Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Luo
- Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Jing
- Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Man Zhu
- Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiancheng Tu
- Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
67
|
Tan N, Li L, Bai L, Zhao K. [Expression of Serum LncRNA HOTAIR in Non-small Cell Lung Cancer
and Its Clinical Significance]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017. [PMID: 28641698 PMCID: PMC5973358 DOI: 10.3779/j.issn.1009-3419.2017.06.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The expression of long noncoding RNA HOX antisense RNA (HOTAIR) is abnormal in a variety of tumors. The aim of this study is to explore the serum levels and clinical significance of HOTAIR in patients with non-small cell lung cancer (NSCLC). METHODS The serum levels of HOTAIR were detected by real-time quantitative polymerase chain reaction (PCR) in 64 NSCLC patients and 64 normal controls. The relationships between the serum levels of HOTAIR and clinical pathological parameters were analyzed. RESULTS Compared with normal controls, the serum levels of HOTAIR in patients with NSCLC increased significantly (P<0.01). The serum levels of HOTAIR were correlated with tumor size, tumor-node-metastasis (TNM) stage and lymph node metastasis (P<0.05), but not with age, gender, smoking, differentiation and histology (P>0.05). CONCLUSIONS The serum levels of HOTAIR in patients with NSCLC are significantly higher, and HOTAIR may be involved in the pathogenesis of NSCLC.
Collapse
Affiliation(s)
- Nan Tan
- Cadre Ward, the First Hospital of Xi'an, Xi'an 710002, China
| | - Lihong Li
- Cadre Ward, the First Hospital of Xi'an, Xi'an 710002, China
| | - Lu Bai
- Cadre Ward, the First Hospital of Xi'an, Xi'an 710002, China
| | - Kun Zhao
- Cadre Ward, the First Hospital of Xi'an, Xi'an 710002, China
| |
Collapse
|
68
|
Inamura K. Major Tumor Suppressor and Oncogenic Non-Coding RNAs: Clinical Relevance in Lung Cancer. Cells 2017; 6:cells6020012. [PMID: 28486418 PMCID: PMC5492016 DOI: 10.3390/cells6020012] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/01/2017] [Accepted: 05/05/2017] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide, yet there remains a lack of specific and sensitive tools for early diagnosis and targeted therapies. High-throughput sequencing techniques revealed that non-coding RNAs (ncRNAs), e.g., microRNAs and long ncRNAs (lncRNAs), represent more than 80% of the transcribed human genome. Emerging evidence suggests that microRNAs and lncRNAs regulate target genes and play an important role in biological processes and signaling pathways in malignancies, including lung cancer. In lung cancer, several tumor suppressor/oncogenic microRNAs and lncRNAs function as biomarkers for metastasis and prognosis, and thus may serve as therapeutic tools. In this review, recent work on microRNAs and lncRNAs is introduced and briefly summarized with a focus on potential biological and therapeutic applications.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
69
|
Heery R, Finn SP, Cuffe S, Gray SG. Long Non-Coding RNAs: Key Regulators of Epithelial-Mesenchymal Transition, Tumour Drug Resistance and Cancer Stem Cells. Cancers (Basel) 2017; 9:cancers9040038. [PMID: 28430163 PMCID: PMC5406713 DOI: 10.3390/cancers9040038] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023] Open
Abstract
Epithelial mesenchymal transition (EMT), the adoption by epithelial cells of a mesenchymal-like phenotype, is a process co-opted by carcinoma cells in order to initiate invasion and metastasis. In addition, it is becoming clear that is instrumental to both the development of drug resistance by tumour cells and in the generation and maintenance of cancer stem cells. EMT is thus a pivotal process during tumour progression and poses a major barrier to the successful treatment of cancer. Non-coding RNAs (ncRNA) often utilize epigenetic programs to regulate both gene expression and chromatin structure. One type of ncRNA, called long non-coding RNAs (lncRNAs), has become increasingly recognized as being both highly dysregulated in cancer and to play a variety of different roles in tumourigenesis. Indeed, over the last few years, lncRNAs have rapidly emerged as key regulators of EMT in cancer. In this review, we discuss the lncRNAs that have been associated with the EMT process in cancer and the variety of molecular mechanisms and signalling pathways through which they regulate EMT, and finally discuss how these EMT-regulating lncRNAs impact on both anti-cancer drug resistance and the cancer stem cell phenotype.
Collapse
Affiliation(s)
- Richard Heery
- Thoracic Oncology Research Group, Rm 2.09, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- Masters in Translational Oncology Program, Department of Surgery, Trinity College Dublin, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
| | - Stephen P Finn
- Department of Histopathology & Morbid Anatomy, Trinity College Dublin, Dublin D08 RX0X, Ireland.
| | - Sinead Cuffe
- HOPE Directorate, St. James's Hospital, Dublin D08 RT2X, Ireland.
| | - Steven G Gray
- Thoracic Oncology Research Group, Rm 2.09, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- HOPE Directorate, St. James's Hospital, Dublin D08 RT2X, Ireland.
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin D02 R590, Ireland.
- Labmed Directorate, St. James's Hospital, Dublin D08 K0Y5, Ireland.
| |
Collapse
|
70
|
HOTAIR may regulate proliferation, apoptosis, migration and invasion of MCF-7 cells through regulating the P53/Akt/JNK signaling pathway. Biomed Pharmacother 2017; 90:555-561. [PMID: 28407576 DOI: 10.1016/j.biopha.2017.03.054] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is a common malignancy, and it is the second leading cause of cancer-related death among women worldwide. The pathogenesis of breast cancer is poorly understood, leading to unsatisfactory efficacy of current anti-PC therapies. The aim of this study is to investigate the role of LncRNA HOTAIR in proliferation, apoptosis, migration and invasion of human breast cancer cell line MCF-7. MCF-7 cells were cultured and transfected with HOTAIR siRNA, and the proliferation rate of cells was determined using MTT and colony-forming assay; moreover, the apoptosis as well as cell cycles were determined using annexin V/propidium iodide staining methods and analyzed using flow cytometery; furthermore, cell scratch and transwell assays have been performed to examine the migration and invasion of MCF-7 cells; Next, cells were collected, and RT-qPCR as well as western blotting assay were performed to examine the expression of P53, MDM2, AKT, JNK, MMP-2 and MMP-9. We discovered that knockdown of HOTAIR induced significant decrease in proliferation and increase in apoptosis of MCF-7 cells, and the cell cycles of HOTAIR siRNA transfected cells have been arrested at G1 phase (p<0.01); moreover, knockdown of HOTAIR lead to marked decrease in the migration and invasion ability of MCF-7 cells; finally, knockdown of HOTAIR induced significant decrease in the expression of P53/Akt/JNK (p<0.01), and significant increase in the expression of P53 in MCF-7 cells (p<0.01). In conclusion, our results proved that HOTAIR may regulate proliferation, apoptosis, migration and invasion of MCF-7 cells through regulating the P53/Akt/JNK signaling pathway.
Collapse
|
71
|
Shi X, Zhang H, Wang M, Xu X, Zhao Y, He R, Zhang M, Zhou M, Li X, Peng F, Shi C, Shen M, Wang X, Guo X, Qin R. LncRNA AFAP1-AS1 promotes growth and metastasis of cholangiocarcinoma cells. Oncotarget 2017; 8:58394-58404. [PMID: 28938565 PMCID: PMC5601661 DOI: 10.18632/oncotarget.16880] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
We investigated the role of actin filament associated protein 1 antisense RNA1 (AFAP1-AS1) lncRNA in promoting cholangiocarcinoma (CCA). qRT-PCR analysis of patient samples showed that AFAP1-AS1 expression was higher in CCA tumors than matched adjacent non-tumor tissue. AFAP1-AS1 levels were also higher in CCA cell lines (HuCCT1 and TFK-1) than a normal biliary epithelium cell line (HIBEpic). AFAP1-AS1 knockdown in CCA cell lines using shAFAP1-AS1 reduced cell proliferation and colony formation in CCK-8 and colony formation assays, respectively. Cell cycle analysis demonstrated that AFAP1-AS1 knockdown resulted in G0/G1 cell cycle arrest and inhibition of S-G2/M transition compared to the controls. CCA cells transfected with shAFAP1-AS1 also exhibited reduced metastasis and invasiveness in Transwell and wound healing assays. This was further confirmed in xenograft experiments with nude mice using CCA cells transfected with shAFAP1-AS1 or control shRNA. AFAP1-AS1 knockdown cells produced smaller tumors, demonstrating that AFAP1-AS1 promotes tumor growth in vivo. AFAP1-AS1 knockdown also increased expression of actin filament associated protein 1 (AFAP1) and reduced cell stress filament integrity, as determined from western blot and immunofluorescence assays, respectively. These findings indicate that AFAP1-AS1 exerts oncogenic effects in CCA. We postulate that AFAP1-AS1 is a potentially useful diagnostic and prognostic biomarker and therapeutic target for CCA.
Collapse
Affiliation(s)
- Xiuhui Shi
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Zhang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaodong Xu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhou
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Peng
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengjian Shi
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Shen
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|