51
|
Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Peng Q, Baron M, Melcova M, Opatrilova R, Zidkova J, Bjørklund G, Sochor J, Kizek R. Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomedicine 2018; 13:2107-2128. [PMID: 29692609 PMCID: PMC5901133 DOI: 10.2147/ijn.s157541] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traditional supplements of selenium generally have a low degree of absorption and increased toxicity. Therefore, it is imperative to develop innovative systems as transporters of selenium compounds, which would raise the bioavailability of this element and allow its controlled release in the organism. Nanoscale selenium has attracted a great interest as a food additive especially in individuals with selenium deficiency, but also as a therapeutic agent without significant side effects in medicine. This review is focused on the incorporation of nanotechnological applications, in particular exploring the possibilities of a more effective way of administration, especially in selenium-deficient organisms. In addition, this review summarizes the survey of knowledge on selenium nanoparticles, their biological effects in the organism, advantages, absorption mechanisms, and nanotechnological applications for peroral administration.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Sylvie Skalickova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Branislav Ruttkay-Nedecky
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, People's Republic of China
| | - Mojmir Baron
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | - Magdalena Melcova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Radka Opatrilova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jarmila Zidkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Rana, Norway
| | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | - Rene Kizek
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.,Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
52
|
Lin S, Lv J, Peng P, Cai C, Deng J, Deng H, Li X, Tang X. Bufadienolides induce p53-mediated apoptosis in esophageal squamous cell carcinoma cells in vitro and in vivo. Oncol Lett 2018; 15:1566-1572. [PMID: 29434851 PMCID: PMC5774392 DOI: 10.3892/ol.2017.7457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/11/2017] [Indexed: 12/01/2022] Open
Abstract
Bufadienolides are a type of cardiotonic steroids isolated from the skin and parotid venom glands of the toad Bufo bufo gargarizans Cantor, and exhibit wide-spectrum anticancer activities. However, the effects and mechanisms of bufadienolides on esophageal squamous cell carcinoma (ESCC) cells remain unknown. In the present study, the anticancer activities of two bufadienolides, bufotalin and bufalin, were examined in vitro and in vivo. The results demonstrated that bufotalin and bufalin effectively inhibited the viability of ESCC cells, with half-maximal inhibitory concentration (IC50) values of 0.8–3.6 µM. However, bufotalin and bufalin exhibited lower toxicity towards Het-1A human esophageal squamous cells, indicating their high selectivity towards cancer cells. Mechanistic studies revealed that bufotalin effectively induced ESCC cell apoptosis, as characterized by DNA fragmentation and nuclear condensation, which was primarily mediated through activation of caspase family members. In addition, treatment of ESCC cells with bufotalin markedly activated tumor protein p53 (p53) phosphorylation. Transfection of cells with p53 small interfering RNA markedly inhibited bufotalin-induced p53 phosphorylation and significantly inhibited bufotalin-induced cell apoptosis. Furthermore, bufotalin demonstrated in vivo anticancer efficacy in a tumor-bearing nude mice model, where bufotalin effectively inhibited Eca-109 xenograft tumor growth in a time- and dose-dependent manner, through activation of the p53 signaling pathway. Collectively, the results from the present study suggested that bufadienolides exert anticancer effects against ESCC by regulating the p53 signaling pathway.
Collapse
Affiliation(s)
- Shaohuan Lin
- Thoracic Surgeons Department, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Junhong Lv
- Thoracic Surgeons Department, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Panli Peng
- Oncology No. 2 Department, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Changqing Cai
- Oncology No. 2 Department, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Jianming Deng
- Thoracic Surgeons Department, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Haihong Deng
- Thoracic Surgeons Department, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Xuejun Li
- Thoracic Surgeons Department, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Xinyue Tang
- Oncology No. 2 Department, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| |
Collapse
|
53
|
Hu T, Li H, Li J, Zhao G, Wu W, Liu L, Wang Q, Guo Y. Absorption and Bio-Transformation of Selenium Nanoparticles by Wheat Seedlings ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2018; 9:597. [PMID: 29868060 PMCID: PMC5960721 DOI: 10.3389/fpls.2018.00597] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/16/2018] [Indexed: 05/21/2023]
Abstract
Elemental selenium is one of the dominant selenium species in soil, but the mechanism of its uptake by plants is still unclear. In this study, nanoparticles of elemental selenium (SeNPs) with different sizes were prepared, and their uptake and transformation in wheat (Triticum aestivum L.) were analyzed in hydroponic experiments by HPLC-ICP-MS. We found that the SeNPs can be absorbed by wheat seedlings, and the process is energy independent. The addition of aquaporins inhibitor caused 92.5 and 93.4% inhibition of chemosynthesized SeNPs (CheSeNPs) and biosynthesized SeNPs (BioSeNPs) absorption by wheat roots, respectively. The 40 nm SeNPs uptake by wheat roots was 1.8-fold and 2.2-fold higher than that of 140 and 240 nm, respectively. The rate of SeNPs uptake in wheat was much slower than that of selenite [Se (IV)], and CheSeNPs were more efficiently absorbed than BioSeNPs. The SeNPs were rapidly oxidized to Se (IV) and converted to organic forms [selenocystine (SeCys2), se-methyl-selenocysteine (MeSeCys), and selenomethionine (SeMet)] after they were absorbed by wheat roots. Additionally, we demonstrated that the aquaporin function in some way is related to the absorption of SeNPs. The particle size and synthesis method of the SeNPs affected their uptake rates by plants. Taken together, our results provide a deep understanding of the SeNPs uptake mechanism in plants.
Collapse
Affiliation(s)
- Ting Hu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Huafen Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Jixiang Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Guishen Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Wenliang Wu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Liping Liu
- Beijing Key Laboratory of Diagnostic and Trace Ability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Qi Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
- *Correspondence: Yanbin Guo
| |
Collapse
|
54
|
Bai K, Hong B, Hong Z, Sun J, Wang C. Selenium nanoparticles-loaded chitosan/citrate complex and its protection against oxidative stress in D-galactose-induced aging mice. J Nanobiotechnology 2017; 15:92. [PMID: 29262862 PMCID: PMC5738782 DOI: 10.1186/s12951-017-0324-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/27/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Selenium (Se) is an indispensable trace element required for animals and humans, and extra Se-supplement is necessary, especially for those having Se deficiency. Recently, selenium nanoparticles (SeNPs), as a special form of Se supplement, have attracted worldwide attention due to their distinguished properties and excellent bioactivities. In this present study, an eco-friendly and economic way to prepare stable SeNPs was introduced. SeNPs were synthesized in the presence of chitosan (CTS) and then embedded into chitosan/citrate gel, generating selenium nanoparticles-loaded chitosan/citrate complex (SeNPs-C/C). Additionally, the clinical potential of SeNPs-C/C was evaluated by using D-galactose (D-gal)-induced aging mice model. RESULTS SeNPs in high uniform with an average diameter of around 50 nm were synthesized in the presence of chitosan, and reversible ionic gelation between chitosan and citrate was utilized to load SeNPs. Subsphaeroidal SeNPs-C/C microspheres of 1-30 μm were obtained by spay-drying. Single SeNPs were physically separated and embedded inside SeNPs-C/C microparticles, with excellent stability and acceptable release. Acute fetal test showed SeNPs-C/C was safer than selenite, with a median lethal dose (LD50) of approximately 4-fold to 11-fold of that of selenite. Oral administration of SeNPs-C/C remarkably retarded the oxidative stress of D-gal in Kunming mice by enhancing the activity of antioxidase, as evidenced by its significant protection of the growth, liver, Se retention and antioxidant bio-markers of mice against D-gal. CONCLUSIONS The design of SeNPs-C/C opens a new path for oral delivery of SeNPs with excellent stability, energy-conservation and environment-friendliness. SeNPs-C/C, as a novel supplement of Se, could be further developed to defend the aging process induced by D-gal.
Collapse
Affiliation(s)
- Kaikai Bai
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China. .,Engineering Research Center of Marine Biological Resource Comprehensive Utilization, State Oceanic Administration, Xiamen, 361005, People's Republic of China.
| | - Bihong Hong
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China.,Engineering Research Center of Marine Biological Resource Comprehensive Utilization, State Oceanic Administration, Xiamen, 361005, People's Republic of China
| | - Zhuan Hong
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China.,Engineering Research Center of Marine Biological Resource Comprehensive Utilization, State Oceanic Administration, Xiamen, 361005, People's Republic of China
| | - Jipeng Sun
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China.,Engineering Research Center of Marine Biological Resource Comprehensive Utilization, State Oceanic Administration, Xiamen, 361005, People's Republic of China
| | - Changsen Wang
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China
| |
Collapse
|
55
|
Wang C, Gao X, Chen Z, Chen Y, Chen H. Preparation, Characterization and Application of Polysaccharide-Based Metallic Nanoparticles: A Review. Polymers (Basel) 2017; 9:E689. [PMID: 30965987 PMCID: PMC6418682 DOI: 10.3390/polym9120689] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/03/2017] [Accepted: 12/05/2017] [Indexed: 12/25/2022] Open
Abstract
Polysaccharides are natural biopolymers that have been recognized to be the most promising hosts for the synthesis of metallic nanoparticles (MNPs) because of their outstanding biocompatible and biodegradable properties. Polysaccharides are diverse in size and molecular chains, making them suitable for the reduction and stabilization of MNPs. Considerable research has been directed toward investigating polysaccharide-based metallic nanoparticles (PMNPs) through host⁻guest strategy. In this review, approaches of preparation, including top-down and bottom-up approaches, are presented and compared. Different characterization techniques such as scanning electron microscopy, transmission electron microscopy, dynamic light scattering, UV-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and small-angle X-ray scattering are discussed in detail. Besides, the applications of PMNPs in the field of wound healing, targeted delivery, biosensing, catalysis and agents with antimicrobial, antiviral and anticancer capabilities are specifically highlighted. The controversial toxicological effects of PMNPs are also discussed. This review can provide significant insights into the utilization of polysaccharides as the hosts to synthesize MPNs and facilitate their further development in synthesis approaches, characterization techniques as well as potential applications.
Collapse
Affiliation(s)
- Cong Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Xudong Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhongqin Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yue Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
56
|
Shoeibi S, Mozdziak P, Golkar-Narenji A. Biogenesis of Selenium Nanoparticles Using Green Chemistry. Top Curr Chem (Cham) 2017; 375:88. [PMID: 29124492 DOI: 10.1007/s41061-017-0176-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Selenium binds some enzymes such as glutathione peroxidase and thioredoxin reductase, which may be activated in biological infections and oxidative stress. Chemical and physical methods for synthesizing nanoparticles, apart from being expensive, have their own particular risks. However, nanoparticle synthesis through green chemistry is a safe procedure that different biological sources such as bacteria, fungi, yeasts, algae and plants can be the catalyst bed for processing. Synthesis of selenium nanoparticles (SeNPs) by macro/microorganisms causes variation in morphology and shape of the particles is due to diversity of reduction enzymes in organisms. Reducing enzymes of microorganisms by changing the status of redox convert metal ions (Se2-) to SeNPs without charge (Se0). Biological activity of SeNPs includes their protective role against DNA oxidation. Because of the biological and industrial properties, SeNPs have wide applications in the fields of medicine, microelectronic, agriculture and animal husbandry. SeNPs can show strong antimicrobial effects on the growth and proliferation of microorganisms in a dose-dependent manner. The objective of this review is to consider SeNPs applications to various organisms.
Collapse
Affiliation(s)
- Sara Shoeibi
- Cellular and Molecular Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC, USA
| | - Afsaneh Golkar-Narenji
- Department of Genetic, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
57
|
Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Malevu TD, Sochor J, Baron M, Melcova M, Zidkova J, Kizek R. A Summary of New Findings on the Biological Effects of Selenium in Selected Animal Species-A Critical Review. Int J Mol Sci 2017; 18:E2209. [PMID: 29065468 PMCID: PMC5666889 DOI: 10.3390/ijms18102209] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/18/2022] Open
Abstract
Selenium is an essential trace element important for many physiological processes, especially for the functions of immune and reproductive systems, metabolism of thyroid hormones, as well as antioxidant defense. Selenium deficiency is usually manifested by an increased incidence of retention of placenta, metritis, mastitis, aborts, lowering fertility and increased susceptibility to infections. In calves, lambs and kids, the selenium deficiency demonstrates by WMD (white muscle disease), in foals and donkey foals, it is associated with incidence of WMD and yellow fat disease, and in pigs it causes VESD (vitamin E/selenium deficiency) syndrome. The prevention of these health disorders can be achieved by an adequate selenium supplementation to the diet. The review summarizes the survey of knowledge on selenium, its biological significance in the organism, the impact of its deficiency in mammalian livestock (comparison of ruminants vs. non-ruminants, herbivore vs. omnivore) and possibilities of its peroral administration. The databases employed were as follows: Web of Science, PubMed, MEDLINE and Google Scholar.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic.
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| | - Sylvie Skalickova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB107GJ, UK.
| | - Branislav Ruttkay-Nedecky
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| | | | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic.
| | - Mojmir Baron
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic.
| | - Magdalena Melcova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague, Czech Republic.
| | - Jarmila Zidkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague, Czech Republic.
| | - Rene Kizek
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| |
Collapse
|
58
|
Wadhwani SA, Gorain M, Banerjee P, Shedbalkar UU, Singh R, Kundu GC, Chopade BA. Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: optimization, characterization and its anticancer activity in breast cancer cells. Int J Nanomedicine 2017; 12:6841-6855. [PMID: 28979122 PMCID: PMC5602452 DOI: 10.2147/ijn.s139212] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The aim of this study was to synthesize selenium nanoparticles (SeNPs) using cell suspension and total cell protein of Acinetobacter sp. SW30 and optimize its synthesis by studying the influence of physiological and physicochemical parameters. Also, we aimed to compare its anticancer activity with that of chemically synthesized SeNPs in breast cancer cells. Cell suspension of Acinetobacter sp. SW30 was exposed to various physiological and physicochemical conditions in the presence of sodium selenite to study their effects on the synthesis and morphology of SeNPs. Breast cancer cells (4T1, MCF-7) and noncancer cells (NIH/3T3, HEK293) were exposed to different concentrations of SeNPs. The 18 h grown culture with 2.7×109 cfu/mL could synthesize amorphous nanospheres of size 78 nm at 1.5 mM and crystalline nanorods at above 2.0 mM Na2SeO3 concentration. Polygonal-shaped SeNPs of average size 79 nm were obtained in the supernatant of 4 mg/mL of total cell protein of Acinetobacter sp. SW30. Chemical SeNPs showed more anticancer activity than SeNPs synthesized by Acinetobacter sp. SW30 (BSeNPs), but they were found to be toxic to noncancer cells also. However, BSeNPs were selective against breast cancer cells than chemical ones. Results suggest that BSeNPs are a good choice of selection as anticancer agents.
Collapse
Affiliation(s)
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Savitribai Phule Pune University Campus, Pune
| | - Pinaki Banerjee
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Savitribai Phule Pune University Campus, Pune
| | | | - Richa Singh
- Department of Microbiology, Savitribai Phule Pune University
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Savitribai Phule Pune University Campus, Pune
| | - Balu A Chopade
- Department of Microbiology, Savitribai Phule Pune University.,Dr Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| |
Collapse
|
59
|
Li Y, Lin Z, Guo M, Xia Y, Zhao M, Wang C, Xu T, Chen T, Zhu B. Inhibitory activity of selenium nanoparticles functionalized with oseltamivir on H1N1 influenza virus. Int J Nanomedicine 2017; 12:5733-5743. [PMID: 28848350 PMCID: PMC5557909 DOI: 10.2147/ijn.s140939] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
As an effective antiviral agent, the clinical application of oseltamivir (OTV) is limited by the appearance of drug-resistant viruses. Due to their low toxicity and excellent activity, the antiviral capabilities of selenium nanoparticles (SeNPs) has attracted increasing attention in recent years. To overcome the limitation of drug resistance, the use of modified NPs with biologics to explore novel anti-influenza drugs is developing rapidly. In this study, OTV surface-modified SeNPs with superior antiviral properties and restriction on drug resistance were synthesized. OTV decoration of SeNPs (Se@OTV) obviously inhibited H1N1 infection and had less toxicity. Se@OTV interfered with the H1N1 influenza virus to host cells through inhibiting the activity of hemagglutinin and neuraminidase. The mechanism was that Se@OTV was able to prevent H1N1 from infecting MDCK cells and block chromatin condensation and DNA fragmentation. Furthermore, Se@OTV inhibited the generation of reactive oxygen species and activation of p53 phosphorylation and Akt. These results demonstrate that Se@OTV is a promising efficient antiviral pharmaceutical for H1N1.
Collapse
Affiliation(s)
- Yinghua Li
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University
| | - Zhengfang Lin
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University
| | - Min Guo
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University
| | - Yu Xia
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University
| | - Mingqi Zhao
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University
| | - Changbing Wang
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University
| | - Tiantian Xu
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, People’s Republic of China
| | - Bing Zhu
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University
| |
Collapse
|
60
|
Zhu H, Zhou B, Chan L, Du Y, Chen T. Transferrin-functionalized nanographene oxide for delivery of platinum complexes to enhance cancer-cell selectivity and apoptosis-inducing efficacy. Int J Nanomedicine 2017; 12:5023-5038. [PMID: 28761342 PMCID: PMC5516881 DOI: 10.2147/ijn.s139207] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rational design and construction of delivery nanosystems for anticancer metal complexes is a crucial strategy to improve solubility under physiological conditions and permeability and retention behavior in tumor cells. Therefore, in this study, we designed and synthesize a transferrin (Tf)-conjugated nanographene oxide (NGO) nanosystem as a cancer-targeted nanocarrier of Pt complexes (Tf-NGO@Pt). This nanodelivery system exhibited good solubility under physiological conditions. Moreover, Tf-NGO@Pt showed higher anticancer efficacy against MCF human breast cancer cells than the free Pt complex, and effectively inhibited cancer-cell migration and invasion, with involvement of reactive oxygen species overproduction. In addition, nanolization also enhanced the penetration ability and inhibitory effect of the Pt complex toward MCF7 breast cancer-cell tumor spheroids. The enhancement of anticancer efficacy was positively correlated with increased cellular uptake and cellular drug retention. This study provides a new strategy to facilitate the future application of metal complexes in cancer therapy.
Collapse
Affiliation(s)
- Hai Zhu
- Department of Internal Medicine and Orthopedics, Guangdong Provincial Hospital of Traditional Chinese Medicine
| | - Binwei Zhou
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Leung Chan
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Yanxin Du
- Department of Internal Medicine and Orthopedics, Guangdong Provincial Hospital of Traditional Chinese Medicine
| | - Tianfeng Chen
- Department of Internal Medicine and Orthopedics, Guangdong Provincial Hospital of Traditional Chinese Medicine
| |
Collapse
|
61
|
Bai K, Hong B, He J, Hong Z, Tan R. Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres. Int J Nanomedicine 2017; 12:4527-4539. [PMID: 28684913 PMCID: PMC5485894 DOI: 10.2147/ijn.s129958] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Selenium nanoparticles (SeNPs), as a special form of selenium (Se) supplement, have attracted worldwide attention due to their favorable properties and unique bioactivities. Herein, an eco-friendly and economic way to prepare stable SeNPs is introduced. SeNPs were synthesized in aqueous chitosan (CTS) and then embedded into CTS microspheres by spray-drying, forming selenium nanoparticles-loaded chitosan microspheres (SeNPs-M). The physicochemical properties including morphology, elemental state, size distribution and surface potential were investigated. Institute of Cancer Research mice were used as model animal to evaluate the bioactivities of SeNPs-M. Trigonal-phase SeNPs of ~35 nm were synthesized, and SeNPs-M physically embedding those SeNPs were successfully prepared. Amazingly, acute toxicity test indicated that SeNPs-M were much safer than selenite in terms of Se dose, with a LD50 of around 18-fold of that of selenite. In addition, SeNPs-M possessed powerful antioxidant activities, as evidenced by a dramatic increase of both Se retention and the levels of glutathione peroxidase, superoxide dismutase and catalase. The design of SeNPs-M can offer a new way for further development of SeNPs with a higher efficacy and better biosafety. Thus, SeNPs-M may be a potential candidate for further evaluation as an Se supplement with antioxidant properties and be used against Se deficiency in animals and human beings.
Collapse
Affiliation(s)
- Kaikai Bai
- Third Institute of Oceanography.,Engineering Research Center of Marine Biological Resource, Comprehensive Utilization, State Oceanic Administration, Xiamen, People's Republic of China
| | - Bihong Hong
- Third Institute of Oceanography.,Engineering Research Center of Marine Biological Resource, Comprehensive Utilization, State Oceanic Administration, Xiamen, People's Republic of China
| | - Jianlin He
- Third Institute of Oceanography.,Engineering Research Center of Marine Biological Resource, Comprehensive Utilization, State Oceanic Administration, Xiamen, People's Republic of China
| | - Zhuan Hong
- Third Institute of Oceanography.,Engineering Research Center of Marine Biological Resource, Comprehensive Utilization, State Oceanic Administration, Xiamen, People's Republic of China
| | - Ran Tan
- Third Institute of Oceanography.,Engineering Research Center of Marine Biological Resource, Comprehensive Utilization, State Oceanic Administration, Xiamen, People's Republic of China
| |
Collapse
|
62
|
Zhu C, Zhang S, Song C, Zhang Y, Ling Q, Hoffmann PR, Li J, Chen T, Zheng W, Huang Z. Selenium nanoparticles decorated with Ulva lactuca polysaccharide potentially attenuate colitis by inhibiting NF-κB mediated hyper inflammation. J Nanobiotechnology 2017; 15:20. [PMID: 28270147 PMCID: PMC5341357 DOI: 10.1186/s12951-017-0252-y] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/22/2017] [Indexed: 12/20/2022] Open
Abstract
Background Selenium (Se) is an essential micronutrient trace element and an established nutritional antioxidant. Low Se status exacerbates inflammatory bowel diseases progression, which involves hyper inflammation in the digestive tract. Se nanoparticles (SeNPs) exhibit anti-inflammatory activity accompanied by low toxicity, especially when decorated with natural biological compounds. Herein, we explored the beneficial effects of SeNPs decorated with Ulva lactuca polysaccharide (ULP) in mice subjected to the acute colitis model. Results We constructed SeNPs coated with ULP (ULP-SeNPs) in average diameter ~130 nm and demonstrated their stability and homogeneity. Supplementation with ULP-SeNPs (0.8 ppm Se) resulted in a significant protective effect on DSS-induced acute colitis in mice including mitigation of body weight loss, and colonic inflammatory damage. ULP-SeNPs ameliorated macrophage infiltration as evidenced by decreased CD68 levels in colon tissue sections. The anti-inflammatory effects of ULP-SeNPs were found to involve modulation of cytokines including IL-6 and TNF-α. Mechanistically, ULP-SeNPs inhibited the activation of macrophages by suppressing the nuclear translocation of NF-κB, which drives the transcription of these pro-inflammatory cytokines. Conclusions ULP-SeNPs supplementation may offer therapeutic potential for reducing the symptoms of acute colitis through its anti-inflammatory actions. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0252-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chenghui Zhu
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China.,College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Shuimei Zhang
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Chengwei Song
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Yibo Zhang
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Qinjie Ling
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Peter R Hoffmann
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China.,Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Jun Li
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Tianfeng Chen
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China.,College of Chemistry and Material Science, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Wenjie Zheng
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China. .,College of Chemistry and Material Science, Jinan University, Guangzhou, 510632, Guangdong Province, China.
| | - Zhi Huang
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China.
| |
Collapse
|
63
|
Tan Y, Yao R, Wang R, Wang D, Wang G, Zheng S. Reduction of selenite to Se(0) nanoparticles by filamentous bacterium Streptomyces sp. ES2-5 isolated from a selenium mining soil. Microb Cell Fact 2016; 15:157. [PMID: 27630128 PMCID: PMC5024524 DOI: 10.1186/s12934-016-0554-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 09/07/2016] [Indexed: 11/10/2022] Open
Abstract
Background Selenium (Se) is an essential trace element in living systems. Microorganisms play a pivotal role in the selenium cycle both in life and in environment. Different bacterial strains are able to reduce Se(IV) (selenite) and (or) Se(VI) (selenate) to less toxic Se(0) with the formation of Se nanoparticles (SeNPs). The biogenic SeNPs have exhibited promising application prospects in medicine, biosensors and environmental remediation. These microorganisms might be explored as potential biofactories for synthesis of metal(loid) nanoparticles. Results A strictly aerobic, branched actinomycete strain, ES2-5, was isolated from a selenium mining soil in southwest China, identified as Streptomyces sp. based on 16S rRNA gene sequence, physiologic and morphologic characteristics. Both SEM and TEM-EDX analysis showed that Se(IV) was reduced to Se(0) with the formation of SeNPs as a linear chain in the cytoplasm. The sizes of the SeNPs were in the range of 50–500 nm. The cellular concentration of glutathione per biomass decreased along with Se(IV) reduction, and no SeNPs were observed in different sub-cellular fractions in presence of NADPH or NADH as an electron donor, indicating glutathione is most possibly involved in vivo Se(IV) reduction. Strain ES2-5 was resistant to some heavy metal(loid)s such as Se(IV), Cr(VI) and Zn(II) with minimal inhibitory concentration of 50, 80 and 1.5 mM, respectively. Conclusions The reducing mechanism of Se(IV) to elemental SeNPs under aerobic condition was investigated in a filamentous strain of Streptomyces. Se(IV) reduction is mediated by glutathione and then SeNPs synthesis happens inside of the cells. The SeNPs are released via hypha lysis or fragmentation. It would be very useful in Se bioremediation if Streptomyces sp. ES2-5 is applied to the contaminated site because of its ability of spore reproduction, Se(IV) reduction, and adaptation in soil.
Collapse
Affiliation(s)
- Yuanqing Tan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Rong Yao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Rui Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Dan Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
64
|
Li Y, Lin Z, Zhao M, Xu T, Wang C, Xia H, Wang H, Zhu B. Multifunctional selenium nanoparticles as carriers of HSP70 siRNA to induce apoptosis of HepG2 cells. Int J Nanomedicine 2016; 11:3065-76. [PMID: 27462151 PMCID: PMC4939997 DOI: 10.2147/ijn.s109822] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Small interfering RNA (siRNA) as a new therapeutic modality holds promise for cancer treatment, but it is unable to cross cell membrane. To overcome this limitation, nanotechnology has been proposed for mediation of siRNA transfection. Selenium (Se) is a vital dietary trace element for mammalian life and plays an essential role in the growth and functioning of humans. As a novel Se species, Se nanoparticles have attracted more and more attention for their higher anticancer efficacy. In the present study, siRNAs with polyethylenimine (PEI)-modified Se nanoparticles (Se@PEI@siRNA) have been demonstrated to enhance the apoptosis of HepG2 cells. Heat shock protein (HSP)-70 is overexpressed in many types of human cancer and plays a significant role in several biological processes including the regulation of apoptosis. The objective of this study was to silence inducible HSP70 and promote the apoptosis of Se-induced HepG2 cells. Se@PEI@siRNA were successfully prepared and characterized by various microscopic methods. Se@PEI@siRNA showed satisfactory size distribution, high stability, and selectivity between cancer and normal cells. The cytotoxicity of Se@PEI@siRNA was lower for normal cells than tumor cells, indicating that these compounds may have fewer side effects. The gene-silencing efficiency of Se@PEI@siRNA was significantly much higher than Lipofectamine 2000@siRNA and resulted in a significantly reduced HSP70 mRNA and protein expression in cancer cells. When the expression of HSP70 was diminished, the function of cell protection was also removed and cancer cells became more sensitive to Se@PEI@siRNA. Moreover, Se@PEI@siRNA exhibited enhanced cytotoxic effects on cancer cells and triggered intracellular reactive oxygen species, and the signaling pathways of p53 and AKT were activated to advance cell apoptosis. Taken together, this study provides a strategy for the design of an anticancer nanosystem as a carrier of HSP70 siRNA to achieve synergistic cancer therapy.
Collapse
Affiliation(s)
- Yinghua Li
- Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong
| | - Zhengfang Lin
- Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong
| | - Mingqi Zhao
- Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong
| | - Tiantian Xu
- Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong
| | - Changbing Wang
- Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong
| | - Huimin Xia
- Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong
| | - Hanzhong Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Bing Zhu
- Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong
| |
Collapse
|
65
|
Ruthenium Complexes Induce HepG2 Human Hepatocellular Carcinoma Cell Apoptosis and Inhibit Cell Migration and Invasion through Regulation of the Nrf2 Pathway. Int J Mol Sci 2016; 17:ijms17050775. [PMID: 27213353 PMCID: PMC4881594 DOI: 10.3390/ijms17050775] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/28/2016] [Accepted: 05/05/2016] [Indexed: 11/17/2022] Open
Abstract
Ruthenium (Ru) complexes are currently the focus of substantial interest because of their potential application as chemotherapeutic agents with broad anticancer activities. This study investigated the in vitro and in vivo anticancer activities and mechanisms of two Ru complexes—2,3,7,8,12,13,17,18-Octaethyl-21H,23H-porphine Ru(II) carbonyl (Ru1) and 5,10,15,20-Tetraphenyl-21H,23H-porphine Ru(II) carbonyl (Ru2)—against human hepatocellular carcinoma (HCC) cells. These Ru complexes effectively inhibited the cellular growth of three human hepatocellular carcinoma (HCC) cells, with IC50 values ranging from 2.7–7.3 μM. In contrast, the complexes exhibited lower toxicity towards L02 human liver normal cells with IC50 values of 20.4 and 24.8 μM, respectively. Moreover, Ru2 significantly inhibited HepG2 cell migration and invasion, and these effects were dose-dependent. The mechanistic studies demonstrated that Ru2 induced HCC cell apoptosis, as evidenced by DNA fragmentation and nuclear condensation, which was predominately triggered via caspase family member activation. Furthermore, HCC cell treatment significantly decreased the expression levels of Nrf2 and its downstream effectors, NAD(P)H: quinone oxidoreductase 1 (NQO1) and heme oxygenase 1 (HO1). Ru2 also exhibited potent in vivo anticancer efficacy in a tumor-bearing nude mouse model, as demonstrated by a time- and dose-dependent inhibition on tumor growth. The results demonstrate the therapeutic potential of Ru complexes against HCC via Nrf2 pathway regulation.
Collapse
|
66
|
Álvarez-González I, Islas-Islas V, Chamorro-Cevallos G, Barrios JP, Paniagua N, Vásquez-Garzón VR, Villa-Treviño S, Osiris-Madrigal-Santillán, Morales-González JA, Madrigal-Bujaidar E. Inhibitory Effect of Spirulina maxima on the Azoxymethane-induced Aberrant Colon Crypts and Oxidative Damage in Mice. Pharmacogn Mag 2015; 11:S619-S624. [PMID: 27013804 PMCID: PMC4787098 DOI: 10.4103/0973-1296.172973] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spirulina maxima (Sm) is a cyanobacterium well known because of its high nutritive value, as well as its anti-inflammatory, anti-hyperlipidemic, antioxidant, and anti-genotoxic activities. OBJECTIVE To determine the capacity of Sm to inhibit the induction of aberrant colon crypts (AC), as well as the level of lipid peroxidation and DNA oxidative damage in mice treated with azoxymethane (AOM). MATERIALS AND METHODS Sm (100, 400, and 800 mg/kg) was daily administered to animals by the oral route during 4 weeks, while AOM (10 mg/kg) was intraperitoneally injected to mice twice in weeks 2 and 3 of the assay. We also included a control group of mice orally administered with distilled water along the assay, as well as other group orally administered with the high dose of Sm. RESULTS A significant decrease in the number of AC with the three tested doses of Sm, with a mean protection of 51.6% respect to the damage induced by AOM. Also, with the three doses of the alga, we found a reduction in the level of lipoperoxidation, as well as in regard to the percentage of the DNA adduct 8-hydroxy-2'- deoxyguanosine. CONCLUSION Sm possesses anti-precarcinogenic potential in vivo, as well as capacity to reduce the oxidative damage induced by AOM. SUMMARY Azoxymethane (AOM) induced a high number of colon aberrant crypts in mouse. It also increased the level of peroxidation and of DNA oxidation in the same organ.Spirulina maxima significantly reduced the number of AOM-induced colon aberrant crypts in mouse. It also reduced the AOM-induced lipid and DNA oxidation in mouse.The results suggest a chemopreventive potential for the tested algae.
Collapse
Affiliation(s)
- Isela Álvarez-González
- Department of Morphology, Genetics Laboratory, National School of Biological Sciences, National Polytechnic Institute, Av. Wilfredo Massieu s/n. Lindavista, D. F. 07738, México
| | - Víctor Islas-Islas
- Department of Morphology, Genetics Laboratory, National School of Biological Sciences, National Polytechnic Institute, Av. Wilfredo Massieu s/n. Lindavista, D. F. 07738, México
| | - Germán Chamorro-Cevallos
- Department of Pharmacy, Preclinical Toxicology, National School of Biological Sciences, National Polytechnic Institute, Av. Wilfredo Massieu s/n. Lindavista, D. F. 07738, México
| | - Juan Pablo Barrios
- Department of Pharmacy, Preclinical Toxicology, National School of Biological Sciences, National Polytechnic Institute, Av. Wilfredo Massieu s/n. Lindavista, D. F. 07738, México
| | - Norma Paniagua
- Department of Physiology, National School of Biological Sciences, National Polytechnic Institute, Av. Wilfredo Massieu s/n. Lindavista, D. F. 07738, México
| | - Verónica R. Vásquez-Garzón
- Department of Cellular Biology, Center for Research and Advanced Studies, National Polytechnic Institute, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, D.F. 07360, México
- Cathedra-CONACYT, Faculty of Medicine and Surgery, Autonomous University “Benito Juárez” of Oaxaca, Av. Universidad s/n, Exhacienda de Cinco Señores, Oaxaca de Juárez, 68120, México
| | - Saúl Villa-Treviño
- Department of Cellular Biology, Center for Research and Advanced Studies, National Polytechnic Institute, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, D.F. 07360, México
| | - Osiris-Madrigal-Santillán
- Department of Conservation Medicine, Superior School of Medicine, National Polytechnic Institute, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, D. F. 11340, México
| | - José Antonio Morales-González
- Department of Conservation Medicine, Superior School of Medicine, National Polytechnic Institute, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, D. F. 11340, México
| | - Eduardo Madrigal-Bujaidar
- Department of Morphology, Genetics Laboratory, National School of Biological Sciences, National Polytechnic Institute, Av. Wilfredo Massieu s/n. Lindavista, D. F. 07738, México
| |
Collapse
|
67
|
Ahmad MS, Yasser MM, Sholkamy EN, Ali AM, Mehanni MM. Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1. Int J Nanomedicine 2015; 10:3389-401. [PMID: 26005349 PMCID: PMC4428361 DOI: 10.2147/ijn.s82707] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Selenium is an important component of human diet and a number of studies have declared its chemopreventive and therapeutic properties against cancer. However, very limited studies have been conducted about the properties of selenium nanostructured materials in comparison to other well-studied selenospecies. Here, we have shown that the anticancer property of biostabilized selenium nanorods (SeNrs) synthesized by applying a novel strain Ess_amA-1 of Streptomyces bikiniensis. The strain was grown aerobically with selenium dioxide and produced stable SeNrs with average particle size of 17 nm. The optical, structural, morphological, elemental, and functional characterizations of the SeNrs were carried out using techniques such as UV-vis spectrophotometry, transmission electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectrophotometry, respectively. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay revealed that the biosynthesized SeNrs induces cell death of Hep-G2 and MCF-7 human cancer cells. The lethal dose (LD50%) of SeNrs on Hep-G2 and MCF-7 cells was recorded at 75.96 μg/mL and 61.86 μg/mL, respectively. It can be concluded that S. bikiniensis strain Ess_amA-1 could be used as renewable bioresources of biosynthesis of anticancer SeNrs. A hypothetical mechanism for anticancer activity of SeNrs is also proposed.
Collapse
Affiliation(s)
- Maged Sayed Ahmad
- Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef, Egypt
| | - Manal Mohamed Yasser
- Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef, Egypt
| | - Essam Nageh Sholkamy
- Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef, Egypt
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali Mohamed Ali
- Department of Botany and Microbiology, College of Science, Minia University, El-Minia, Egypt
- Department of Biological Sciences, College of Science, King Faisal University, Saudi Arabia
| | - Magda Mohamed Mehanni
- Department of Botany and Microbiology, College of Science, Minia University, El-Minia, Egypt
| |
Collapse
|
68
|
Nasrolahi Shirazi A, Tiwari RK, Oh D, Sullivan B, Kumar A, Beni Y, Parang K. Cyclic peptide-selenium nanoparticles as drug transporters. Mol Pharm 2014; 11:3631-3641. [PMID: 25184366 PMCID: PMC4186687 DOI: 10.1021/mp500364a] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/03/2014] [Accepted: 09/03/2014] [Indexed: 02/07/2023]
Abstract
A cyclic peptide composed of five tryptophan, four arginine, and one cysteine [W5R4C] was synthesized. The peptide was evaluated for generating cyclic peptide-capped selenium nanoparticles (CP-SeNPs) in situ. A physical mixing of the cyclic peptide with SeO3(-2) solution in water generated [W5R4C]-SeNPs via the combination of reducing and capping properties of amino acids in the peptide structure. Transmission electron microscopy (TEM) images showed that [W5R4C]-SeNPs were in the size range of 110-150 nm. Flow cytometry data revealed that a fluorescence-labeled phosphopeptide (F'-PEpYLGLD, where F' = fluorescein) and an anticancer drug (F'-dasatinib) exhibited approximately 25- and 9-times higher cellular uptake in the presence of [W5R4C]-SeNPs than those of F'-PEpYLGLD and dasatinib alone in human leukemia (CCRF-CEM) cells after 2 h of incubation, respectively. Confocal microscopy also exhibited higher cellular delivery of F'-PEpYLGLD and F'-dasatinib in the presence of [W5R4C]-SeNPs compared to the parent fluorescence-labeled drug alone in human ovarian adenocarcinoma (SK-OV-3) cells after 2 h of incubation at 37 °C. The antiproliferative activities of several anticancer drugs doxorubicin, gemcitabine, clofarabine, etoposide, camptothecin, irinotecan, epirubicin, fludarabine, dasatinib, and paclitaxel were improved in the presence of [W5R4C]-SeNPs (50 μM) by 38%, 49%, 36%, 36%, 31%, 30%, 30%, 28%, 24%, and 17%, respectively, after 48 h incubation in SK-OV-3 cells. The results indicate that CP-SeNPs can be potentially used as nanosized delivery tools for negatively charged biomolecules and anticancer drugs.
Collapse
Affiliation(s)
- Amir Nasrolahi Shirazi
- Chao
Family Comprehensice Cancer Center, School of Medicine, University of California, Irvine, Shanbrom Hall, 101 The City Drive South, Orange, California 92868, United States
- Chapman
University School of Pharmacy, Harry and Diane Rinker Health Science
Campus, Irvine, California 92618, United States
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Rakesh K. Tiwari
- Chao
Family Comprehensice Cancer Center, School of Medicine, University of California, Irvine, Shanbrom Hall, 101 The City Drive South, Orange, California 92868, United States
- Chapman
University School of Pharmacy, Harry and Diane Rinker Health Science
Campus, Irvine, California 92618, United States
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Donghoon Oh
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Brian Sullivan
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Anil Kumar
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Yousef
A. Beni
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Keykavous Parang
- Chao
Family Comprehensice Cancer Center, School of Medicine, University of California, Irvine, Shanbrom Hall, 101 The City Drive South, Orange, California 92868, United States
- Chapman
University School of Pharmacy, Harry and Diane Rinker Health Science
Campus, Irvine, California 92618, United States
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
69
|
Joseph MM, Aravind S, George SK, Pillai RK, Mini S, Sreelekha T. Co-encapsulation of Doxorubicin with galactoxyloglucan nanoparticles for intracellular tumor-targeted delivery in murine ascites and solid tumors. Transl Oncol 2014; 7:525-36. [PMID: 25389448 PMCID: PMC4225659 DOI: 10.1016/j.tranon.2014.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 07/14/2014] [Accepted: 07/18/2014] [Indexed: 12/22/2022] Open
Abstract
Doxorubicin (Dox) treatment is limited by severe toxicity and frequent episodes of treatment failure. To minimize adverse events and improve drug delivery efficiently and specifically in cancer cells, encapsulation of Dox with naturally obtained galactoxyloglucan polysaccharide (PST001), isolated from Tamarindus indica was attempted. Thus formed PST-Dox nanoparticles induced apoptosis and exhibited significant cytotoxicity in murine ascites cell lines, Dalton's lymphoma ascites and Ehrlich's ascites carcinoma. The mechanism contributing to the augmented cytotoxicity of nanoconjugates at lower doses was validated by measuring the Dox intracellular uptake in human colon, leukemic and breast cancer cell lines. PST-Dox nanoparticles showed rapid internalization of Dox into cancer cells within a short period of incubation. Further, in vivo efficacy was tested in comparison to the parent counterparts - PST001 and Dox, in ascites and solid tumor syngraft mice models. Treatment of ascites tumors with PST-Dox nanoparticles significantly reduced the tumor volume, viable tumor cell count, and increased survival and percentage life span in the early, established and prophylactic phases of the disease. Administration of nanoparticles through intratumoral route delivered more robust antitumor response than the intraperitoneal route in solid malignancies. Thus, the results indicate that PST-Dox nanoparticles have greater potential compared to the Dox as targeted drug delivery nanocarriers for loco regional cancer chemotherapy applications.
Collapse
Affiliation(s)
- Manu M. Joseph
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre, Trivandrum, Kerala, India
| | - S.R. Aravind
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre, Trivandrum, Kerala, India
| | - Suraj K. George
- Department of Hematopathology, UT MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | | | - S. Mini
- Department of Biochemistry, University of Kerala, Trivandrum, Kerala, India
| | - T.T. Sreelekha
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre, Trivandrum, Kerala, India
| |
Collapse
|
70
|
Abstract
With the development of many nanomedicines designed for tumor therapy, the diverse abilities of cerium oxide nanoparticles (CONPs) have encouraged researchers to pursue CONPs as a therapeutic agent to treat cancer. Research data have shown CONPs to be toxic to cancer cells, to inhibit invasion, and to sensitize cancer cells to radiation therapy and chemotherapy. CONPs also display minimal toxicity to normal tissues and provide protection from various forms of reactive oxygen species generation. Differential cytotoxicity is important for anticancer drugs to distinguish effectively between tumor cells and normal cells. The antioxidant capabilities of CONPs, which enable cancer therapy protection, have also resulted in the exploration of these particles as a potential anticancer treatment. Taken together, CONPs might be a potential nanomedicine for cancer therapy and this review highlights the current research into CONPs as a novel therapeutic for the treatment of cancer.
Collapse
Affiliation(s)
- Ying Gao
- Department of Radiotherapy Oncology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Kan Chen
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Jin-Lu Ma
- Department of Radiotherapy Oncology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Fei Gao
- Department of Neurology, First Affiliated Hospital of Xi'an Medical University, Xi'an, People's Republic of China
| |
Collapse
|
71
|
Soumya RS, Vineetha VP, Reshma PL, Raghu KG. Preparation and characterization of selenium incorporated guar gum nanoparticle and its interaction with H9c2 cells. PLoS One 2013; 8:e74411. [PMID: 24098647 PMCID: PMC3787042 DOI: 10.1371/journal.pone.0074411] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/01/2013] [Indexed: 11/18/2022] Open
Abstract
This study deals with the preparation and characterization of selenium incorporated guar gum nanoparticle (SGG), and its effect on H9c2 cardiomyoblast. Herein, nanoprecipitation techniques had been employed for the preparation of SGG nanoparticle. The prepared nanoparticle had been subjected to various types of analytical techniques like transmission electron microscopy (TEM), X-ray diffraction (XRD) and particle size analysis to confirm the characteristics of nanoparticle as well as for selenium incorporation. Physical characterization of nanoparticle showed that the size of nanoparticles increase upto ∼69–173 nm upon selenium incorporation from ∼41–132 nm. Then the prepared nanoparticles were evaluated for its effect on H9c2 cells. In this regard, the effect of nanoparticle on various vital parameters of H9c2 cells was studied. Parameters like cell viability, uptake of selenium incorporated guar gum nanoparticle by the cells, effect of SGG on DNA integrity, apoptosis, reactive oxygen species generation, alteration in transmembrane potential of mitochondria and cytoskeletal integrity had been investigated. Viability results showed that up to 25 nM of SGG was safe (10.31%) but beyond that it induces cytotoxicity. Cellular uptake of selenium showed that cell permeability for SGG is significantly high compared to normal selenium (7.2 nM of selenium for 25 nM SGG compared with 5.2 nM selenium for 25 nM sodium selenite). There was no apoptosis with SGG and also it protects DNA from hydroxyl radical induced breakage. Likewise no adverse effect on mitochondria and cytoskeleton was observed for 25 nM of SGG. Overall results reveal that SGG is highly suitable for biomedical research application.
Collapse
Affiliation(s)
- Rema Sreenivasan Soumya
- Agroprocessing and Natural Products Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India
| | - Vadavanath Prabhakaran Vineetha
- Agroprocessing and Natural Products Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India
| | - Premachandran Latha Reshma
- Agroprocessing and Natural Products Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India
| | - Kozhiparambil Gopalan Raghu
- Agroprocessing and Natural Products Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India
- * E-mail:
| |
Collapse
|
72
|
Zhang Y, Chen T. Targeting nanomaterials: future drugs for cancer chemotherapy. Int J Nanomedicine 2012; 7:5283-4; author reply 5285-6. [PMID: 23091379 PMCID: PMC3474463 DOI: 10.2147/ijn.s36970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
| | - Tianfeng Chen
- Correspondence: Tianfeng Chen, 601, Huangpu Road, Guangzhou 510632, China, Tel +86 20 8522 5962, Fax +86 20 8522 1263, Email
| |
Collapse
|
73
|
Estevanato LLC, Da Silva JR, Falqueiro AM, Mosiniewicz-Szablewska E, Suchocki P, Tedesco AC, Morais PC, Lacava ZGM. Co-nanoencapsulation of magnetic nanoparticles and selol for breast tumor treatment: in vitro evaluation of cytotoxicity and magnetohyperthermia efficacy. Int J Nanomedicine 2012; 7:5287-99. [PMID: 23055734 PMCID: PMC3468278 DOI: 10.2147/ijn.s35279] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Antitumor activities have been described in selol, a hydrophobic mixture of molecules containing selenium in their structure, and also in maghemite magnetic nanoparticles (MNPs). Both selol and MNPs were co-encapsulated within poly(lactic-co-glycolic acid) (PLGA) nanocapsules for therapeutic purposes. The PLGA-nanocapsules loaded with MNPs and selol were labeled MSE-NC and characterized by transmission and scanning electron microscopy, electrophoretic mobility, photon correlation spectroscopy, presenting a monodisperse profile, and positive charge. The antitumor effect of MSE-NC was evaluated using normal (MCF-10A) and neoplastic (4T1 and MCF-7) breast cell lines. Nanocapsules containing only MNPs or selol were used as control. MTT assay showed that the cytotoxicity induced by MSE-NC was dose and time dependent. Normal cells were less affected than tumor cells. Cell death occurred mainly by apoptosis. Further exposure of MSE-NC treated neoplastic breast cells to an alternating magnetic field increased the antitumor effect of MSE-NC. It was concluded that selol-loaded magnetic PLGA-nanocapsules (MSE-NC) represent an effective magnetic material platform to promote magnetohyperthermia and thus a potential system for antitumor therapy.
Collapse
|
74
|
Zheng S, Li X, Zhang Y, Xie Q, Wong YS, Zheng W, Chen T. PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction. Int J Nanomedicine 2012; 7:3939-49. [PMID: 22915845 PMCID: PMC3418171 DOI: 10.2147/ijn.s30940] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Indexed: 12/17/2022] Open
Abstract
Gray selenium (Se) is one of the most widely used Se sources with very limited biocompatibility and bioactivity. In the present study, a simple method for the preparation of ultrasmall selenium nanoparticles (SeNPs) through direct nanolization of gray selenium by polyethylene glycol (PEG) was demonstrated. Monodisperse and homogeneous PEG-SeNPs with ultrasmall diameters were successfully prepared under optimized conditions. The products were characterized using various microscopic and spectroscopic methods, and the results suggest that the amphoteric properties of PEG and the coordination between oxygen and selenium atoms contributed to the formation of ultrasmall nanoparticles. PEG-SeNPs exhibited stronger growth inhibition on drug-resistant hepatocellular carcinoma (R-HepG2) cells than on normal HepG2 cells. Dose-dependent apoptosis was induced by PEG-SeNPs in R-HepG2 cells, as evidenced by an increase in the sub-G1 cell population. Further investigation on the underlying molecular mechanisms revealed that depletion of mitochondrial membrane potential and generation of superoxide anions contributed to PEG-SeNPs-induced apoptotic cell death in R-HepG2 cells. Our results suggest that PEG-SeNPs may be a candidate for further evaluation as a chemotherapeutic agent for drug-resistant liver cancer, and the strategy to use PEG200 as a surface decorator could be a highly efficient way to enhance the anticancer efficacy of nanomaterials.
Collapse
Affiliation(s)
- Shanyuan Zheng
- Department of Chemistry, Jinan University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
75
|
Wang Y, Zi XY, Su J, Zhang HX, Zhang XR, Zhu HY, Li JX, Yin M, Yang F, Hu YP. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells. Int J Nanomedicine 2012; 7:2641-52. [PMID: 22679374 PMCID: PMC3368515 DOI: 10.2147/ijn.s31133] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy.
Collapse
Affiliation(s)
- Ye Wang
- Department of Cell Biology, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|