51
|
Rónavári A, Igaz N, Adamecz DI, Szerencsés B, Molnar C, Kónya Z, Pfeiffer I, Kiricsi M. Green Silver and Gold Nanoparticles: Biological Synthesis Approaches and Potentials for Biomedical Applications. Molecules 2021; 26:844. [PMID: 33562781 PMCID: PMC7915205 DOI: 10.3390/molecules26040844] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The nanomaterial industry generates gigantic quantities of metal-based nanomaterials for various technological and biomedical applications; however, concomitantly, it places a massive burden on the environment by utilizing toxic chemicals for the production process and leaving hazardous waste materials behind. Moreover, the employed, often unpleasant chemicals can affect the biocompatibility of the generated particles and severely restrict their application possibilities. On these grounds, green synthetic approaches have emerged, offering eco-friendly, sustainable, nature-derived alternative production methods, thus attenuating the ecological footprint of the nanomaterial industry. In the last decade, a plethora of biological materials has been tested to probe their suitability for nanomaterial synthesis. Although most of these approaches were successful, a large body of evidence indicates that the green material or entity used for the production would substantially define the physical and chemical properties and as a consequence, the biological activities of the obtained nanomaterials. The present review provides a comprehensive collection of the most recent green methodologies, surveys the major nanoparticle characterization techniques and screens the effects triggered by the obtained nanomaterials in various living systems to give an impression on the biomedical potential of green synthesized silver and gold nanoparticles.
Collapse
Affiliation(s)
- Andrea Rónavári
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., H-6720 Szeged, Hungary; (A.R.); (Z.K.)
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (N.I.); (D.I.A.)
| | - Dóra I. Adamecz
- Department of Biochemistry and Molecular Biology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (N.I.); (D.I.A.)
| | - Bettina Szerencsés
- Department of Microbiology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (B.S.); (I.P.)
| | - Csaba Molnar
- Broad Institute of MIT and Harvard, Cambridge, 415 Main St, Cambridge, MA 02142, USA;
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., H-6720 Szeged, Hungary; (A.R.); (Z.K.)
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1., H-6720 Szeged, Hungary
| | - Ilona Pfeiffer
- Department of Microbiology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (B.S.); (I.P.)
| | - Monika Kiricsi
- Department of Biochemistry and Molecular Biology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (N.I.); (D.I.A.)
| |
Collapse
|
52
|
Kant T, Shrivas K, Tapadia K, Devi R, Ganesan V, Deb MK. Inkjet-printed paper-based electrochemical sensor with gold nano-ink for detection of glucose in blood serum. NEW J CHEM 2021. [DOI: 10.1039/d1nj00771h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An inkjet-printed paper electrode with gold nanoparticle-ink as a non-enzymatic electrochemical sensor for detection of glucose in blood serum is reported.
Collapse
Affiliation(s)
- Tushar Kant
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
| | - Kamlesh Shrivas
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
| | - Kavita Tapadia
- Department of Chemistry
- National Institute of Technology
- Raipur-492010
- India
| | - Rama Devi
- Department of Chemistry
- National Institute of Technology
- Raipur-492010
- India
| | - Vellaichamy Ganesan
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Manas Kanti Deb
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
| |
Collapse
|
53
|
Synthesis of Ag@Au core-shell NPs loaded with Ciprofloxacin as enhanced antimicrobial properties for the treatment and nursing care of Escherichia coli infection. Microb Pathog 2020; 150:104619. [PMID: 33212196 DOI: 10.1016/j.micpath.2020.104619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022]
Abstract
Bimetallic nanoparticles act as a multi-functional platform because of extraordinary properties that are most capable materials for biological applications. The present study reports the improvement of Au@ Ag-core shell nanoparticles filled in as seeds for ceaseless affidavit of silver molecules on its chitosan surface. The FT-IR spectrum techniques used to identify stretching vibrations of prepared NPs. The X-ray diffraction (XRD) outcomes show the medium crystalline shape and size of the Ag@Au loaded chitosan was around at 30 nm. The morphological structure of nanoparticles (NPs) was proved by Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). The Ag@Au contained chitosan results displayed the most elevated zone of hindrance 24 mm and lowest value 0.2 μg/mL of MIC against E. coli and treated with ciprofloxacin. The excellent antimicrobial results proven that the Ag@Au loaded chitosan can enhance the antibacterial activity. The combined Ag@Au core-shell NPs were intricately performed for cytotoxicity against human bosom malignant growth (MCF7) and cervical (HeLa) anticancer cell lines. The Ag@Au NPs may have incredible potential as viable antibacterial operators for pathogen control in clinics and nourishment preparing.
Collapse
|
54
|
Hu CC, Chang CH, Chang Y, Hsieh JH, Ueng SWN. Beneficial Effect of TaON-Ag Nanocomposite Titanium on Antibacterial Capacity in Orthopedic Application. Int J Nanomedicine 2020; 15:7889-7900. [PMID: 33116507 PMCID: PMC7568682 DOI: 10.2147/ijn.s264303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose In this study, a novel oxygenated nanocomposite thin film, TaON-Ag, was investigated in vitro and in vivo to evaluate its biocompatibility and antibacterial ability. Material and Methods The antibacterial ability of TaON-Ag nanocomposite-coated titanium (Ti) was evaluated using the Kirby-Bauer disk diffusion susceptibility test. The effects of TaON-Ag nanocomposite-coated metal on osteogenesis were further evaluated in an in vitro osteogenic culture model with rat marrow-derived mesenchymal stem cells (rMSCs). Furthermore, titanium rods coated with TaON-Ag were implanted into a rat femur fracture model either with or without osteomyelitis to investigate the effects of TaON-Ag in osteogenesis. Results The TaON-Ag-coated Ti exhibited an effective antibacterial effect against Staphylococcus aureus, coagulase-negative Staphylococcus, and the Gram-negative strains Escherichia coli and Pseudomonas aeruginosa. Using an osteogenic culture with rMSCs and a rat femoral fracture model, the TaON-Ag-coated Ti did not interfere with the ossification of rMSCs in vitro or during fracture healing in vivo. Field-emission scanning electron microscopy (FE-SEM) revealed that coating with TaON-Ag could inhibit pathogen adhesion and biofilm formation in both Staphylococcus aureus and Escherichia coli. Conclusion Using the proposed novel oxygenation process, TaON-Ag nanocomposite-coated Ti yielded robust biocompatibility and antibacterial ability against common microorganisms in orthopedic infections, thereby demonstrating potential for use in clinical applications.
Collapse
Affiliation(s)
- Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,College of Medicine, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan.,Department of Orthopedic Surgery, Xiamen Chang Gung Hospital, Xiamen, Fujian, People's Republic of China
| | - Chih-Hsiang Chang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,College of Medicine, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan
| | - Yuhan Chang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,College of Medicine, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan
| | - Jang-Hsing Hsieh
- Department of Materials Engineering, Ming Chi University of Technology, Taishan, Taipei 24301, Taiwan.,Center for Thin Film Technologies and Applications, Ming Chi University of Technology, Taishan, Taipei 24301, Taiwan
| | - Steve Wen-Neng Ueng
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,College of Medicine, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan
| |
Collapse
|
55
|
Krishnan PD, Banas D, Durai RD, Kabanov D, Hosnedlova B, Kepinska M, Fernandez C, Ruttkay-Nedecky B, Nguyen HV, Farid A, Sochor J, Narayanan VHB, Kizek R. Silver Nanomaterials for Wound Dressing Applications. Pharmaceutics 2020; 12:E821. [PMID: 32872234 PMCID: PMC7557923 DOI: 10.3390/pharmaceutics12090821] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Silver nanoparticles (AgNPs) have recently become very attractive for the scientific community due to their broad spectrum of applications in the biomedical field. The main advantages of AgNPs include a simple method of synthesis, a simple way to change their morphology and high surface area to volume ratio. Much research has been carried out over the years to evaluate their possible effectivity against microbial organisms. The most important factors which influence the effectivity of AgNPs against microorganisms are the method of their preparation and the type of application. When incorporated into fabric wound dressings and other textiles, AgNPs have shown significant antibacterial activity against both Gram-positive and Gram-negative bacteria and inhibited biofilm formation. In this review, the different routes of synthesizing AgNPs with controlled size and geometry including chemical, green, irradiation and thermal synthesis, as well as the different types of application of AgNPs for wound dressings such as membrane immobilization, topical application, preparation of nanofibers and hydrogels, and the mechanism behind their antimicrobial activity, have been discussed elaborately.
Collapse
Affiliation(s)
- Priya Dharshini Krishnan
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613-401, India; (P.D.K.); (R.D.D.)
| | - Dominik Banas
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno-Bohunice, Czech Republic; (D.B.); (D.K.)
- Department of Research and Development, Prevention Medicals, Tovarni 342, 742 13 Studenka-Butovice, Czech Republic;
| | - Ramya Devi Durai
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613-401, India; (P.D.K.); (R.D.D.)
| | - Daniil Kabanov
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno-Bohunice, Czech Republic; (D.B.); (D.K.)
- Department of Research and Development, Prevention Medicals, Tovarni 342, 742 13 Studenka-Butovice, Czech Republic;
| | - Bozena Hosnedlova
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic; (B.H.); (J.S.)
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB10 7QB, UK;
| | - Branislav Ruttkay-Nedecky
- Department of Research and Development, Prevention Medicals, Tovarni 342, 742 13 Studenka-Butovice, Czech Republic;
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic; (B.H.); (J.S.)
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackeho 1946/1, 612 00 Brno, Czech Republic
| | - Hoai Viet Nguyen
- Research Center for Environmental Monitoring and Modeling, University of Science, Vietnam National University, 334 Nguyen Trai Street, Hanoi 100000, Vietnam;
| | - Awais Farid
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Room 4412, Clear Water Bay, Kowloon, Hong Kong, China;
| | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic; (B.H.); (J.S.)
| | - Vedha Hari B. Narayanan
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613-401, India; (P.D.K.); (R.D.D.)
| | - Rene Kizek
- Department of Research and Development, Prevention Medicals, Tovarni 342, 742 13 Studenka-Butovice, Czech Republic;
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic; (B.H.); (J.S.)
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackeho 1946/1, 612 00 Brno, Czech Republic
| |
Collapse
|
56
|
Wang X, Yuan L, Deng H, Zhang Z. Structural characterization and stability study of green synthesized starch stabilized silver nanoparticles loaded with isoorientin. Food Chem 2020; 338:127807. [PMID: 32818865 DOI: 10.1016/j.foodchem.2020.127807] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 01/12/2023]
Abstract
Isoorientin (Iso) is a natural flavonoid, the effect of metal nanoparticles loaded with it was unknown. In this study, silver nanoparticles (AgNPs) were synthesized by corn starch and sodium citrate with the green synthesis method, and the structural characterization and stability of AgNPs loaded with Iso (AgNPs-Iso) were examined by UV-vis spectroscopy and zetasizer. Results showed that AgNPs (65 ± 0.87 nm, spheres) successfully loaded with Iso (117 ± 2.13 nm, loading efficiency: 76.60%). There are no significant changes of the stability of AgNPs and AgNPs-Iso in pH 5-9 and 0-0.30 M of NaCl solution. AgNPs-Iso was more stable than AgNPs in the simulated gastrointestinal digestion in vitro. Furthermore, AgNPs-Iso showed the lower erythrocytes hemolysis ratio and cytotoxicity, and exhibited a notably inhibitive effect on α-glucosidase and pancreatic lipase. Therefore, this study could provide the basic support for the further development of highly stable and lowly cytotoxic AgNPs-Iso on Type II diabetes and obesity.
Collapse
Affiliation(s)
- Xiao Wang
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Li Yuan
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China.
| | - Hong Deng
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Zhong Zhang
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
57
|
Biogenic approach for the synthesis of Ag-Au doped RuO2 nanoparticles in BMIM-PF6 ionic liquid medium: Structural characterization and its biocidal activity against pathogenic bacteria and HeLa cancerous cells. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
58
|
Dinparvar S, Bagirova M, Allahverdiyev AM, Abamor ES, Safarov T, Aydogdu M, Aktas D. A nanotechnology-based new approach in the treatment of breast cancer: Biosynthesized silver nanoparticles using Cuminum cyminum L. seed extract. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 208:111902. [DOI: 10.1016/j.jphotobiol.2020.111902] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/24/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022]
|
59
|
Li K, Zhuang P, Tao B, Li D, Xing X, Mei X. Ultra-Small Lysozyme-Protected Gold Nanoclusters as Nanomedicines Inducing Osteogenic Differentiation. Int J Nanomedicine 2020; 15:4705-4716. [PMID: 32636626 PMCID: PMC7335297 DOI: 10.2147/ijn.s241163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Ultra-small gold nanoclusters (AuNCs), as emerging fluorescent nanomaterials with excellent biocompatibility, have been widely investigated for in vivo biomedical applications. However, their effects in guiding osteogenic differentiation have not been investigated, which are important for osteoporosis therapy and bone regeneration. Herein, for the first time, lysozyme-protected AuNCs (Lys-AuNCs) are used to stimulate osteogenic differentiation, which have the potential for the treatment of bone disease. METHODS Proliferation of MC3T3E-1 is important for osteogenic differentiation. First, the proliferation rate of MC3T3E-1 was studied by Cell Counting Kit-8 (CCK8) assays. Signaling pathways of PI3K/Akt play central roles in controlling proliferation throughout the body. The expression of PI3K/Akt was investigated in the presence of lysozyme, and lysozyme-protected AuNCs (Lys-AuNCs) by Western blot (WB) and intracellular cell imaging to evacuate the osteogenic differentiation mechanisms. Moreover, the formation of osteoclasts (OC) plays a negative role in the differentiation of osteoblasts. Nuclear factor κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) signaling pathways are used to understand the negative influence of the osteogenic differentiation by the investigation of Raw 264.7 cell line. Raw 264.7 (murine macrophage-like) cells and NIH/3T3 (mouse fibroblast) cells were treated with tyloxapol, and the cell viability was assessed. Raw 264.7 cells have also been used for in vitro studies, on understanding the osteoclast formation and function. The induced osteoclasts were identified by TRAP confocal fluorescence imaging. These key factors in osteoclast formation, such as (NFATc-1, c-Fos, V-ATPase-2 and CTSK), were investigated by Western blot. RESULTS Based on the above investigation, Lys-AuNCs were found to promote osteogenic differentiation and decrease osteoclast activity. It is noteworthy that the lysozyme (protected template), AuNPs, or the mixture of Lysozyme and AuNPs have negligible effects on osteoblastic differentiation compared to Lys-AuNCs. CONCLUSION This study opens up a novel avenue to develop a new gold nanomaterial for promoting osteogenic differentiation. The possibility of using AuNCs as nanomedicines for the treatment of osteoporosis can be expected.
Collapse
Affiliation(s)
- Kuo Li
- Department of Orthopedics, School of Pharmaceutical Science, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Pengfei Zhuang
- Department of Orthopedics, School of Pharmaceutical Science, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
- Department of Basic Science, School of Pharmaceutical Science, Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Bailong Tao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing400044, People’s Republic of China
| | - Dan Li
- Department of Orthopedics, School of Pharmaceutical Science, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
- Department of Basic Science, School of Pharmaceutical Science, Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Xuejiao Xing
- Department of Orthopedics, School of Pharmaceutical Science, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Xifan Mei
- Department of Orthopedics, School of Pharmaceutical Science, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| |
Collapse
|
60
|
Mostafavi E, Medina-Cruz D, Kalantari K, Taymoori A, Soltantabar P, Webster TJ. Electroconductive Nanobiomaterials for Tissue Engineering and Regenerative Medicine. Bioelectricity 2020; 2:120-149. [PMID: 34471843 PMCID: PMC8370325 DOI: 10.1089/bioe.2020.0021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine aims to engineer tissue constructs that can recapitulate the functional and structural properties of native organs. Most novel regenerative therapies are based on the recreation of a three-dimensional environment that can provide essential guidance for cell organization, survival, and function, which leads to adequate tissue growth. The primary motivation in the use of conductive nanomaterials in tissue engineering has been to develop biomimetic scaffolds to recapitulate the electrical properties of the natural extracellular matrix, something often overlooked in numerous tissue engineering materials to date. In this review article, we focus on the use of electroconductive nanobiomaterials for different biomedical applications, particularly, very recent advancements for cardiovascular, neural, bone, and muscle tissue regeneration. Moreover, this review highlights how electroconductive nanobiomaterials can facilitate cell to cell crosstalk (i.e., for cell growth, migration, proliferation, and differentiation) in different tissues. Thoughts on what the field needs for future growth are also provided.
Collapse
Affiliation(s)
- Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - David Medina-Cruz
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Katayoon Kalantari
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Ada Taymoori
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Pooneh Soltantabar
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
61
|
Saravanan M, Vahidi H, Medina Cruz D, Vernet-Crua A, Mostafavi E, Stelmach R, Webster TJ, Mahjoub MA, Rashedi M, Barabadi H. Emerging Antineoplastic Biogenic Gold Nanomaterials for Breast Cancer Therapeutics: A Systematic Review. Int J Nanomedicine 2020; 15:3577-3595. [PMID: 32547015 PMCID: PMC7245458 DOI: 10.2147/ijn.s240293] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer remains as a concerning global health issue, being the second leading cause of cancer deaths among women in the United States (US) in 2019. Therefore, there is an urgent and substantial need to explore novel strategies to combat breast cancer. A potential solution may come from the use of cancer nanotechnology, an innovative field of study which investigates the potential of nanomaterials for cancer diagnosis, therapy, and theranostic applications. Consequently, the theranostic functionality of cancer nanotechnology has been gaining much attention between scientists during the past few years and is growing exponentially. The use of biosynthesized gold nanoparticles (AuNPs) has been explored as an efficient mechanism for the treatment of breast cancer. The present study supposed a global systematic review to evaluate the effectiveness of biogenic AuNPs for the treatment of breast cancer and their anticancer molecular mechanisms through in vitro studies. Online electronic databases, including Cochrane, PubMed, Scopus, Web of Science, Science Direct, ProQuest, and Embase, were searched for the articles published up to July 16, 2019. Our findings revealed that plant-mediated synthesis was the most common approach for the generation of AuNPs. Most of the studies reported spherical or nearly spherical-shaped AuNPs with a mean diameter less than 100 nm in size. A significantly larger cytotoxicity was observed when the biogenic AuNPs were tested towards breast cancer cells compared to healthy cells. Moreover, biogenic AuNPs demonstrated significant synergistic activity in combination with other anticancer drugs through in vitro studies. Although we provided strong and comprehensive preliminary in vitro data, further in vivo investigations are required to show the reliability and efficacy of these NPs in animal models.
Collapse
Affiliation(s)
- Muthupandian Saravanan
- Department of Medical Microbiology and Immunology, Division of Biomedical Science, School of Medicine, College of Health Sciences, Mekelle University, Mekelle 1871, Ethiopia
| | - Hossein Vahidi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - David Medina Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.,Nanomedicine Science and Technology Center, Northeastern University, Boston, MA, USA
| | - Ada Vernet-Crua
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.,Nanomedicine Science and Technology Center, Northeastern University, Boston, MA, USA
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.,Nanomedicine Science and Technology Center, Northeastern University, Boston, MA, USA
| | - Ryan Stelmach
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.,Nanomedicine Science and Technology Center, Northeastern University, Boston, MA, USA
| | - Mohammad Ali Mahjoub
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rashedi
- Student Research Committee, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamed Barabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
62
|
Raj R K, D E, S R. β‐Sitosterol‐assisted silver nanoparticles activates Nrf2 and triggers mitochondrial apoptosis via oxidative stress in human hepatocellular cancer cell line. J Biomed Mater Res A 2020; 108:1899-1908. [DOI: 10.1002/jbm.a.36953] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/18/2020] [Accepted: 03/28/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Kathiswar Raj R
- Department of Pharmacology, Saveetha Dental CollegeSaveetha Institute of Medical and Technical Sciences (SIMATS) Chennai Tamil Nadu India
| | - Ezhilarasan D
- Department of Pharmacology, Saveetha Dental CollegeSaveetha Institute of Medical and Technical Sciences (SIMATS) Chennai Tamil Nadu India
| | - Rajeshkumar S
- Department of Pharmacology, Saveetha Dental CollegeSaveetha Institute of Medical and Technical Sciences (SIMATS) Chennai Tamil Nadu India
| |
Collapse
|
63
|
Medina-Cruz D, Mostafavi E, Vernet-Crua A, Cheng J, Shah V, Cholula-Diaz JL, Guisbiers G, Tao J, García-Martín JM, Webster TJ. Green nanotechnology-based drug delivery systems for osteogenic disorders. Expert Opin Drug Deliv 2020; 17:341-356. [PMID: 32064959 DOI: 10.1080/17425247.2020.1727441] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Current treatments for osteogenic disorders are often successful, however they are not free of drawbacks, such as toxicity or side effects. Nanotechnology offers a platform for drug delivery in the treatment of bone disorders, which can overcome such limitations. Nevertheless, traditional synthesis of nanomaterials presents environmental and health concerns due to its production of toxic by-products, the need for extreme and harsh raw materials, and their lack of biocompatibility over time.Areas covered: This review article contains an overview of the current status of treating osteogenic disorders employing green nanotechnological approaches, showing some of the latest advances in the application of green nanomaterials, as drug delivery carriers, for the effective treatment of osteogenic disorders.Expert opinion: Green nanotechnology, as a potential solution, is understood as the use of living organisms, biomolecules and environmentally friendly processes for the production of nanomaterials. Nanomaterials derived from bacterial cultures or biomolecules isolated from living organisms, such as carbohydrates, proteins, and nucleic acids, have been proven to be effective composites. These nanomaterials introduce enhancements in the treatment and prevention of osteogenic disorders, compared to physiochemically-synthesized nanostructures, specifically in terms of their improved cell attachment and proliferation, as well as their ability to prevent bacterial adhesion.
Collapse
Affiliation(s)
- David Medina-Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ada Vernet-Crua
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Junjiang Cheng
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Veer Shah
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Gregory Guisbiers
- Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Juan Tao
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
64
|
Beiu C, Giurcaneanu C, Grumezescu AM, Holban AM, Popa LG, Mihai MM. Nanosystems for Improved Targeted Therapies in Melanoma. J Clin Med 2020; 9:jcm9020318. [PMID: 31979325 PMCID: PMC7073828 DOI: 10.3390/jcm9020318] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/11/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Melanoma is one of the most aggressive forms of skin cancer, with limited therapeutic options. Since its incidence has been rapidly rising in recent years, the study of new targeted therapeutic strategies has increased. The implication of nanoscience in the development of alternative targeted therapies for melanoma has multiple benefits and could significantly improve the outcome of melanoma patients. In this paper, we review the most recent progress in the field of targeted therapies, emphasizing the impact of nanoscale materials on the targeting and controlled release of anti-tumor drugs. The applications of nanomedicine in the management of melanoma are extensive and refer to sentinel lymph node mapping, chemotherapy, and RNA interference; each of these applications harboring the potential to develop efficient and personalized diagnostic techniques and therapies. Further research, especially in clinical trials, is needed to establish whether fighting melanoma on the nanoscale level represents the key to reaching a critical inflection point in mankind’s battle with metastatic melanoma.
Collapse
Affiliation(s)
- Cristina Beiu
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.B.); (C.G.); (L.G.P.)
| | - Calin Giurcaneanu
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.B.); (C.G.); (L.G.P.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest, Romania;
| | - Alina Maria Holban
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest, Romania;
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
- Correspondence: ; Tel.: +40-721-600-737
| | - Liliana Gabriela Popa
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.B.); (C.G.); (L.G.P.)
| | - Mara Mădălina Mihai
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.B.); (C.G.); (L.G.P.)
| |
Collapse
|
65
|
Agressott EV, Blätte D, Cunha FA, Noronha VT, Ciesielski R, Hartschuh A, Paula AJD, Fechine PB, Souza Filho A, Paschoal AR. Vibrational Spectroscopy and Morphological Studies on Protein-Capped Biosynthesized Silver Nanoparticles. ACS OMEGA 2020; 5:386-393. [PMID: 31956786 PMCID: PMC6964295 DOI: 10.1021/acsomega.9b02867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/28/2019] [Indexed: 05/26/2023]
Abstract
Silver nanoparticles (AgNPs) have a large number of applications in technology and physical and biological sciences. These nanomaterials can be synthesized by chemical and biological methods. The biological synthesis using fungi represents a green approach for nanomaterial production that has the advantage of biocompatibility. This work studies silver nanoparticles (AgNPs) produced by fungi Rhodotorula glutinis and Rhodotorula mucilaginosa found in ordinary soil of the Universidade Federal do Ceará campus (Brazil). The biosynthesized AgNPs have a protein-capping layer involving a metallic Ag core. The focus of this paper is to investigate the size and structure of the capping layer, how it interacts with the Ag core, and how sensitive the system (core + protein) is to visible light illumination. For this, we employed SEM, AFM, photoluminescence spectroscopy, SERS, and dark-field spectroscopy. The AgNPs were isolated, and SEM measurements showed the average size diameter between 58 nm for R. glutinis and 30 nm for R. mucilaginosa. These values are in agreement with the AFM measurements, which also provided the average size diameter of 85 nm for R. glutinis and 56 nm for R. mucilaginosa as well as additional information about the average size of the protein-capping layers, whose found values were 24 and 21 nm for R. mucilaginosa and R. glutinis nanoparticles, respectively. The protein-capping layer structure seemed to be easily disturbed, and the SERS spectra were unstable. It was possible to identify Raman peaks that might be related to α-helix, β-sheet, and protein mixed structures. Finally, dark-field microscopy showed that the silver cores are very stable, but some are affected by the laser energy due to heating or melting.
Collapse
Affiliation(s)
| | - Dominic Blätte
- Department
of Chemistry and Center for NanoScience (CeNS), LMU Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Francisco Afrânio Cunha
- Grupo de Química de Materiais
Avançados (GQMat), Departamento de Química Analítica
e Físico-Química, Universidade
Federal do Ceara (UFC), Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
- Laboratório
de Microbiologia de Leveduras da Faculdade de Farmácia da Universidade
Federal do Ceara (UFC), Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - Victor T. Noronha
- Departamento
de Física, Universidade Federal do
Ceará, Campus do Pici, P.O. Box 6030, 65455-900 Fortaleza, CE, Brazil
| | - Richard Ciesielski
- Department
of Chemistry and Center for NanoScience (CeNS), LMU Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Achim Hartschuh
- Department
of Chemistry and Center for NanoScience (CeNS), LMU Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Amauri Jardim de Paula
- Departamento
de Física, Universidade Federal do
Ceará, Campus do Pici, P.O. Box 6030, 65455-900 Fortaleza, CE, Brazil
| | - Pierre Basílio
Almeida Fechine
- Grupo de Química de Materiais
Avançados (GQMat), Departamento de Química Analítica
e Físico-Química, Universidade
Federal do Ceara (UFC), Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - Antônio
Gomes Souza Filho
- Departamento
de Física, Universidade Federal do
Ceará, Campus do Pici, P.O. Box 6030, 65455-900 Fortaleza, CE, Brazil
| | - Alexandre Rocha Paschoal
- Departamento
de Física, Universidade Federal do
Ceará, Campus do Pici, P.O. Box 6030, 65455-900 Fortaleza, CE, Brazil
| |
Collapse
|