51
|
Abdelrehim A, Shaltiel L, Zhang L, Barenholz Y, High S, Harris LK. The use of tail-anchored protein chimeras to enhance liposomal cargo delivery. PLoS One 2019; 14:e0212701. [PMID: 30794671 PMCID: PMC6386398 DOI: 10.1371/journal.pone.0212701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/07/2019] [Indexed: 11/18/2022] Open
Abstract
Background Liposomes are employed as drug delivery vehicles offering a beneficial pharmacokinetic/distribution mechanism for in vivo therapeutics. Therapeutic liposomes can be designed to target specific cell types through the display of epitope-specific targeting peptides on their surface. The majority of peptides are currently attached by chemical modification of lipid constituents. Here we investigate an alternative and novel method of decorating liposomes with targeting ligand, using remotely and spontaneously inserting chimeric tail-anchored membrane (TA) proteins to drug loaded liposomes. Methods and results An artificial TA protein chimera containing the transmembrane domain from the spontaneously inserting TA protein cytochrome b5 (Cytb5) provided a robust membrane tether for the incorporation of three different targeting moieties into preformed liposomes. The moieties investigated were the transactivator of transcription (TAT) peptide, the EGF-receptor binding sequence GE11 and the placental and tumour homing ligand CCGKRK. In all cases, TA protein insertion neither significantly altered the size of the liposomes nor reduced drug loading. The efficacy of this novel targeted delivery system was investigated using two human cell lines, HeLa M and BeWo. Short term incubation with one ligand-modified TA chimera, incorporating the TAT peptide, significantly enhanced liposomal delivery of the encapsulated carboxyfluorescein reporter. Conclusion The Cytb5 TA was successfully employed as a membrane anchor for the incorporation of the desired peptide ligands into a liposomal drug delivery system, with minimal loss of cargo during insertion. This approach therefore provides a viable alternative to chemical conjugation and its potential to accommodate a wider range of targeting ligands may provide an opportunity for enhancing drug delivery.
Collapse
Affiliation(s)
- Abbi Abdelrehim
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | | - Ling Zhang
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Yechezkel Barenholz
- Lipocure Ltd., Jerusalem, Israel
- Membrane and Liposome Research Lab, Hadassah Medical School of the Hebrew University, Jerusalem, Israel
| | - Stephen High
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Lynda K. Harris
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, United Kingdom
- St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
52
|
Lieser RM, Chen W, Sullivan MO. Controlled Epidermal Growth Factor Receptor Ligand Display on Cancer Suicide Enzymes via Unnatural Amino Acid Engineering for Enhanced Intracellular Delivery in Breast Cancer Cells. Bioconjug Chem 2019; 30:432-442. [PMID: 30615416 DOI: 10.1021/acs.bioconjchem.8b00783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Proteins are ideal candidates for disease treatment because of their high specificity and potency. Despite this potential, delivery of proteins remains a significant challenge due to the intrinsic size, charge, and stability of proteins. Attempts to overcome these challenges have most commonly relied on direct conjugation of polymers and peptides to proteins via reactive groups on naturally occurring residues. While such approaches have shown some success, they allow limited control of the spacing and number of moieties coupled to proteins, which can hinder bioactivity and delivery capabilities of the therapeutic. Here, we describe a strategy to site-specifically conjugate delivery moieties to therapeutic proteins through unnatural amino acid (UAA) incorporation, in order to explore the effect of epidermal growth factor receptor (EGFR)-targeted ligand valency and spacing on internalization of proteins in EGFR-overexpressing inflammatory breast cancer (IBC) cells. Our results demonstrate the ability to enhance targeted protein delivery by tuning a small number of EGFR ligands per protein and clustering these ligands to promote multivalent ligand-receptor interactions. Furthermore, the tailorability of this simple approach was demonstrated through IBC-targeted cell death via the delivery of yeast cytosine deaminase (yCD), a prodrug converting enzyme.
Collapse
Affiliation(s)
- Rachel M Lieser
- Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| |
Collapse
|
53
|
Designing heparan sulfate-based biocompatible polymers and their application for intracellular stimuli-sensitive drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:465-476. [DOI: 10.1016/j.msec.2018.09.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 08/04/2018] [Accepted: 09/20/2018] [Indexed: 01/20/2023]
|
54
|
Alhajj N, Chee CF, Wong TW, Rahman NA, Abu Kasim NH, Colombo P. Lung cancer: active therapeutic targeting and inhalational nanoproduct design. Expert Opin Drug Deliv 2018; 15:1223-1247. [DOI: 10.1080/17425247.2018.1547280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nasser Alhajj
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | - Chin Fei Chee
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | - Noorsaadah Abd Rahman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- Wellness Research Cluster, Institute of Research Management & Monitoring, University of Malaya, Kuala Lumpur, Malaysia
| | - Paolo Colombo
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| |
Collapse
|
55
|
Exploring pitfalls of 64Cu-labeled EGFR-targeting peptide GE11 as a potential PET tracer. Amino Acids 2018; 50:1415-1431. [PMID: 30039310 DOI: 10.1007/s00726-018-2616-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/09/2018] [Indexed: 12/29/2022]
Abstract
The epidermal growth factor receptor (EGFR) represents an important molecular target for both radiotracer-based diagnostic imaging and radionuclide therapy of various cancer entities. For the delivery of radionuclides to the tumor, peptides hold great potential as a transport vehicle. With respect to EGFR, the peptide YHWYGYTPQNVI (GE11) has been reported to bind the receptor with high specificity and affinity. In the present study, GE11 with β-alanine (β-Ala-GE11) was conjugated to the chelating agent p-SCN-Bn-NOTA and radiolabeled with 64Cu for the first radio pharmacological evaluation as a potential probe for positron emission tomography (PET)-based cancer imaging. For better water solubility, an ethylene glycol-based linker was introduced between the peptide's N terminus and the radionuclide chelator. The stability of the 64Cu-labeled peptide conjugate and its binding to EGFR-expressing tumor cells was investigated in vitro and in vivo, and then compared with the 64Cu-labeled EGFR-targeting antibody conjugate NOTA-cetuximab. The GE11 peptide conjugate [64Cu]Cu-NOTA-linker-β-Ala-GE11 ([64Cu]Cu-1) was stable in a buffer solution for at least 24 h but only 50% of the original compound was detected after 24 h of incubation in human serum. Stability could be improved by amidation of the peptide's C terminus (β-Ala-GE11-NH2 (2)). Binding assays with both conjugates, [64Cu]Cu-1 and [64Cu]Cu-2, using the EGFR-expressing tumor cell lines A431 and FaDu showed no specific binding. A pilot small animal PET investigation in FaDu tumor-bearing mice revealed only low tumor uptake (standard uptake value (SUV) < 0.2) for both conjugates. The best tumor-to-muscle ratio determined was 3.75 for [64Cu]Cu-1, at 1 h post injection. In conclusion, the GE11 conjugates in its present form are not suitable for further biological investigations, since they presumably form aggregates.
Collapse
|
56
|
Schuh RS, Poletto É, Fachel FNS, Matte U, Baldo G, Teixeira HF. Physicochemical properties of cationic nanoemulsions and liposomes obtained by microfluidization complexed with a single plasmid or along with an oligonucleotide: Implications for CRISPR/Cas technology. J Colloid Interface Sci 2018; 530:243-255. [PMID: 29982016 DOI: 10.1016/j.jcis.2018.06.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023]
Abstract
In this study, we investigated the effects of the association of a single plasmid or its co-complexation along with an oligonucleotide on the physicochemical properties of cationic nanoemulsions and liposomes intended for gene editing. Formulations composed of DOPE, DOTAP, DSPE-PEG (liposomes), MCT (nanoemulsions), and water were obtained by microfluidization. DSPE-PEG was found to play a crucial role on the size and polydispersity index of nanocarriers. Nucleic acids were complexated by adsorption at different charge ratios. No significant differences were noticed in the physicochemical properties of nanocarriers (i.e. droplet size, polydispersity index, or zeta potential) when a single plasmid or both plasmid and oligonucleotide were adsorbed to the formulations. Transmission electron microscopy photomicrographs suggested round nanostructures with the nucleic acids and DSPE-PEG enfolding the surface. Complexes at +4/-1 charge ratio protected nucleic acids against DNase I degradation. The oligonucleotide seemed to be released from the liposomal complexes, while nanoemulsions only released the plasmid after 24 and 48 h of incubation in DMEM supplemented or not. In vitro experiments demonstrated that complexes were highly tolerable to human fibroblasts, Hep-G2, and HEK-293 cells, demonstrating also an uptake ability of about 30%, 30%, and 90%, respectively, no matter what the formulation or the combination of nucleic acids used. Transfection efficiency of the formulations was around 25% in human fibroblasts, 32% in HEK-293, and 15% in Hep-G2 cells. The overall results demonstrated the behavior of liposomes and nanoemulsions complexed with a plasmid or a mixture of a plasmid and an oligonucleotide, and demonstrated that the association with one or two nucleic acids sequences of different length does not seem to interfere in the physicochemical characteristics of complexes or in the uptake capacity by three different types of cells.
Collapse
Affiliation(s)
- Roselena S Schuh
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Édina Poletto
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Flávia N S Fachel
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Ursula Matte
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Helder F Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|
57
|
Zhang L, Cui H. HAase-sensitive dual-targeting irinotecan liposomes enhance the therapeutic efficacy of lung cancer in animals. Nanotheranostics 2018; 2:280-294. [PMID: 29977740 PMCID: PMC6030771 DOI: 10.7150/ntno.25555] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/27/2018] [Indexed: 12/12/2022] Open
Abstract
Among all cancers, lung cancer is one of the most common and serious types of cancer. It is challenging for site-specific delivery of anticancer therapeutics to tumor cells. Herein, we developed a novel“smart” dual-targeting liposomal platform to respond to the highly expressed hyaluronidase (HAase) in the tumor microenvironment and improve tumor targeting and antitumor efficacy. Methods: In our design, the HA was used as a sensitive linker between a liposomal lipid and long chain PEG block to synthesize three functional conjugates in order to prepare“smart” liposomal platform modified with epidermal growth factor receptor (EGFR) antibody (GE11) and cell-penetrating peptide (TATp). Using irinotecan as a model therapeutic, evaluations were performed on the human lung adenocarcinoma A549 cells as well as the xenografted A549 cancer cells in nude mice. Results: The GE11/HA/TATp-irinotecan liposomes evidently increased the uptake of irinotecan and showed significant antitumor efficacy in the xenografted A549 cancer cells in nude mice by intravenous administration. The mechanisms were defined to be two aspects: GE11 exhibits high affinity for EGFR binding and the degradation of the HA by HAase results in the long-chain PEG removal and exposure of the previously hidden surface-attached TATp to enhance the target cell internalization. Conclusion: Our findings suggest that this functional liposomal platform may provide a novel strategy for treating lung cancers because of effective intracellular delivery.
Collapse
Affiliation(s)
- Liang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China.,Nanobiotechnology Research Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China.,Nanobiotechnology Research Center, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
58
|
Zhao Y, Liu W, Tian Y, Yang Z, Wang X, Zhang Y, Tang Y, Zhao S, Wang C, Liu Y, Sun J, Teng Z, Wang S, Lu G. Anti-EGFR Peptide-Conjugated Triangular Gold Nanoplates for Computed Tomography/Photoacoustic Imaging-Guided Photothermal Therapy of Non-Small Cell Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16992-17003. [PMID: 29722264 DOI: 10.1021/acsami.7b19013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Non-small cell lung cancer (NSCLC) is difficult to cure because of the high recurrence rate and the side effects of current treatments. It is urgent to develop a new treatment that is safer and more effective than current treatments against NSCLC. Herein, we constructed anti-epidermal growth factor receptor (EGFR) peptide-conjugated PEGylated triangular gold nanoplates (TGN-PEG-P75) as a targeting photothermal therapy (PTT) agent to treat NSCLC under the guidance of computed tomography (CT) and photoacoustic (PA) imaging. The surface of TGNs is successfully conjugated with a novel peptide P75 that has the specific affinity to epidermal growth factor receptor (EGFR). It is found that the EGFR is overexpressed in NSCLC cells. The TGN-PEG-P75 has uniform edge length (77.9 ± 7.0 nm) and neutrally charged surface. The cell uptake experiments demonstrate remarkable affinity of the TGN-PEG-P75 to high EGFR expression cells than low EGFR expression cells (5.1-fold). Thanks to the strong near-infrared absorbance, high photothermal conversion efficiency, and the increased accumulation in tumor cells via the interaction of P75 and EGFR, TGN-PEG-P75 exhibits 3.8-fold superior therapeutic efficacy on HCC827 cells than TGN-PEG. The in vivo CT/PA dual-modal imaging of the TGN-PEG-P75 is helpful in selecting the optimal treatment time and providing real-time visual guidance of PTT. Furthermore, treatments on HCC827 tumor-bearing mouse model demonstrate that the growth of NSCLC cells can be effectively inhibited by the TGN-PEG-P75 through PTT, indicating the great promise of the nanoplatform for treating NSCLC in vivo.
Collapse
Affiliation(s)
| | - Wenfei Liu
- Department of Respiration, Nanjing First Hospital , Nanjing Medical University , Nanjing 210029 , Jiangsu , P. R. China
| | | | | | | | | | | | | | | | | | | | - Zhaogang Teng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , Jiangsu , P. R. China
| | | | - Guangming Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , Jiangsu , P. R. China
| |
Collapse
|
59
|
Deng H, Liu J, Duan X, Liu Y. The relationship between EGFR mutation status and clinic-pathologic features in pulmonary adenocarcinoma. Pathol Res Pract 2018; 214:450-454. [PMID: 29496311 DOI: 10.1016/j.prp.2017.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 08/18/2017] [Accepted: 09/09/2017] [Indexed: 01/02/2023]
Abstract
To detect the relationship of the epidermal growth factor receptor (EGFR) mutation status and the clinicopathologic features. Six hundred thirty-three patients with pathologically confirmed lung adenocarcinoma who underwent lung cancer resection surgery at the Fourth Hospital of Hebei Medical University between April 2012 and April 2015 were selected for the study. The 32 types of mutations in exons 18-21 of the EGFR gene were detected. The total EGFR mutation rate among patients with lung adenocarcinoma was 56.9%. The mutation rates were 71.2% among females and 42.8% among males (P < 0.05). Among patients with TNM stage I, II, III, and IV disease, the EGFR mutation rates were significant differences (P < 0.05). Concerning different subtypes of lung adenocarcinoma, the EGFR mutation rates were differences, and these differences were statistically significant (P < 0.05). Cox multivariate regression model analysis considering EGFR mutation status revealed that differences in TNM stage (P < 0.01), smoker status, and tumor size were statistically significant predictors. Patients with minimally invasive and lepidic adenocarcinomas were categorized as low-risk group with high EGFR mutation rate; Patients with micro-papillary and solid adenocarcinomas were categorized as high-risk with lower EGFR mutation rate, so there are different mechanisms in different types of adenocarcinomas.
Collapse
Affiliation(s)
- Huiyan Deng
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Junying Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Xiaojin Duan
- Department of Medical Record Management, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China.
| |
Collapse
|
60
|
Chang L, Wang G, Jia T, Zhang L, Li Y, Han Y, Zhang K, Lin G, Zhang R, Li J, Wang L. Armored long non-coding RNA MEG3 targeting EGFR based on recombinant MS2 bacteriophage virus-like particles against hepatocellular carcinoma. Oncotarget 2018; 7:23988-4004. [PMID: 26992211 PMCID: PMC5029679 DOI: 10.18632/oncotarget.8115] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/02/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequently diagnosed cancers worldwide. However, the treatment of patients with HCC is particularly challenging. Long non-coding RNA maternally expressed gene 3 (MEG3) has been identified as a potential suppressor of several types of tumors, but the delivery of long RNA remains problematic, limiting its applications. In the present study, we designed a novel delivery system based on MS2 virus-like particles (VLPs) crosslinked with GE11 polypeptide. This vector was found to be fast, effective and safe for the targeted delivery of lncRNA MEG3 RNA to the epidermal growth factor receptor (EGFR)-positive HCC cell lines without the activation of EGFR downstream pathways, and significantly attenuated both in vitro and in vivo tumor cell growth. Our study also revealed that the targeted delivery was mainly dependent on clathrin-mediated endocytosis and MEG3 RNA suppresses tumor growth mainly via increasing the expression of p53 and its downstream gene GDF15, but decreasing the expression of MDM2. Thus, this vector is promising as a novel delivery system and may facilitate a new approach to lncRNA based cancer therapy.
Collapse
Affiliation(s)
- Le Chang
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Guojing Wang
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Tingting Jia
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lei Zhang
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, People's Republic of China.,Peking University Fifth School of Clinical Medicine, Beijing, People's Republic of China
| | - Yulong Li
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yanxi Han
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, People's Republic of China
| | - Kuo Zhang
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Guigao Lin
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, People's Republic of China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Lunan Wang
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
61
|
Genta I, Chiesa E, Colzani B, Modena T, Conti B, Dorati R. GE11 Peptide as an Active Targeting Agent in Antitumor Therapy: A Minireview. Pharmaceutics 2017; 10:E2. [PMID: 29271876 PMCID: PMC5874815 DOI: 10.3390/pharmaceutics10010002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 01/06/2023] Open
Abstract
A lot of solid tumors are characterized by uncontrolled signal transduction triggered by receptors related to cellular growth. The targeting of these cell receptors with antitumor drugs is essential to improve chemotherapy efficacy. This can be achieved by conjugation of an active targeting agent to the polymer portion of a colloidal drug delivery system loaded with an antitumor drug. The goal of this minireview is to report and discuss some recent results in epidermal growth factor receptor targeting by the GE11 peptide combined with colloidal drug delivery systems as smart carriers for antitumor drugs. The minireview chapters will focus on explaining and discussing: (i) Epidermal growth factor receptor (EGFR) structures and functions; (ii) GE11 structure and biologic activity; (iii) examples of GE11 conjugation and GE11-conjugated drug delivery systems. The rationale is to contribute in gathering information on the topic of active targeting to tumors. A case study is introduced, involving research on tumor cell targeting by the GE11 peptide combined with polymer nanoparticles.
Collapse
Affiliation(s)
- Ida Genta
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Barbara Colzani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
62
|
Fang Y, Yang W, Cheng L, Meng F, Zhang J, Zhong Z. EGFR-targeted multifunctional polymersomal doxorubicin induces selective and potent suppression of orthotopic human liver cancer in vivo. Acta Biomater 2017; 64:323-333. [PMID: 29030307 DOI: 10.1016/j.actbio.2017.10.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/13/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023]
Abstract
Liver cancer is a globally leading malignancy that has a poor five-year survival rate of less than 20%. The systemic chemotherapeutics are generally ineffective for liver cancers partly due to fast clearance and low tumor uptake. Here, we report that GE11 peptide functionalized polymersomal doxorubicin (GE11-PS-DOX) effectively targets and inhibits epidermal growth factor receptor (EGFR)-positive SMMC7721 orthotopic human liver tumor xenografts in mice. GE11-PS-DOX with a GE11 surface density of 10% displayed a high drug loading of 15.4 wt%, a small size of 78 nm, and glutathione-triggered release of DOX. MTT assays, flow cytometry and confocal microscopy studies revealed that GE11-PS-DOX mediated obviously more efficient DOX delivery into SMMC7721 cells than the non-targeting PS-DOX and clinically used liposomal doxorubicin (Lipo-DOX) controls. The in vivo studies showed that GE11-PS-DOX had a long circulation time and an extraordinary accumulation in the tumors (13.3 %ID/g). Interestingly, GE11-PS-DOX caused much better treatment of SMMC7721 orthotopic liver tumor-bearing mice as compared to PS-DOX and Lipo-DOX. The mice treated with GE11-PS-DOX (12 mg DOX equiv./kg) exhibited a significantly improved survival rate (median survival time: 130 days versus 70 and 38 days for PS-DOX at 12 mg DOX equiv./kg and Lipo-DOX at 6 mg DOX equiv./kg, respectively) and achieved 50% complete regression. Notably, GE11-PS-DOX induced obviously lower systemic toxicity than Lipo-DOX. EGFR-targeted multifunctional polymersomal doxorubicin with improved efficacy and safety has a high potential for treating human liver cancers. STATEMENT OF SIGNIFICANCE Liver cancer is one of the top five leading causes of cancer death worldwide. The systemic chemotherapeutics and biotherapeutics generally have a low treatment efficacy for hepatocellular carcinoma partly due to fast clearance and/or low tumor uptake. Nanomedicines based on biodegradable micelle and polymersomes offer a most promising treatment for malignant liver cancers. Their clinical effectiveness remains, however, suboptimal owing to issues like inadequate systemic stability, low tumor accumulation and selectivity, and poor control over drug release. Here we report that GE11 peptide-functionalized, disulfide-crosslinked multifunctional polymersomal doxorubicin (GE11-PS-DOX) can effectively suppress the growth of orthotopic SMMC7721 human liver tumors in nude mice. They showed significantly decreased systemic toxicity and improved mouse survival rate with 3.4-fold longer median survival time as compared to clinically used pegylated liposomal doxorubicin (Lipo-DOX) and achieving 50% complete regression. GE11-PS-DOX, based on PEG-PTMC is biodegradable, nontoxic, and easy to prepare, appears as a safe, robust, versatile and all-function-in-one nanoplatform that has a high potential in targeted chemotherapy of EGFR expressed hepatocellular carcinoma.
Collapse
|
63
|
David A. Peptide ligand-modified nanomedicines for targeting cells at the tumor microenvironment. Adv Drug Deliv Rev 2017; 119:120-142. [PMID: 28506743 DOI: 10.1016/j.addr.2017.05.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/17/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023]
Abstract
Since their initial discovery more than 30years ago, tumor-homing peptides have become an increasingly useful tool for targeted delivery of therapeutic and diagnostic agents into tumors. Today, it is well accepted that cells at the tumor microenvironment (TME) contribute in many ways to cancer development and progression. Tumor-homing peptide-decorated nanomedicines can interact specifically with surface receptors expressed on cells in the TME, improve cellular uptake of nanomedicines by target cells, and impair tumor growth and progression. Moreover, peptide ligand-modified nanomedicines can potentially accumulate in the target tissue at higher concentrations than would small conjugates, thus increasing overall target tissue exposure to the therapeutic agent, enhance therapeutic efficacy and reduce side effects. This review describes the most studied peptide ligands aimed at targeting cells in the TME, discusses major obstacles and principles in the design of ligands for drug targeting and provides an overview of homing peptides in ligand-targeted nanomedicines that are currently in development for cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
64
|
Ju RJ, Cheng L, Xiao Y, Wang X, Li CQ, Peng XM, Li XT. PTD modified paclitaxel anti-resistant liposomes for treatment of drug-resistant non-small cell lung cancer. J Liposome Res 2017; 28:236-248. [PMID: 28480778 DOI: 10.1080/08982104.2017.1327542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CONTEXT Non-small cell lung carcinoma (NSCLC) is a type of epithelial lung cancer that accounts for approximately 80-85% of lung carcinoma cases. Chemotherapy for the NSCLC is unsatisfactory due to multidrug resistance, nonselectively distributions and the accompanying side effects. OBJECTIVE The objective of this study was to develop a kind of PTD modified paclitaxel anti-resistant liposomes to overcome these chemotherapy limitations. METHOD The studies were performed on LLT cells and resistant LLT cells in vitro and on NSCLC xenograft mice in vivo, respectively. RESULTS AND DISCUSSION In vitro results showed that the liposomes with suitable physicochemical characteristics could significantly increase intracellular uptake in both LLT cells and resistant LLT cells, evidently inhibit the growth of cancer cells, and clearly induce the apoptosis of resistant LLT cells. Studies on resistant LLT cells xenograft mice demonstrated that the liposomes magnificently enhanced the anticancer efficacy in vivo. Involved action mechanisms were down-regulation of adenosine triphosphate binding cassette transporters on resistant LLT cells, and activation of the apoptotic enzymes (caspase 8/9/3). CONCLUSION The PTD modified paclitaxel anti-resistant liposomes may provide a promising strategy for treatment of the drug-resistant non-small cell lung cancer.
Collapse
Affiliation(s)
- Rui-Jun Ju
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China and
| | - Lan Cheng
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Yao Xiao
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Xin Wang
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Cui-Qing Li
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China and
| | - Xiao-Ming Peng
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China and
| | - Xue-Tao Li
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| |
Collapse
|
65
|
Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0329-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
66
|
Liu C, Liu XN, Wang GL, Hei Y, Meng S, Yang LF, Yuan L, Xie Y. A dual-mediated liposomal drug delivery system targeting the brain: rational construction, integrity evaluation across the blood-brain barrier, and the transporting mechanism to glioma cells. Int J Nanomedicine 2017; 12:2407-2425. [PMID: 28405164 PMCID: PMC5378461 DOI: 10.2147/ijn.s131367] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
As the global population ages, cancer rates increase worldwide, and degenerative diseases of the central nervous system (CNS), brain tumors, and inflammation threaten human health more frequently. We designed a dual-mediated (receptor-mediated and adsorption-mediated) liposome, named transferrin–cell penetrating peptide–sterically stabilized liposome (TF-CPP-SSL), to improve therapy for gliomas through combining molecular recognition of transferrin receptors (TF-Rs) on the blood–brain barrier (BBB) and glioma cells with the internalization and lysosomal escaping ability of CPP. Based on the systematic investigation of structure–activity relations on the cellular level, we constructed TF-CPP-SSL rationally by conjugating TF and CPP moieties to the liposomes via PEG3.4K and PEG2.0K, respectively, and found the optimum densities of TF and CPP were 1.8% and 4%, respectively. These liposomes had the highest targeting efficacy for brain microvascular endothelial cell and C6 cell uptake but avoided capture by normal cells. Fluorescence resonance energy transfer technology and coculture models of BBB and glioma C6 cells indicated that TF-CPP-SSL was transported across the BBB without drug leakage, liposome breakup, or cleavage of ligand. TF-CPP-SSL offered advantages for crossing the BBB and entering into glioma C6 cells. Real-time confocal viewing revealed that TF-CPP-SSL was entrapped in endosomes of glioma C6 cells and then escaped from lysosomes successfully to release the liposomal contents into the cytosol. Entrapped contents, such as doxorubicin, could then enter the nucleus to exert pharmacological effects.
Collapse
Affiliation(s)
- Chang Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - Xiao-Na Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - Gui-Ling Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - Yu Hei
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - Shuai Meng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - Ling-Fei Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - Lan Yuan
- Medical and Healthy Analysis Center, Peking University, Beijing, People's Republic of China
| | - Ying Xie
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences
| |
Collapse
|
67
|
Madni A, Batool A, Noreen S, Maqbool I, Rehman F, Kashif PM, Tahir N, Raza A. Novel nanoparticulate systems for lung cancer therapy: an updated review. J Drug Target 2017; 25:499-512. [PMID: 28151021 DOI: 10.1080/1061186x.2017.1289540] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths in the world. Conventional therapy for lung cancer is associated with lack of specificity and access to the normal cells resulting in cytotoxicity, reduced cellular uptake, drug resistance and rapid drug clearance from the body. The emergence of nanotechnology has revolutionized the treatment of lung cancer. The focus of nanotechnology is to target tumor cells with improved bioavailability and reduced toxicity. In the recent years, nanoparticulate systems have extensively been exploited in order to overcome the obstacles in treatment of lung cancer. Nanoparticulate systems have shown much potential for lung cancer therapy by gaining selective access to the tumor cells due to surface modifiability and smaller size. In this review, various novel nanoparticles (NPs) based formulations have been discussed in the treatment of lung cancer. Nanotechnology is expected to grow fast in future, and it will provide new avenues for the improved treatment of lung cancer. This review article also highlights the characteristics, recent advances in the designing of NPs and therapeutic outcomes.
Collapse
Affiliation(s)
- Asadullah Madni
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Amna Batool
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Sobia Noreen
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Irsah Maqbool
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Faizza Rehman
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Prince Muhammad Kashif
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Nayab Tahir
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Ahmad Raza
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| |
Collapse
|
68
|
Kuang H, Ku SH, Kokkoli E. The design of peptide-amphiphiles as functional ligands for liposomal anticancer drug and gene delivery. Adv Drug Deliv Rev 2017; 110-111:80-101. [PMID: 27539561 DOI: 10.1016/j.addr.2016.08.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/12/2016] [Accepted: 08/05/2016] [Indexed: 12/25/2022]
Abstract
Liposomal nanomedicine has led to clinically useful cancer therapeutics like Doxil and DaunoXome. In addition, peptide-functionalized liposomes represent an effective drug and gene delivery vehicle with increased cancer cell specificity, enhanced tumor-penetrating ability and high tumor growth inhibition. The goal of this article is to review the recently published literature of the peptide-amphiphiles that were used to functionalize liposomes, to highlight successful designs that improved drug and gene delivery to cancer cells in vitro, and cancer tumors in vivo, and to discuss the current challenges of designing these peptide-decorated liposomes for effective cancer treatment.
Collapse
|
69
|
Hu D, Mezghrani O, Zhang L, Chen Y, Ke X, Ci T. GE11 peptide modified and reduction-responsive hyaluronic acid-based nanoparticles induced higher efficacy of doxorubicin for breast carcinoma therapy. Int J Nanomedicine 2016; 11:5125-5147. [PMID: 27785019 PMCID: PMC5066865 DOI: 10.2147/ijn.s113469] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Novel breast carcinoma dual-targeted redox-responsive nanoparticles (NPs) based on cholesteryl-hyaluronic acid conjugates were designed for intracellular delivery of the antitumor drug doxorubicin (DOX). A series of reduction-responsive hyaluronic acid derivatives grafted with hydrophobic cholesteryl moiety (HA-ss-Chol) and GE11 peptide conjugated HA-ss-Chol (GE11-HA-ss-Chol) were synthesized. The obtained conjugates showed attractive self-assembly characteristics and high drug loading capacity. GE11-HA-ss-Chol NPs were highly stable under conditions mimicking normal physiological conditions, while showing a fast degradation of the vehicle's structure and accelerating the drug release dramatically in the presence of intracellular reductive environment. Furthermore, the cellular uptake assay confirmed GE11-HA-ss-Chol NPs were taken up by MDA-MB-231 cells through CD44- and epidermal growth factor receptor-mediated endocytosis. The internalization pathways of GE11-HA-ss-Chol NPs might involve clathrin-mediated endocytosis and macropinocytosis. The intracellular distribution of DOX in GE11-HA-ss-Chol NPs showed a faster release and more efficient nuclear delivery than the insensitive control. Enhanced in vitro cytotoxicity of GE11-HA-ss-Chol DOX-NPs further confirmed the superiority of their dual-targeting and redox-responsive capacity. Moreover, in vivo imaging investigation in MDA-MB-231 tumor-bearing mice confirmed that GE11-HA-ss-Chol NPs labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide, a near-infrared fluorescence dye, possessed a preferable tumor accumulation ability as compared to the single-targeting counterpart (HA-ss-Chol NPs). The antitumor efficacy showed an improved therapy efficacy and lower systemic side effect. These results suggest GE11-HA-ss-Chol NPs provide a good potential platform for antitumor drugs.
Collapse
Affiliation(s)
- Danrong Hu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Omar Mezghrani
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Lei Zhang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yi Chen
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Xue Ke
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Tianyuan Ci
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People’s Republic of China
| |
Collapse
|
70
|
Colzani B, Speranza G, Dorati R, Conti B, Modena T, Bruni G, Zagato E, Vermeulen L, Dakwar GR, Braeckmans K, Genta I. Design of smart GE11-PLGA/PEG-PLGA blend nanoparticulate platforms for parenteral administration of hydrophilic macromolecular drugs: synthesis, preparation and in vitro/ex vivo characterization. Int J Pharm 2016; 511:1112-23. [PMID: 27511710 DOI: 10.1016/j.ijpharm.2016.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/03/2016] [Accepted: 08/06/2016] [Indexed: 02/04/2023]
Abstract
Active drug targeting and controlled release of hydrophilic macromolecular drugs represent crucial points in designing efficient polymeric drug delivery nanoplatforms. In the present work EGFR-targeted polylactide-co-glycolide (PLGA) nanoparticles were made by a blend of two different PLGA-based polymers. The first, GE11-PLGA, in which PLGA was functionalized with GE11, a small peptide and EGFR allosteric ligand, able to give nanoparticles selective targeting features. The second polymer was a PEGylated PLGA (PEG-PLGA) aimed at improving nanoparticles hydrophilicity and stealth features. GE11 and GE11-PLGA were custom synthetized through a simple and inexpensive method. The nanoprecipitation technique was exploited for the preparation of polymeric nanoparticles composed by a 1:1weight ratio between GE11-PLGA and PEG-PLGA, obtaining smart nanoplatforms with proper size for parenteral administration (143.9±5.0nm). In vitro cellular uptake in EGFR-overexpressing cell line (A549) demonstrated an active internalization of GE11-functionalized nanoparticles. GE11-PLGA/PEG-PLGA blend nanoparticles were loaded with Myoglobin, a model hydrophilic macromolecule, reaching a good loading (2.42% respect to the theoretical 4.00% w/w) and a prolonged release over 60days. GE11-PLGA/PEG-PLGA blend nanoparticles showed good in vitro stability for 30days in physiological saline solution at 4°C and for 24h in pH 7.4 or pH 5.0 buffer at 37°C respectively, giving indications about potential storage and administration conditions. Furthermore ex vivo stability study in human plasma using fluorescence Single Particle Tracking (fSPT) assessed good GE11-PLGA/PEG-PLGA nanoparticles dimensional stability after 1 and 4h. Thanks to the versatility in polymeric composition and relative tunable nanoparticles features in terms of drug incorporation and release, GE11-PLGA/PEG-PLGA blend NPs can be considered highly promising as smart nanoparticulate platforms for the treatment of diseases characterized by EGFR overexpression by parenteral administration .
Collapse
Affiliation(s)
- Barbara Colzani
- Department of Drug Sciences, University of Pavia, 12, Viale Taramelli, 27100, Pavia, Italy
| | - Giovanna Speranza
- Department of Chemistry, University of Milan, 19, Via Golgi, 20130, Milano, Italy
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, 12, Viale Taramelli, 27100, Pavia, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, 12, Viale Taramelli, 27100, Pavia, Italy
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, 12, Viale Taramelli, 27100, Pavia, Italy
| | - Giovanna Bruni
- Department of Chemistry, University of Pavia, 12, Viale Taramelli, 27100, Pavia, Italy
| | - Elisa Zagato
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ghent Research Group on Nanomedicines, Harelbekestraat 72, 9000, Ghent, Belgium
| | - Lotte Vermeulen
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ghent Research Group on Nanomedicines, Harelbekestraat 72, 9000, Ghent, Belgium
| | - George R Dakwar
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ghent Research Group on Nanomedicines, Harelbekestraat 72, 9000, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ghent Research Group on Nanomedicines, Harelbekestraat 72, 9000, Ghent, Belgium
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, 12, Viale Taramelli, 27100, Pavia, Italy.
| |
Collapse
|
71
|
Redox and pH dual responsive poly(amidoamine) dendrimer-poly(ethylene glycol) conjugates for intracellular delivery of doxorubicin. Acta Biomater 2016; 36:241-53. [PMID: 26995505 DOI: 10.1016/j.actbio.2016.03.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 02/06/2016] [Accepted: 03/15/2016] [Indexed: 12/24/2022]
Abstract
UNLABELLED To solve the contradiction between long circulation time and effective intracellular drug release, redox and pH-responsive drug delivery system was developed by incorporated redox-sensitive disulfide linkage between poly(amidoamine) dendrimers (PAMAM) and poly(ethylene glycol) (PEG). Doxorubicin (DOX) was loaded into the hydrophobic core of the conjugates to prepare PAMAM-SS-PEG/DOX complexes (PSSP/DOX). In vitro release studies suggested that DOX release from PSSP/DOX complexes followed an redox and acid-triggered manner and increased with increasing PEGylation degree. In vitro cytotoxicity of PSSP/DOX complexes against B16 tumor cells increased with, while cellular uptake decreased with increasing PEGylation degree. Further, intracellular DOX release observation and measurement indicate that the intracellular DOX release played a critical role for the cytotoxicity of DOX-loaded PSSP conjugates. In addition, cellular entry mechanism of the PSSP/DOX study demonstrated that both clathrin- and caveolae-mediated endocytosis were the primary pathways for cellular entry of PSSP/DOX. Finally, in vivo study of PSSP/DOX complexes in B16 tumor-bearing mice indicate that PSSP/DOX could significantly improve antitumor efficiency and present a good safety. The redox and pH-responsive drug delivery system has been demonstrated to be a promising candidate for solid tumor therapy. STATEMENT OF SIGNIFICANCE In previous research, pH-sensitive diblock polymer of poly(ethylene glycol)-poly(2,4,6-trimethoxybenzylidene-pentaerythritol carbonate) (PEG-PTMBPEC) was synthesized to facilitate the intracellular anticancer drug release. However, the nanoparticles based on PEG-PTMBPEC get into the tumor cells just relying on the EPR-mediated passive targeting resulting in the low drug accumulation. Therefore, cRGD peptide modified PEG-PTMBPEC polymeric micelles were developed for specific targeted delivery of doxorubicin (DOX) to neovascular cells and tumor cells simultaneously. The precise intracellular target site and effective drug concentration will contribute to enhancing the antitumor toxicity and reducing the systematic toxicity of DOX. The cRGD modified pH-sensitive micellar system is a promising vehicle for intracellular drug delivery to αvβ3 integrin receptor overexpressed tumor cells and neovascular cells.
Collapse
|
72
|
Jia X, Wang W, Han Q, Wang Z, Jia Y, Hu Z. Micromixer Based Preparation of Functionalized Liposomes and Targeting Drug Delivery. ACS Med Chem Lett 2016; 7:429-34. [PMID: 27096054 DOI: 10.1021/acsmedchemlett.6b00028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/10/2016] [Indexed: 12/29/2022] Open
Abstract
We present here a specific targeting nanocarrier system by functionalization of liposomes with one new type of breast cancer targeting peptide (H6, YLFFVFER) by a micromixer with high efficiency. Antitumor drugs could be successfully delivered into human epidermal growth factor receptor 2 (HER2) positive breast cancer cells with high efficiency in both in vivo and ex vivo models.
Collapse
Affiliation(s)
- Xiangqian Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Pharmacy
College and §College of Basic Science, Liaoning Medical University, Jinzhou, Liaoning 121001, China
| | - Weizhi Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Qiuju Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Pharmacy
College and §College of Basic Science, Liaoning Medical University, Jinzhou, Liaoning 121001, China
| | - Zihua Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yunhong Jia
- Pharmacy
College and §College of Basic Science, Liaoning Medical University, Jinzhou, Liaoning 121001, China
| | - Zhiyuan Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
73
|
cRGDyK modified pH responsive nanoparticles for specific intracellular delivery of doxorubicin. Acta Biomater 2016; 30:285-298. [PMID: 26602824 DOI: 10.1016/j.actbio.2015.11.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/16/2022]
Abstract
Stimuli-responsive nanocarriers attract wide attention because of the unique differences in microenvironment between solid tumors and normal tissues. Herein, we reported a novel cRGDyK peptide modified pH-sensitive nanoparticle system based on poly(ethylene glycol)-poly(2,4,6-trimethoxy benzylidene-pentaerythritol carbonate) (PEG-PTMBPEC) diblock copolymer, which was expected to destroy tumor angiogenesis and kill tumor cells simultaneously. Doxorubicin (DOX)-loaded nanoparticles (NPs) were characterized to have a uniform size distribution, high entrapment efficiency, good stability in plasma as well as a pH dependent drug release pattern. Blank NPs were non-toxic to both tumor cells and normal cells, while DOX-loaded cRGDyK peptide modified NPs (cRGDyK-NPs) exhibited the pronounced cytotoxicity against B16 cells and human umbilical vein endothelial cells (HUVEC) overexpressing αvβ3 integrin receptors. Cellular uptake studies revealed that the highly efficient uptake of cRGDyK-NPs was attributed to the receptor-mediated endocytosis and acidic-triggered drug release. Importantly, cRGDyK-NPs could dramatically reduce the systemic toxicity of DOX and exert excellent tumor killing activity in vivo. The cRGDyK modified pH-sensitive nanocarrier is a promising vehicle for intracellular drug delivery to αvβ3 integrin receptor overexpressed tumor cells and neovascular cells. STATEMENT OF SIGNIFICANCE Slow intracellular drug release and poor tumor targeting capacity are still the critical barriers of polymeric nanoparticles (NPs) for the treatment efficiency of chemotherapy. In the present study, we designed cRGDyK peptide modified poly(ethylene glycol)-poly(2,4,6-trimethoxybenzylidene-pentaerythritol carbonate) (cRGDyK-PEG-PTMBPEC) NPs with active targeting and fast pH-triggered drug release. Doxorubicin (DOX)-loaded cRGDyK-PEG-PTMBPEC NPs exhibited pronounced cytotoxicity and enhanced cellular uptake against B16 cells and human umbilical vein endothelial cells overexpressing αvβ3 integrin receptors. Moreover, the active targeted pH-sensitive NPs can enhance the antitumor activity and reduce the systematic toxicity of DOX in vivo.
Collapse
|
74
|
Mondal G, Kumar V, Shukla SK, Singh PK, Mahato RI. EGFR-Targeted Polymeric Mixed Micelles Carrying Gemcitabine for Treating Pancreatic Cancer. Biomacromolecules 2015; 17:301-13. [PMID: 26626700 DOI: 10.1021/acs.biomac.5b01419] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The objective of this study was to design GE11 peptide (YHWYGYTPQNVI) linked micelles of poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-gemcitabine-graft-dodecanol (PEG-b-PCC-g-GEM-g-DC) for enhanced stability and target specificity of gemcitabine (GEM) to EGFR-positive pancreatic cancer cells. GE11-PEG-PCD/mPEG-b-PCC-g-GEM-g-DC mixed micelles showed EGFR-dependent enhanced cellular uptake, and cytotoxicity as compared to scrambled peptide HW12-PEG-PCD/mPEG-b-PCC-g-GEM-g-DC mixed micelles and unmodified mPEG-b-PCC-g-GEM-g-DC micelles. Importantly, GE11-linked mixed micelles preferentially accumulated in orthotopic pancreatic tumor and tumor vasculature at 24 h post systemic administration. GE11-linked mixed micelles inhibited orthotopic pancreatic tumor growth compared to HW12-linked mixed micelles, unmodified mPEG-b-PCC-g-GEM-g-DC micelles, and free GEM formulations. Tumor growth inhibition was mediated by apoptosis of tumor cells and endothelial cells as determined by immunohistochemical staining. In summary, GE11-linked mixed micelles is a promising approach to treat EGFR overexpressing cancers.
Collapse
Affiliation(s)
- Goutam Mondal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Surendra K Shukla
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center , Omaha, Nebraska United States
| | - Pankaj K Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center , Omaha, Nebraska United States
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| |
Collapse
|
75
|
Multi-functional Liposomes Enhancing Target and Antibacterial Immunity for Antimicrobial and Anti-Biofilm Against Methicillin-Resistant Staphylococcus aureus. Pharm Res 2015; 33:763-75. [DOI: 10.1007/s11095-015-1825-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
|
76
|
Bölükbas DA, Meiners S. Lung cancer nanomedicine: potentials and pitfalls. Nanomedicine (Lond) 2015; 10:3203-12. [PMID: 26472521 DOI: 10.2217/nnm.15.155] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is by far the most common cause of cancer-related deaths in the world. Nanoparticle-based therapies enable targeted drug delivery for lung cancer treatment with increased therapeutic efficiency and reduced systemic toxicity. At the same time, nanomedicine has the potential for multimodal treatment of lung cancer that may involve 'all-in-one' targeting of several tumor-associated cell types in a timely and spatially controlled manner. Therapeutic approaches, however, are hampered by a translational gap between basic scientists, clinicians and pharma industry due to suboptimal animal models and difficulties in scale-up production of nanoagents. This calls for a disease-centered approach with interdisciplinary basic and clinical research teams with the support of pharma industries.
Collapse
Affiliation(s)
- Deniz Ali Bölükbas
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Member of the German Center for Lung Research (DZL), Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Member of the German Center for Lung Research (DZL), Germany
| |
Collapse
|
77
|
Feng C, Li X, Dong C, Zhang X, Zhang X, Gao Y. RGD-modified liposomes enhance efficiency of aclacinomycin A delivery: evaluation of their effect in lung cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4613-20. [PMID: 26316700 PMCID: PMC4541546 DOI: 10.2147/dddt.s85993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, long-circulating Arg-Gly-Asp (RGD)-modified aclacinomycin A (ACM) liposomes were prepared by thin film hydration method. Their morphology, particle size, encapsulation efficiency, and in vitro release were investigated. The RGD-ACM liposomes was about 160 nm in size and had the visual appearance of a yellowish suspension. The zeta potential was -22.2 mV and the encapsulation efficiency was more than 93%. The drug-release behavior of the RGD-ACM liposomes showed a biphasic pattern, with an initial burst release and followed by sustained release at a constant rate. After being dissolved in phosphate-buffered saline (pH 7.4) and kept at 4°C for one month, the liposomes did not aggregate and still had the appearance of a milky white colloidal solution. In a pharmacokinetic study, rats treated with RGD-ACM liposomes showed slightly higher plasma concentrations than those treated with ACM liposomes. Maximum plasma concentrations of RGD-ACM liposomes and ACM liposomes were 4,532 and 3,425 ng/mL, respectively. RGD-ACM liposomes had a higher AUC0-∞ (1.54-fold), mean residence time (2.09-fold), and elimination half-life (1.2-fold) when compared with ACM liposomes. In an in vivo study in mice, both types of liposomes inhibited growth of human lung adenocarcinoma (A549) cells and markedly decreased tumor size when compared with the control group. There were no obvious pathological tissue changes in any of the treatment groups. Our results indicate that RGD-modified ACM liposomes have a better antitumor effect in vivo than their unmodified counterparts.
Collapse
Affiliation(s)
- Chan Feng
- Department of Oncology, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Xiaoyan Li
- Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China
| | - Chunyan Dong
- Department of Oncology, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Xuemei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Xie Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
78
|
Cell permeable peptide conjugated nanoerythrosomes of fasudil prolong pulmonary arterial vasodilation in PAH rats. Eur J Pharm Biopharm 2015; 88:1046-55. [PMID: 25460151 DOI: 10.1016/j.ejpb.2014.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/01/2014] [Accepted: 10/16/2014] [Indexed: 11/23/2022]
Abstract
In this study, we tested the hypothesis that a cell permeable peptide, CARSKNKDC (CAR), conjugated nanoerythrosomes (NERs) containing fasudil, a rho-kinase (ROCK) inhibitor, produces prolonged pulmonary preferential vasodilation. CAR conjugated NERs containing fasudil were prepared by hypotonic lysis and extrusion method, and optimized for various physicochemical properties in-vitro. The formulations were then used to study the hemodynamic efficacy in a monocrotaline-induced rodent model of pulmonary arterial hypertension (PAH). CAR-NERs-Fasudil was spherical in shape with an average vesicle size and entrapment efficiency of 161.3 ± 1.37 nm and 48.81 ± 1.96%, respectively. Formulations were stable for ~3 weeks when stored at 4 °C and the drug was released in a controlled fashion for >48 h. The uptake of CAR-NERs-Fasudil by TGF-b activated pulmonary arterial smooth muscle cell was ~1.5-fold greater than the uptake of NERs-Fasudil. CAR-NERs-Fasudil inhibited ROCK activity and 5-hydroxytryptamine induced cell proliferation. In terms of reduction of pulmonary arterial pressure, intratracheal administration of CAR-NERs-Fasudil was ~2-fold more specific to the lungs compared with plain fasudil. Overall,CAR peptide grafted nanoerythrosomes offers a new platform for improving the therapeutic efficacy ofa rho-kinase inhibitor, fasudil, without affecting peripheral vasodilation.
Collapse
|
79
|
Li XT, He ML, Zhou ZY, Jiang Y, Cheng L. The antitumor activity of PNA modified vinblastine cationic liposomes on Lewis lung tumor cells: In vitro and in vivo evaluation. Int J Pharm 2015; 487:223-33. [PMID: 25895716 DOI: 10.1016/j.ijpharm.2015.04.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/21/2015] [Accepted: 04/14/2015] [Indexed: 11/28/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the frequently-occurring disease in the world, and the treatment effects are usually unsatisfactory. Vinblastine is an anti-microtubule drug in clinic. In this study, a nanostructured liposome was designed and prepared for treating NSCLC. In the liposomes, peanut agglutinin (PNA) was modified on the liposomal surface, 3-(N-(N',N'-dimethylaminoethane)carbamoyl) cholesterol was used as cationic materials, and vinblastine was encapsulated in the aqueous core of liposomes, respectively. The PNA modified vinblastine cationic liposomes were approximately 100 nm in size with a positive potential. In vitro results showed that the targeting liposomes could significantly enhance cellular uptake, selectively accumulate in LLT cells, and dramatically initiate apoptosis via activating pro-apoptotic proteins and apoptotic enzymes, thus leading to the strongest antitumor efficacy to LLT cells. In vivo results demonstrated that the targeting liposomes could display a prolonged circulation time in the blood, accumulate more drug in tumor location, and induce most of tumor cells apoptosis. As a result, a robust overall antitumor efficacy in tumor-bearing mice was observed subsequently. In conclusion, the chemotherapy using the PNA modified vinblastine cationic liposomes could provide a potential strategy for treating non-small cell lung cancer.
Collapse
Affiliation(s)
- Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Mei-Li He
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Zhi-Yan Zhou
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Ying Jiang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Lan Cheng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
80
|
Li XT, Zhou ZY, Jiang Y, He ML, Jia LQ, Zhao L, Cheng L, Jia TZ. PEGylated VRB plus quinacrine cationic liposomes for treating non-small cell lung cancer. J Drug Target 2014; 23:232-43. [PMID: 25417934 DOI: 10.3109/1061186x.2014.979829] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the most common form of lung cancer, and the treatment effects are usually unsatisfactory. Vinorelbine (VRB) is extensively used in cancer treatment, but it has some disadvantages when used alone. PEGylated liposomes have been extensively used as a delivery carrier for antitumor drugs via prolonging the circulation time in the blood. PURPOSE The nanostructured liposomes were designed and prepared for treating NSCLC. METHODS In the liposomes, PEG was modified on the liposomal surface, DC-Chol was used as cationic materials, and VRB plus quinacrine were encapsulated in an aqueous core of the liposomes as an antitumor drug and an apoptosis-inducing agent, respectively. Evaluations were performed on A549 cells, tubular network formations and xenografts of the A549 cells. RESULTS The PEGylated drugs-loaded cationic liposomes could significantly enhance cellular uptake and selectively accumulate in A549 cells, thus leading to show strongest antitumor efficacy to tumor cells and to tumor-bearing mice. Action mechanisms showed that the enhanced efficacy in treating NSCLC was related to activate caspase 9 and caspase 3, to activate Bax and P53, and to suppress Bcl-2 and Mcl-1. CONCLUSION The PEGylated VRB plus quinacrine cationic liposomes showed a potential strategy for treating NSCLC.
Collapse
Affiliation(s)
- Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine , Dalian , China and
| | | | | | | | | | | | | | | |
Collapse
|