51
|
Macro- and Microplastics in the Antarctic Environment: Ongoing Assessment and Perspectives. ENVIRONMENTS 2022. [DOI: 10.3390/environments9070093] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The number of scientists and tourists visiting Antarctica is on the rise and, despite the management framework for environmental protection, some coastal areas, particularly in the Antarctic Peninsula region, are affected by plastic contamination. The few data available on the occurrence of microplastics (<5 mm) are difficult to compare, due to the different methodologies used in monitoring studies. However, indications are emerging to guide future research and to implement environmental protocols. In the surface and subsurface waters of the Southern Ocean, plastic debris >300 µm appears to be scarce and far less abundant than paint chips released from research vessels. Yet, near some coastal scientific stations, the fragmentation and degradation of larger plastic items, as well as microbeads and microfibers released into wastewater from personal care products and laundry, could potentially affect marine organisms. Some studies indicate that, through long-range atmospheric transport, plastic fibers produced on other continents can be deposited in Antarctica. Drifting plastic debris can also cross the Polar Front, with the potential to carry alien fouling organisms into the Southern Ocean. Sea ice dynamics appear to favor the uptake of microplastics by ice algae and Antarctic krill, the key species in the Antarctic marine food web. Euphausia superba apparently has the ability to fragment and expel ingested plastic particles at the nanoscale. However, most Antarctic organisms are endemic species, with unique ecophysiological adaptations to extreme environmental conditions and are likely highly sensitive to cumulative stresses caused by climate change, microplastics and other anthropogenic disturbances. Although there is limited evidence to date that micro- and nanoplastics have direct biological effects, our review aims at raising awareness of the problem and, in order to assess the real potential impact of microplastics in Antarctica, underlines the urgency to fill the methodological gaps for their detection in all environmental matrices, and to equip scientific stations and ships with adequate wastewater treatment plants to reduce the release of microfibers.
Collapse
|
52
|
Ramasamy R, Aragaw TA, Balasaraswathi Subramanian R. Wastewater treatment plant effluent and microfiber pollution: focus on industry-specific wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51211-51233. [PMID: 35606585 DOI: 10.1007/s11356-022-20930-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/13/2022] [Indexed: 05/15/2023]
Abstract
The production, use, and disposal of synthetic textiles potentially release a significant amount of microfibers into the environment. Studies performed on municipal wastewater treatment plants (WWTPs) effluent reported a higher presence of microfibers due to the mix of domestic laundry effluent through sewage. As municipal WWTPs receive influents from households and industries, it serves as a sink for the microfibers. However, research on textile industry WWTPs that primarily treat the textile fabric processing wastewater was not explored with the concern of microfibers. Hence, the review aims to analyze the existing literature and enlighten the impact of WWTPs on microplastic emission into the environment by specifically addressing textile industry WWTPs. The results of the review confirmed that even after 95-99% removal, municipal WWTPs can emit around 160 million microplastics per day into the environment. Microfiber was the dominant shape identified by the review. The average microfiber contamination in the WWTP sludge was estimated as 200 microfibers per gram of sludge. As far as the industry-specific effluents are analyzed, textile wet processing industries effluents contained > 1000 times higher microfibers than municipal WWTP. Despite few existing studies on textile industry effluent, the review demonstrates that, so far, no studies were performed on the sludge obtained from WWTPs that handle textile industry effluents alone. Review results pointed out that more attention should be needed to the textile wastewater research which is addressing the textile wet processing industry WWTPs. Moreover, the sludge released from these WWTPs should be considered as an important source of microfiber as they contain more quantity of microfibers than the effluent, and also, their routes to the environment are huge and easy.
Collapse
Affiliation(s)
| | - Tadele Assefa Aragaw
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | | |
Collapse
|
53
|
Murphy L, Germaine K, Kakouli-Duarte T, Cleary J. Assessment of microplastics in Irish river sediment. Heliyon 2022; 8:e09853. [PMID: 35815125 PMCID: PMC9263993 DOI: 10.1016/j.heliyon.2022.e09853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/14/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022] Open
Abstract
Microplastics (MPs) are environmental pollutants of growing concern, and awareness of MPs pollution in marine and freshwater environments has increased in recent years. However, knowledge of MPs contamination in riverine sediments in Ireland is limited. To address this, we collected and analysed sediment samples from 16 selected sites along the River Barrow. Microplastics were extracted through a density separation method, after which their size, colour, and shape were analysed under a stereo microscope (Optica SZM-2). Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was used to identify polymer types. A total of 690 MPs were recovered from the 16 sites, with fibres as the dominant MP type. The highest concentration of MPs was 155 MP fibres kg-1 wet sediment found in samples collected from Graiguenamanagh, Co. Kilkenny (GK). The majority of the recovered MPs were polyethylene (PE), polypropylene (PP), nylon, and cellulose acetate (CA) fibres. Overall, this study highlighted the presence of MPs in Irish river sediments and provided a baseline for future studies on MPs pollution. Further research is needed to better understand sources, distribution, and effects of MPs in freshwater ecosystems.
Collapse
Affiliation(s)
- Loriane Murphy
- enviroCORE, Department of Applied Science, South East Technological University, Kilkenny Road Campus, Kilkenny Road, Carlow, R93 V960, Ireland
| | - Kieran Germaine
- enviroCORE, Department of Applied Science, South East Technological University, Kilkenny Road Campus, Kilkenny Road, Carlow, R93 V960, Ireland
| | - Thomais Kakouli-Duarte
- enviroCORE, Department of Applied Science, South East Technological University, Kilkenny Road Campus, Kilkenny Road, Carlow, R93 V960, Ireland
| | - John Cleary
- enviroCORE, Department of Applied Science, South East Technological University, Kilkenny Road Campus, Kilkenny Road, Carlow, R93 V960, Ireland
| |
Collapse
|
54
|
Zhou CS, Wu JW, Ma WL, Liu BF, Xing DF, Yang SS, Cao GL. Responses of nitrogen removal under microplastics versus nanoplastics stress in SBR: Toxicity, microbial community and functional genes. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128715. [PMID: 35305418 DOI: 10.1016/j.jhazmat.2022.128715] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/19/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs), as emerging pollutants, are frequently detected in wastewater treatment plants. However, studies comparing the effects of MPs versus NPs on nitrogen removal by activated sludge are rarely reported. Here, the responses of nitrogen removal performance, microbial community and functional genes to MPs and NPs in sequencing batch reactors were investigated. Results revealed that MPs (10 and 1000 μg/L) had no effects on nitrogen removal. While upon exposure to NPs, although low concentration (10 μg/L) of NPs showed no remarkable influence on nitrogen removal, high level (1000 μg/L) of NPs decreased NH4+-N removal efficiency by 24.48% and caused accumulation of NO3--N and NO2--N. These inhibitory probably due to the acute toxicity of NPs to activated sludge, which was reflected by the increasing reactive oxygen species generation and lactate dehydrogenase release. The toxic effects of NPs further declined the relative abundance of nitrifiers (e.g., Nitrospira) and denitrifiers (e.g., Dechloromonas). These negative effects, accompanied by a decrease in abundance of amoA and nxrA genes related to nitrification (30.01% and 65.24% of control) and narG, nirK and nirS genes associated with denitrification (78.59%, 61.39%, and 86.17% of control), directly illustrated the attenuate phenomenon observed in nitrogen removal.
Collapse
Affiliation(s)
- Chun-Shuang Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wen Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Li Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guang-Li Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
55
|
Schell T, Martinez‐Perez S, Dafouz R, Hurley R, Vighi M, Rico A. Effects of Polyester Fibers and Car Tire Particles on Freshwater Invertebrates. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1555-1567. [PMID: 35353397 PMCID: PMC9324906 DOI: 10.1002/etc.5337] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/25/2022] [Accepted: 03/27/2022] [Indexed: 05/19/2023]
Abstract
Microplastic ingestion has been shown for various organisms, but knowledge of the potential adverse effects on freshwater invertebrates remains limited. We assessed the ingestion capacity and the associated effects of polyester fibers (26-5761 µm) and car tire particles (25-75 µm) on freshwater invertebrates under acute and chronic exposure conditions. A range of microplastic concentrations was tested on Daphnia magna, Hyalella azteca, Asellus aquaticus, and Lumbriculus variegatus using water only (up to 0.15 g/L) or spiked sediment (up to 2 g/kg dry wt), depending on the habitat of the species. Daphnia magna did not ingest any fibers, but low levels of fibers were ingested by all tested benthic invertebrate species. Car tire particle ingestion rose with increasing exposure concentration for all tested invertebrates and was highest in D. magna and L. variegatus. In most cases, no statistically significant effects on mobility, survival, or reproductive output were observed after acute and chronic exposure at the tested concentrations. However, fibers affected the reproduction and survival of D. magna (no-observed-effect concentration [NOEC]: 0.15 mg/L) due to entanglement and limited mobility under chronic conditions. Car tire particles affected the reproduction (NOEC: 1.5 mg/L) and survival (NOEC: 0.15 mg/L) of D. magna after chronic exposure at concentrations in the same order of magnitude as modeled river water concentrations, suggesting that refined exposure and effect studies should be performed with these microplastics. Our results confirm that microplastic ingestion by freshwater invertebrates depends on particle shape and size and that ingestion quantity depends on the exposure pathway and the feeding strategy of the test organism. Environ Toxicol Chem 2022;41:1555-1567. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Theresa Schell
- IMDEA Water InstituteScience and Technology Campus of the University of AlcaláAlcalá de HenaresSpain
- Department of Analytical Chemistry, Physical Chemistry, and Chemical EngineeringUniversity of AlcaláAlcalá de HenaresSpain
| | - Sara Martinez‐Perez
- IMDEA Water InstituteScience and Technology Campus of the University of AlcaláAlcalá de HenaresSpain
- Department of Analytical Chemistry, Physical Chemistry, and Chemical EngineeringUniversity of AlcaláAlcalá de HenaresSpain
| | - Raquel Dafouz
- IMDEA Water InstituteScience and Technology Campus of the University of AlcaláAlcalá de HenaresSpain
| | | | - Marco Vighi
- IMDEA Water InstituteScience and Technology Campus of the University of AlcaláAlcalá de HenaresSpain
| | - Andreu Rico
- IMDEA Water InstituteScience and Technology Campus of the University of AlcaláAlcalá de HenaresSpain
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaPaternaSpain
| |
Collapse
|
56
|
Ateia M, Ersan G, Alalm MG, Boffito DC, Karanfil T. Emerging investigator series: microplastic sources, fate, toxicity, detection, and interactions with micropollutants in aquatic ecosystems - a review of reviews. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:172-195. [PMID: 35081190 PMCID: PMC9723983 DOI: 10.1039/d1em00443c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hundreds of review studies have been published focusing on microplastics (MPs) and their environmental impacts. With the microbiota colonization of MPs being firmly established, MPs became an important carrier for contaminants to step inside the food web all the way up to humans. Thus, the continuous feed of MPs into the ecosystem has sparked a multitude of scientific concerns about their toxicity, characterization, and interactions with microorganisms and other contaminants. The reports of common subthemes have agreed about many findings and research gaps but also showed contradictions about others. To unravel these equivocal conflicts, we herein compile all the major findings and analyze the paramount discrepancies among these review papers. Furthermore, we systematically reviewed all the highlights, research gaps, concerns, and future needs. The covered focus areas of MPs' literature include the sources, occurrence, fate, existence, and removal in wastewater treatment plants (WWTPs), toxicity, interaction with microbiota, sampling, characterization, data quality, and interaction with other co-contaminants. This study reveals that many mechanisms of MPs' behavior in aquatic environments like degradation and interaction with microbiota are yet to be comprehended. Furthermore, we emphasize the critical need to standardize methods and parameters for MP characterization to improve the comparability and reproducibility of the incoming research.
Collapse
Affiliation(s)
- Mohamed Ateia
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, OH, USA.
| | - Gamze Ersan
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA.
| | - Mohamed Gar Alalm
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV Montréal, H3C 3A7 Québec, Canada
- Department of Public Works Engineering, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
| | - Daria Camilla Boffito
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV Montréal, H3C 3A7 Québec, Canada
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA.
| |
Collapse
|
57
|
Long-Term Occurrence and Fate of Microplastics in WWTPs: A Case Study in Southwest Europe. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microplastic (MP) water pollution is a major problem that the world is currently facing, and wastewater treatment plants (WWTPs) represent one of the main alternatives to reduce the MP release to the environment. Several studies have analysed punctual samples taken throughout the wastewater treatment line. However, there are few long-term studies on the evolution of MPs over time in WWTPs. This work analyses the performance of a WWTP sited in Southwest Europe in relation with annual occurrence and fate of MPs. Samples were monthly taken at different points of the facility (influent, secondary effluent, final effluent, and sludge) and MPs were quantified and characterised by means of stereomicroscopy and FTIR spectrophotometry. The majority of MPs found in wastewater and sludge samples were fragments and fibres. Regarding to the chemical composition, in the water samples, polyethylene (PE), polyethylene terephthalate (PET) and polypropylene (PP) stood out, whereas, in the sludge samples, the main polymers were PET, polyamide (PA) and polystyrene (PS). The MPs more easily removed during the wastewater treatment processes were those with sizes greater than 500 µm. Results showed that the MPs removal was very high during all the period analysed with removal efficiencies between 89% and 95%, so no great variations were found between months. MP concentrations in dry sludge samples ranged between 12 and 39 MPs/g, which represented around 79% of the total MPs removed during the wastewater treatment processes. It is noticeable that a trend between temperature and MPs entrapped in sewage sludge was observed, i.e., higher temperatures entailed higher percentage of retention.
Collapse
|
58
|
Zhang Z, Cui Q, Chen L, Zhu X, Zhao S, Duan C, Zhang X, Song D, Fang L. A critical review of microplastics in the soil-plant system: Distribution, uptake, phytotoxicity and prevention. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127750. [PMID: 34838359 DOI: 10.1016/j.jhazmat.2021.127750] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are creating an emerging threat on the soil ecosystems and are of great global concern. However, the distribution in soil-plant system, as well as the phytotoxicity and impact mechanisms of MPs remain largely unexplored so far. This study introduced the diverse sources of MPs and showed the significant spatial variation in the global geographic distribution of MPs contamination based on data collected from 116 studies (1003 sampling sites). We systematically discussed MPs phytotoxicity, such as plant uptake and migration to stems and leaves, delaying seed germination, impeding plant growth, inhibiting photosynthesis, interfering with nutrient metabolism, causing oxidative damage, and producing genotoxicity. We further highlighted the alterations of soil structure and function by MPs, as well as their self and load toxicity, as potential mechanisms that threaten plants. Finally, this paper provided several preventive strategies to mitigate soil MPs pollution and presented research gaps in the biogeochemical behavior of MPs in soil-plant systems. Meanwhile, we recommended that methods for the quantitative detection of MPs accumulated in plant tissues should be explored and established as soon as possible. This review will improve the understanding of the environmental behavior of MPs in soil-plant systems and provide a theoretical reference to better assess the ecological risk of MPs.
Collapse
Affiliation(s)
- Zhiqin Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingchang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China
| | - Danxia Song
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
59
|
Li W, Chen X, Li M, Cai Z, Gong H, Yan M. Microplastics as an aquatic pollutant affect gut microbiota within aquatic animals. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127094. [PMID: 34530278 DOI: 10.1016/j.jhazmat.2021.127094] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 05/27/2023]
Abstract
The adverse impact of microplastics (MPs) on gut microbiota within aquatic animals depends on the overall effect of chemicals and biofilm of MPs. Thus, it is ideal to fully understand the influences that arise from each or even all of these characteristics, which should give us a whole picture of consequences that are brought by MPs. Harmful effects of MPs on gut microbiota within aquatic organisms start from the ingestion of MPs by aquatic organisms. According to this, the present review will discuss the ingestion of MPs and its following results on gut microbial communities within aquatic animals, in which chemical components, such as plastic polymers, heavy metals and POPs, and the biofilm of MPs would be involved. This review firstly analyzed the impacts of MPs on aquatic organisms in detail about its chemical components and biofilm based on previous relevant studies. At last, the significance of field studies, functional studies and complex dynamics of gut microbial ecology in the future research of MPs affecting gut microbiota is discussed.
Collapse
Affiliation(s)
- Weixin Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Xiaofeng Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Minqian Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Zeming Cai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
60
|
Schell T, Hurley R, Buenaventura NT, Mauri PV, Nizzetto L, Rico A, Vighi M. Fate of microplastics in agricultural soils amended with sewage sludge: Is surface water runoff a relevant environmental pathway? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118520. [PMID: 34800590 DOI: 10.1016/j.envpol.2021.118520] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/06/2021] [Accepted: 11/13/2021] [Indexed: 05/26/2023]
Abstract
Sewage sludge used as agricultural fertilizer has been identified as an important source of microplastics (MPs) to the environment. However, the fate of MPs added to agricultural soils is largely unknown. This study investigated the fate of MPs in agricultural soils amended with sewage sludge and the role of surface water runoff as a mechanism driving their transfer to aquatic ecosystems. This was assessed using three experimental plots located in a semi-arid area of Central Spain, which were planted with barley. The experimental plots received the following treatments: (1) control or no sludge application; (2) historical sludge application, five years prior to the experiment; and (3) sludge application at the beginning of the experiment. MPs were analyzed in surface water runoff and in different soil layers to investigate transport and infiltration for one year. The sewage sludge used in our experiment contained 5972-7771 MPs/kg dw. Based on this, we estimated that about 16,000 MPs were added to the agricultural plot amended with sludge. As expected, the sludge application significantly increased the MP concentration in soils. The control plot contained low MP concentrations (31-120 MPs kg-1 dw), potentially originating from atmospheric deposition. The plot treated five years prior to the experiment contained 226-412 and 177-235 MPs kg-1 dw at the start and end of the experiment, respectively; while the recently treated plot contained 182-231 and 138-288 MPs kg-1 dw. Our study shows that MP concentrations remain relatively constant in agricultural soils and that the MP infiltration capacity is very low. Surface water runoff had a negligible influence on the export of MPs from agricultural soils, mobilizing only 0.2-0.4% of the MPs added with sludge. We conclude that, in semi-arid regions, agricultural soils can be considered as long-term accumulators of MPs.
Collapse
Affiliation(s)
- Theresa Schell
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain; University of Alcalá, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Ctra. Madrid-Barcelona KM 33.600, 28871, Alcalá de Henares, Madrid, Spain.
| | - Rachel Hurley
- Norwegian Institute for Water Research (NIVA), Gaustadelléen 21, 0349, Oslo, Norway
| | - Nina T Buenaventura
- Norwegian Institute for Water Research (NIVA), Gaustadelléen 21, 0349, Oslo, Norway
| | - Pedro V Mauri
- Madrid Institute for Rural, Agricultural and Food Research and Development (IMIDRA), Department of Agricultural and Environmental Research, Ctra. Madrid-Barcelona (N-II) KM. 38.200, 28805, Alcalá de Henares, Madrid, Spain
| | - Luca Nizzetto
- Norwegian Institute for Water Research (NIVA), Gaustadelléen 21, 0349, Oslo, Norway; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 62500, Czech Republic
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain
| | - Marco Vighi
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
61
|
Kabir E, Uzzaman M. A review on biological and medicinal impact of heterocyclic compounds. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
62
|
Koyilath Nandakumar V, Palani SG, Raja Raja Varma M. Interactions between microplastics and unit processes of wastewater treatment plants: a critical review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:496-514. [PMID: 35050898 DOI: 10.2166/wst.2021.502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microplastics are classified as emerging pollutants of the aquatic environment, necessitating a comprehensive understanding of their properties for successful management and treatment. Wastewater treatment plants (WWTPs) serve as point sources of microplastic pollution of the aquatic and terrestrial (eco)systems. The first part of this review explores the basic definitions of microplastics, sources, types, physical and chemical methods of identifying and characterizing microplastics in WWTPs. The next part of the review details the occurrence of microplastics in various unit processes of WWTPs and sewage sludge. Followed by this, various methods for removing microplastics from wastewater are presented. Finally, the research gaps in this area were identified, and suggestions for future perspectives were provided.
Collapse
Affiliation(s)
- Vaishnavi Koyilath Nandakumar
- Department of Civil Engineering, BITS Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India; Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Sankar Ganesh Palani
- Environmental Biotechnology Laboratory, Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India E-mail:
| | - Murari Raja Raja Varma
- Department of Civil Engineering, BITS Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India
| |
Collapse
|
63
|
Bakhshoodeh R, Santos RM. Comparative bibliometric trends of microplastics and perfluoroalkyl and polyfluoroalkyl substances: how these hot environmental remediation research topics developed over time. RSC Adv 2022; 12:4973-4987. [PMID: 35425503 PMCID: PMC8981264 DOI: 10.1039/d1ra09344d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/03/2022] [Indexed: 11/21/2022] Open
Abstract
Bibliometrics point to the hottest areas of science and policy working to reverse the environmental impacts of PFAS and microplastics.
Collapse
Affiliation(s)
- Reza Bakhshoodeh
- Department of Civil, Environmental and Mining Engineering, University of Western Australia, Perth, Australia
| | - Rafael M. Santos
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
64
|
Wang Q, Li Y, Liu Y, Zhou Z, Hu W, Lin L, Wu Z. Effects of microplastics accumulation on performance of membrane bioreactor for wastewater treatment. CHEMOSPHERE 2022; 287:131968. [PMID: 34438214 DOI: 10.1016/j.chemosphere.2021.131968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/02/2021] [Accepted: 08/19/2021] [Indexed: 05/26/2023]
Abstract
The effective interception of membrane leads to the accumulation of microplastics (MPs) in membrane bioreactor (MBR) process for long-term operation. However, the influence of MPs accumulation on the performance of MBR hasn't been well understood. In this study, the accumulation of polypropylene microplastics (PP-MPs) in two MBRs run for 3 yr with or without discharging sludge was simulated by operating the lab-scale MBRs for 84 days. The variations of pollutant removal, membrane fouling, composition of soluble microbial product (SMP) and extracellular polymeric substance (EPS), and microbial community of MBRs were systematically investigated. The results show that the removal efficiency of COD and NH4+-N was not depressed by PP-MPs accumulation. However, the presence of PP-MPs in the range of 0.14-0.30 g/L could inhibit the growth of microorganisms, enhance the secretion of SMP and EPS, and reduce the microbial richness and diversity. In the contrary, the high concentration of PP-MPs (2.34-5.00 g/L) exhibited the opposite effects and mitigated membrane fouling, suggesting the important role of MPs concentration. It was also found that the exposure to high concentration of PP-MPs enhanced relative abundance of Clostridia, and inhibited the growth of Proteobacteria. The findings of this study provide a foresight to understand the effects of MPs accumulation on the performance of MBRs.
Collapse
Affiliation(s)
- QiaoYing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - YanLi Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - YingYing Liu
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Zhen Zhou
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China.
| | - WeiJie Hu
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD, Shanghai, 200092, China
| | - LiFeng Lin
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD, Shanghai, 200092, China
| | - ZhiChao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
65
|
Schernewski G, Radtke H, Robbe E, Haseler M, Hauk R, Meyer L, Piehl S, Riedel J, Labrenz M. Emission, Transport, and Deposition of visible Plastics in an Estuary and the Baltic Sea-a Monitoring and Modeling Approach. ENVIRONMENTAL MANAGEMENT 2021; 68:860-881. [PMID: 34505927 PMCID: PMC8578054 DOI: 10.1007/s00267-021-01534-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/26/2021] [Indexed: 05/12/2023]
Abstract
was to assess whether a comprehensive approach linking existing knowledge with monitoring and modeling can provide an improved insight into coastal and marine plastics pollution. We focused on large micro- and mesoplastic (1-25 mm) and selected macroplastic items. Emission calculations, samplings in the Warnow river and estuary (water body and bottom sediments) and a flood accumulation zone monitoring served as basis for model simulations on transport and behavior in the entire Baltic Sea. Considered were the most important pathways, sewage overflow and stormwater. The coastline monitoring together with calculations allowed estimating plastics emissions for Rostock city and the Warnow catchment. Average concentrations at the Warnow river mouth were 0.016 particles/m³ and in the estuary 0.14 particles/m³ (300 µm net). The estuary and nearby Baltic Sea beaches were hot-spots for plastic accumulation with 6-31 particles/m². With increasing distance from the estuary, the concentrations dropped to 0.3 particles/m². This spatial pattern, the plastic pollution gradients and the observed annual accumulation values were consistent with the model results. Indicator items for sewer overflow and stormwater emissions exist, but were only found at low numbers in the environment. The considered visible plastics alone can hardly serve as indicator for microplastic pollution (<1 mm). The use of up-scaled emission data as input for Baltic Sea model simulations provided information on large scale emission, transport and deposition patterns of visible plastics. The results underline the importance of plastic retention in rivers and estuaries.
Collapse
Affiliation(s)
- Gerald Schernewski
- Leibniz Institute for Baltic Sea Research, Rostock, Germany.
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania.
| | - Hagen Radtke
- Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Esther Robbe
- Leibniz Institute for Baltic Sea Research, Rostock, Germany
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
| | - Mirco Haseler
- Leibniz Institute for Baltic Sea Research, Rostock, Germany
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
| | - Rahel Hauk
- Hydrology and Quantitative Water Management Group, Wageningen University, Wageningen, The Netherlands
| | - Lisa Meyer
- Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Sarah Piehl
- Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Joana Riedel
- Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | | |
Collapse
|
66
|
Mohana AA, Farhad SM, Haque N, Pramanik BK. Understanding the fate of nano-plastics in wastewater treatment plants and their removal using membrane processes. CHEMOSPHERE 2021; 284:131430. [PMID: 34323805 DOI: 10.1016/j.chemosphere.2021.131430] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/20/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Nanoplastics (NPs) have become a major environmental issue due to their adverse effect on the water environment. Wastewater treatment plant (WWTP) is considered as one of the main sources for breaking down of larger-sized plastic debris and microplastics (MPs) into NPs. This study aims to provide a comprehensive understanding of NPs generation in the WWTPs, their physiochemical characteristics and interaction with the WWTPs. It is found that cracking is the major mechanism of plastics fragmentation in the WWTPs. This review also discusses the current membrane process used for NPs removal. It is found that conventional membrane processes are ineffective as they are not designed for NPs removal and fouling is a major obstacle for its application. Therefore, this study concludes by providing an outlook of developing a bio-nanofiltration process that can be used as a tertiary treatment for removing NPs and other components present in water. Such a process can produce NPs-free water for non-potable use or safe discharge into open waterways.
Collapse
Affiliation(s)
- Anika Amir Mohana
- Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia, Bangladesh
| | - S M Farhad
- Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia, Bangladesh
| | - Nawshad Haque
- CSIRO Mineral Resources, Clayton South, Melbourne, VIC, 3169, Australia
| | | |
Collapse
|
67
|
Ershova A, Makeeva I, Malgina E, Sobolev N, Smolokurov A. Combining citizen and conventional science for microplastics monitoring in the White Sea basin (Russian Arctic). MARINE POLLUTION BULLETIN 2021; 173:112955. [PMID: 34601252 DOI: 10.1016/j.marpolbul.2021.112955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/22/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The study presents the results of the field expedition in the Russian Arctic held by a group of NGO members, scientists and volunteers in summer-autumn 2020 in the Arkhangelsk Region (Russia). The survey showed microplastics presence in 7 out of 13 remote and sparsely inhabited locations in lakes, rivers and coastal areas of the White Sea basin, with microplastic particle average concentration 1.14 part/m3, that is in agreement with other recent regional studies. Mostly PE, PET and PVC were found. A simple, cheap and easy-to-use microplastics monitoring protocol was developed and tested to be used by volunteers in remote Arctic communities. Video-lectures and tutorials are available online in an open-aсcess mode. 200 volunteers from polar communities are trained in microplastic sampling and litter separation, learning about microplastic pollution, including local residents, schoolchildren and students.
Collapse
Affiliation(s)
- Alexandra Ershova
- Russian State Hydrometeorological University (RSHU), Voronezhskaya ul., 79, St. Petersburg, Russia.
| | - Irina Makeeva
- Russian State Hydrometeorological University (RSHU), Voronezhskaya ul., 79, St. Petersburg, Russia
| | - Evgeniya Malgina
- Northern (Arctic) Federal University Named After M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia
| | - Nikita Sobolev
- Northern (Arctic) Federal University Named After M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia
| | - Artem Smolokurov
- Arkhangelsk Regional Youth Ecology Public Organization "Clean North-Clean Country", ul.Pomorskaya, 44-57, Arkhangelsk, Russia
| |
Collapse
|
68
|
Stockin KA, Pantos O, Betty EL, Pawley MDM, Doake F, Masterton H, Palmer EI, Perrott MR, Nelms SE, Machovsky-Capuska GE. Fourier transform infrared (FTIR) analysis identifies microplastics in stranded common dolphins (Delphinus delphis) from New Zealand waters. MARINE POLLUTION BULLETIN 2021; 173:113084. [PMID: 34775153 DOI: 10.1016/j.marpolbul.2021.113084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Here we provide a first assessment of microplastics (MPs) in stomach contents of 15 common dolphins (Delphinus delphis) from both single and mass stranding events along the New Zealand coast between 2019 and 2020. MPs were observed in all examined individuals, with an average of 7.8 pieces per stomach. Most MPs were fragments (77%, n = 90) as opposed to fibres (23%, n = 27), with translucent/clear (46%) the most prevalent colour. Fourier transform infrared (FTIR) spectroscopy revealed polyethylene terephthalate (65%) as the most predominant polymer in fibres, whereas polypropylene (31%) and acrylonitrile butadiene styrene (20%) were more frequently recorded as fragments. Mean fragment and fibre size was 584 μm and 1567 μm, respectively. No correlation between total number of MPs and biological parameters (total body length, age, sexual maturity, axillary girth, or blubber thickness) was observed, with similar levels of MPs observed between each of the mass stranding events. Considering MPs are being increasingly linked to a wide range of deleterious effects across taxa, these findings in a typically pelagic marine sentinel species warrants further investigation.
Collapse
Affiliation(s)
- Karen A Stockin
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Private Bag 102 904, Auckland 0745, New Zealand.
| | - Olga Pantos
- Institute of Environmental Science and Research, 27 Creyke Rd, Ilam, Christchurch 8041, New Zealand
| | - Emma L Betty
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Private Bag 102 904, Auckland 0745, New Zealand
| | - Matthew D M Pawley
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Private Bag 102 904, Auckland 0745, New Zealand
| | - Fraser Doake
- Institute of Environmental Science and Research, 27 Creyke Rd, Ilam, Christchurch 8041, New Zealand
| | - Hayden Masterton
- Institute of Environmental Science and Research, 27 Creyke Rd, Ilam, Christchurch 8041, New Zealand
| | - Emily I Palmer
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Private Bag 102 904, Auckland 0745, New Zealand
| | - Matthew R Perrott
- School of Veterinary Science, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Sarah E Nelms
- Centre for Ecology and Conservation, University of Exeter, Cornwall TR10 9EZ, United Kingdom
| | - Gabriel E Machovsky-Capuska
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Private Bag 102 904, Auckland 0745, New Zealand
| |
Collapse
|
69
|
Evidence for Microplastics Contamination of the Remote Tributary of the Yenisei River, Siberia—The Pilot Study Results. WATER 2021. [DOI: 10.3390/w13223248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study is a pioneering attempt to count microplastics (MPs) in the Yenisei River system to clarify the role of Siberian Rivers in the transport of MPs to the Arctic Ocean. The average MPs content in the surface water of the Yenisei large tributary, the Nizhnyaya Tunguska River, varied from 1.20 ± 0.70 to 4.53 ± 2.04 items/m3, tending to increase along the watercourse (p < 0.05). Concentrations of MPs in bottom sediments of the two rivers were 235 ± 83.0 to 543 ± 94.1 with no tendency of downstream increasing. Linear association (r = 0.952) between average organic matter content and average counts of MPs in bottom sediments occurred. Presumably MPs originated from the daily activities of the in-situ population. Further spatial-temporal studies are needed to estimate the riverine MPs fluxes into the Eurasian Arctic seas.
Collapse
|
70
|
Schell T, Hurley R, Nizzetto L, Rico A, Vighi M. Spatio-temporal distribution of microplastics in a Mediterranean river catchment: The importance of wastewater as an environmental pathway. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126481. [PMID: 34252669 DOI: 10.1016/j.jhazmat.2021.126481] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 05/12/2023]
Abstract
Microplastics (MPs) are considered to be ubiquitous contaminants in freshwater ecosystems, yet their sources and pathways at the river catchment scale need to be better determined. This study assessed MP (55-5000 µm) pollution in a Mediterranean river catchment (central Spain) and aimed to identify the importance of wastewater as an environmental pathway. We sampled treated and untreated wastewaters, and raw and digested sludge from five WWTPs during two seasons. River water and sediments were sampled at three locations with different anthropogenic influences during three seasons. On average, 93% (47-99%) of MPs were retained by WWTPs. Concentrations in river water and sediment ranged between 1 and 227 MPs/m3 and 0-2630 MPs/kg dw, respectively. Concentrations strongly depended upon land-use, with pollution levels increasing significantly downstream of urban and industrial areas. Seasonality influenced the observed MP concentrations strongly. During high flow periods, higher water but lower sediment concentrations were observed compared to low flow periods. We estimate that 1 × 1010 MPs are discharged into the catchment via treated and untreated wastewater annually, which constitutes up to 50% of the total MP catchment discharge. Thus, we conclude that the wastewater system represents a major environmental pathway for MPs into Mediterranean rivers with low dilution capacity.
Collapse
Affiliation(s)
- Theresa Schell
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain; University of Alcalá, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Ctra. Madrid-Barcelona KM 33.600, 28871 Alcalá de Henares, Madrid, Spain.
| | - Rachel Hurley
- Norwegian Institute for Water Research (NIVA), Gaustadelléen 21, 0349 Oslo, Norway
| | - Luca Nizzetto
- Norwegian Institute for Water Research (NIVA), Gaustadelléen 21, 0349 Oslo, Norway; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno 62500, Czech Republic
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Marco Vighi
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
71
|
Sucharitakul P, Pitt KA, Welsh DT. Assessment of microplastics in discharged treated wastewater and the utility of Chrysaora pentastoma medusae as bioindicators of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148076. [PMID: 34090170 DOI: 10.1016/j.scitotenv.2021.148076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Microplastics are ubiquitous pollutants in aquatic environments globally. Wastewater treatment plants are considered to be a major source of microplastics and jellyfish have been proposed as potential bioindicators of microplastic pollution. We tested whether treated wastewater influenced the concentration and/or composition of microplastics in the receiving water by comparing the concentration and composition of microplastics in seawater collected in the wastewater plume and at sites distant from treated wastewater releases in the Gold Coast Broadwater, Australia, and at sites within the nearby Tweed River estuaries, which receives >10 times less wastewater discharge. In addition, tiger sea nettle Chrysaora cf. pentostoma medusae were collected to determine whether more microplastics occurred in the guts of the medusae nearby diffusers and whether the microplastics ingested by medusae were representative of those present in the water column. The concentration and composition of microplastics at the wastewater release sites did not significantly differ from sites that were distant from them. Eighty three percent of medusae contained microplastics in their guts and the composition of the ingested microplastics differed significantly from that in the surrounding water. We concluded that discharged treated wastewater had no detectable effect on levels or composition of microplastics in the receiving water and that C. pentostoma are unsuitable bioindicators because the microplastics they ingested did not represent those available in their environment.
Collapse
Affiliation(s)
- Phuping Sucharitakul
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Gold Coast Campus, Griffith University, 4222, Australia.
| | - Kylie A Pitt
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Gold Coast Campus, Griffith University, 4222, Australia
| | - David T Welsh
- School of Environment and Science, Griffith University, Gold Coast campus, QLD, 4215, Australia; Future Industry Institute, University of South Australia, Adelaide, SA 5095, Australia
| |
Collapse
|
72
|
Hatinoğlu MD, Sanin FD. Sewage sludge as a source of microplastics in the environment: A review of occurrence and fate during sludge treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113028. [PMID: 34153586 DOI: 10.1016/j.jenvman.2021.113028] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/12/2021] [Accepted: 06/04/2021] [Indexed: 05/17/2023]
Abstract
Modern wastewater treatment plants (WWTPs) effectively remove microplastics (MPs) from wastewater and unsurprisingly concentrate them in sludge. Hence through its beneficial use and disposal, sludge causes secondary release pathways of an estimated average amount of 106 to 1014 wastewater-based MPs to various environmental compartments yearly. Despite these numbers, studies investigating sludge are scarce. Currently, majority of the studies in the field focus on identifying the magnitude of the problem, whereas research investigating the fate and effects of MPs during sludge treatment are very rare. This review aims to bring together and critically evaluate the limited studies conducted about MPs in the sludge treatment line and bring out the key gaps and research needs in the area. Studies conducted so far indicate that depending on the type, size, and amount of MPs, their effects during anaerobic digestion differ, with some studies demonstrating serious negative impact on biogas production. Possible effect mechanisms are also suggested such as formation of reactive oxygen species (ROS) and leaching of toxic chemicals. Moreover, a potential for sludge treatment processes (thickening, dewatering, drying, stabilization, etc.) to change the characteristics and the number of MPs, which may increase surface area available for adsorption and desorption of pollutants, was observed. Review uncovers that, in the broad universe of MPs, some highly abundant ones in sludge such as polypropylene, polyurethane, polycarbonate, and acrylic are not yet investigated in sludge treatment. Future research should focus not only to investigate the fate/effects but to fully understand the mechanisms behind these, which is missing in many studies reviewed. Besides, new studies show that effect of MPs start from the floc formation stage during biological treatment, which in fact determine the final sludge behavior in thickening and dewatering. Therefore, holistic approaches starting from wastewater till sludge exits WWTP seem necessary. Substantiating from polymer chemistry and response of plastics to stress conditions, review suggests possibilities of deterioration during sludge treatment processes. It becomes evident that some totally uninvestigated aspects such as disintegration conducted before stabilization, can change the fate of MPs during sludge treatment and may bring new perspectives to the solution of the problem.
Collapse
Affiliation(s)
- M Dilara Hatinoğlu
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey
| | - F Dilek Sanin
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|
73
|
Rius-Ayra O, Biserova-Tahchieva A, López-Jiménez I, Llorca-Isern N. Superhydrophobic and nanostructured CuFeCo powder alloy for the capture of microplastics. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
74
|
Vilakati B, Sivasankar V, Nyoni H, Mamba BB, Omine K, Msagati TAM. The Py - GC-TOF-MS analysis and characterization of microplastics (MPs) in a wastewater treatment plant in Gauteng Province, South Africa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112478. [PMID: 34214769 DOI: 10.1016/j.ecoenv.2021.112478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/15/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Wastewater treatment plants (WWTPs) in South Africa, like is the case for most WWTPs around the globe albeit capable of removing substantial quantities of microplastics (MPs) and in fact, the treatments become ineffective for those plastic particles less than 100 µm. As a consequence, the receiving water bodies in which the final effluent is discharged becomes highly polluted. The present research is devoted to the analysis of the pervasive MPs in wastewaters of the treatment plant located in the Gauteng Province, South Africa using Pyrolysis - GC-TOF-MS. Based on the results, there were 23 pyrolyzate products with contributions from PVC, PA, PET and PE with abundances of 47.8%, 13.1%, 17.4% and 4.3% respectively. The remaining 17.4% could be attributed as additives in MPs. The SEM images illustrated that the MPs appeared to be inter - wined, fibrous of different thicknesses and lengths. The highly weathered MPs exhibited the rough surface which was noticeably damaged with peeled off layers presumably because of photo-oxidation during the aging process. The vibrational modes of FTIR revealed the presence of the various functional groups in the corresponding polymers of MPs. The thermal studies confirmed the presence of calcium, aluminum and silicon as residues of catalysts or flame retardants or UV stabilizers in MPs or as adsorbates resulting from the surface adsorption from the surroundings. The Py-GC-TOF-MS confirmed the identity of the various fragments related to the MPs monomers.
Collapse
Affiliation(s)
- Bongekile Vilakati
- University of South Africa, College of Science Engineering and Technology, Institute for Nanotechnology and Water Sustainability, UNISA Science Campus, P.O. Box 392 UNISA 0003, Florida 1709, Johannesburg, South Africa
| | - V Sivasankar
- Post Graduate and Research Department of Chemistry, Pachaiyappa's College (Affiliated to University of Madras), Chennai 600030, Tamil Nadu, India.
| | - Hlengilizwe Nyoni
- University of South Africa, College of Science Engineering and Technology, Institute for Nanotechnology and Water Sustainability, UNISA Science Campus, P.O. Box 392 UNISA 0003, Florida 1709, Johannesburg, South Africa
| | - Bhekie B Mamba
- University of South Africa, College of Science Engineering and Technology, Institute for Nanotechnology and Water Sustainability, UNISA Science Campus, P.O. Box 392 UNISA 0003, Florida 1709, Johannesburg, South Africa
| | - Kiyoshi Omine
- Department of Civil Engineering, School of Engineering, Nagasaki University, Nagasaki-Daigaku, 1-14 Bunkyo-machi, Nagasaki 852 8521, Japan
| | - Titus A M Msagati
- University of South Africa, College of Science Engineering and Technology, Institute for Nanotechnology and Water Sustainability, UNISA Science Campus, P.O. Box 392 UNISA 0003, Florida 1709, Johannesburg, South Africa.
| |
Collapse
|
75
|
Shams M, Alam I, Mahbub MS. Plastic pollution during COVID-19: Plastic waste directives and its long-term impact on the environment. ENVIRONMENTAL ADVANCES 2021; 5:100119. [PMID: 34604829 PMCID: PMC8464355 DOI: 10.1016/j.envadv.2021.100119] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 05/21/2023]
Abstract
Majority of the million tons of plastic produced each year is being disposed after single-use. Plastic bottle, bags, food containers, gloves, and cup that end up in landfills and environment could linger for hundreds to thousands of years. Moreover, COVID-19 pandemic caused by the novel coronavirus (SARS-CoV-2), will also exacerbate the global plastic pollution as the use of personal protective equipment (PPE i.e., gloves, masks) became mandatory to prevent the spread of the virus. Plastic eventually breaking down in micro & nanoscopic bits due to physical or chemical or biological actions in the environment, can enter animal and human food web. So, plastic management programs need to be more robust with a focus on the prevention of the micro and nanoplastics entrance into the environment and food web. In the present pandemic situation, it is even more necessary to know about how much plastic waste is being generated and how different countries are coping up with their plastic waste management. In this review, we have elucidated how global plastic production rise during COVID-19 and how it would contribute to short and long-term impacts on the environment. Plastic pollution during the pandemic will increase the GHS emissions in the incineration facilities. Improper disposal of plastics into the oceans and lands would endanger the marine species and subsequently human lives. We have also assessed how the increased plastic pollution will aggravate the micro and nanoscale plastic problem, which have now become an emerging concern. This review will be helpful for people to understand the plastic usage and its subsequent consequences in the environment in a pandemic like COVID-19.
Collapse
Affiliation(s)
- Mehnaz Shams
- School of Civil, Environmental, and Infrastructure Engineering, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Iftaykhairul Alam
- Organic Chemistry Group, RJ Lee Group: Columbia Basin Analytical Laboratory, Pasco, WA, 99301, USA
| | - Md Shahriar Mahbub
- School of Civil, Environmental, and Infrastructure Engineering, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
76
|
Eppehimer DE, Hamdhani H, Hollien KD, Nemec ZC, Lee LN, Quanrud DM, Bogan MT. Impacts of baseflow and flooding on microplastic pollution in an effluent-dependent arid land river in the USA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45375-45389. [PMID: 33864222 DOI: 10.1007/s11356-021-13724-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Effluent discharge from wastewater treatment plants can be a substantial source of microplastics in receiving water bodies including rivers. Despite growing concern about microplastic pollution in freshwater habitats, the literature has not yet addressed effluent-dependent rivers, which derive 100% of their baseflow from effluent. The objective of this study was to document and explore trends in microplastic pollution within the effluent-dependent lower Santa Cruz River near Tucson, Arizona (USA). We examined microplastic concentrations in the water column and benthic sediment and microplastic consumption by mosquitofish (Gambusia affinis) at 10 sites along a ~40 km stretch of the lower Santa Cruz River across two time periods: baseflow (effluent only) and post-flood (effluent immediately following urban runoff). In total, across both sampling periods, we detected microplastics in 95% of water column samples, 99% of sediment samples, and 6% of mosquitofish stomachs. Flow status (baseflow vs post-flood) was the only significant predictor of microplastic presence and concentrations in our models. Microplastic fragment concentrations in the water column were higher post-flood, microplastic fiber concentrations in benthic sediment were lower post-flood, and mosquitofish were more likely to have consumed microplastics post-flood than during baseflow. The additional microplastics detected after flooding was likely due to a combination of allochthonous material entering the channel via runoff and bed scour that exhumed microplastics previously buried in the riverbed. Effluent-dependent urban streams are becoming increasingly common; more work is needed to identify microplastic pollution baselines and trends in effluent rivers worldwide.
Collapse
Affiliation(s)
- Drew E Eppehimer
- School of Natural Resources and the Environment, University of Arizona, Environment and Natural Resources Building 2, 1064 East Lowell Street, Tucson, AZ, 85721, USA.
| | - Hamdhani Hamdhani
- School of Natural Resources and the Environment, University of Arizona, Environment and Natural Resources Building 2, 1064 East Lowell Street, Tucson, AZ, 85721, USA
| | - Kelsey D Hollien
- School of Natural Resources and the Environment, University of Arizona, Environment and Natural Resources Building 2, 1064 East Lowell Street, Tucson, AZ, 85721, USA
| | - Zach C Nemec
- School of Natural Resources and the Environment, University of Arizona, Environment and Natural Resources Building 2, 1064 East Lowell Street, Tucson, AZ, 85721, USA
| | - Larissa N Lee
- School of Natural Resources and the Environment, University of Arizona, Environment and Natural Resources Building 2, 1064 East Lowell Street, Tucson, AZ, 85721, USA
| | - David M Quanrud
- School of Natural Resources and the Environment, University of Arizona, Environment and Natural Resources Building 2, 1064 East Lowell Street, Tucson, AZ, 85721, USA
| | - Michael T Bogan
- School of Natural Resources and the Environment, University of Arizona, Environment and Natural Resources Building 2, 1064 East Lowell Street, Tucson, AZ, 85721, USA
| |
Collapse
|
77
|
Mishra AK, Singh J, Mishra PP. Microplastics in polar regions: An early warning to the world's pristine ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147149. [PMID: 33895505 DOI: 10.1016/j.scitotenv.2021.147149] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/24/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
The menace of plastic which is polluting the ocean has emerged as a global problem. It is well-known to everyone that the ultimate end for most of the plastic debris is the ocean. The distribution of plastic rubbish in the oceans is strongly influenced by hydrodynamic properties of water. The continuous break down of plastic objects, as a consequence of thermal, chemical and biological processes along with various environmental factors, results into microplastics (MPs). The microplastics are those particles which are deriving pallets of plastic, having length of less than 5 mm or 0.2 in. Nowadays microplastics are everywhere in the waters all around the world. The high dispersion pattern of oceanic currents takes away microplastics in the entire ocean even to remote areas, like the Polar Regions. Microplastics are difficult to remove from the ocean and the ingestion of these particles by several consumers of different trophic levels like benthos, birds, and fishes is a threat to the diverse food webs and ecosystems. Different scientific investigations have ascertained that a significant concentration of MPs are present in various marine ecosystems globally including the Polar region (both Arctic and Antarctic), and in the upcoming future, the condition is expected to get worse. The objective of this review is to establish a baseline evidence for the availability of microplastics in the polar region. For this reason, the state of the art of knowledge on microplastics in Polar Regions was studied.
Collapse
Affiliation(s)
- Amit K Mishra
- Department of Environmental Sciences, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, U. P., India
| | - Jaswant Singh
- Department of Environmental Sciences, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, U. P., India.
| | - Pratyush P Mishra
- Department of Environmental Sciences, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, U. P., India
| |
Collapse
|
78
|
Microplastic and Organic Fibres in Feeding, Growth and Mortality of Gammarus pulex. ENVIRONMENTS 2021. [DOI: 10.3390/environments8080074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microplastic fibres (MPFs) are a major source of microplastic pollution, most are released during domestic washing of synthetic clothing. Organic microfibres (OMF) are also released into the environment by the same means, with cotton and wool being the most common in the UK. There is little empirical evidence to demonstrate that plastic fibres are more harmful than organic fibres if ingested by freshwater animals such as Gammarus pulex. Using our method of feeding Gammarus MPFs embedded in algal wafers, we compared the ingestion, feeding behaviour and growth of Gammarus exposed to 70 µm sheep wool, 20 µm cotton, 30 µm acrylic wool, and 50 µm or 100 µm human hair, and 30 µm cat hair at a concentration of 3% fibre by mass. Gammarus would not ingest wafers containing human hair, or sheep wool fibres. Given the choice between control wafers and those contaminated with MPF, cat hair or cotton, Gammarus spent less time feeding on MPF but there was no difference in the time spent feeding on OMFs compared to the control. Given a choice between contaminated wafers, Gammarus preferred the OMF to the MPF. There were no significant differences in growth or mortality among any of the treatments. These results conclude that MPFs are less likely to be ingested by Gammarus if alternative food is available and are not more harmful than OMFs.
Collapse
|
79
|
Rasmussen LA, Iordachescu L, Tumlin S, Vollertsen J. A complete mass balance for plastics in a wastewater treatment plant - Macroplastics contributes more than microplastics. WATER RESEARCH 2021; 201:117307. [PMID: 34116293 DOI: 10.1016/j.watres.2021.117307] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 05/26/2023]
Abstract
A complete plastic particle mass balance was established at Sweden's second-largest wastewater treatment plant. It comprised material collected at its two bar screens, a 20 mm and a 2 mm one, in the influent water after the 20 mm screen, the effluent water, and the digested sludge. Macro- and microplastics above 500 µm were analysed individually applying ATR-FTIR, while microplastics of 10-500 µm were analysed by µFTIR imaging with automated particle recognition. Masses of plastics >500 µm were determined by weighting, while the mass of the smaller microplastics was estimated from the imaging. The total plastic load on the plant was 202.2 kg d-1, of which the two screens retained 73%. The remaining plastic mass was found in the sludge (13.6%) and the effluent (0.4%). The missing 12.7% could be caused by sampling and measuring uncertainties and potentially also fragmentation below the size detection limit of the analytical approach, or by degradation. The bar screens furthermore retained plastics smaller than the screen size, indicating that this material should be taken into account also when solely looking at smaller particles. The overall treatment efficiency of the plant was high: 99.6% considering both macro- and microplastics, and 98.8% considering only microplastics <500 µm.
Collapse
Affiliation(s)
| | - Lucian Iordachescu
- Department of the Built Environment, Aalborg University, 9220 Aalborg Øst, Denmark
| | | | - Jes Vollertsen
- Department of the Built Environment, Aalborg University, 9220 Aalborg Øst, Denmark
| |
Collapse
|
80
|
He ZW, Yang WJ, Ren YX, Jin HY, Tang CC, Liu WZ, Yang CX, Zhou AJ, Wang AJ. Occurrence, effect, and fate of residual microplastics in anaerobic digestion of waste activated sludge: A state-of-the-art review. BIORESOURCE TECHNOLOGY 2021; 331:125035. [PMID: 33820702 DOI: 10.1016/j.biortech.2021.125035] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The plastic products have large consumption over last decades, resulting in a serious microplastics (MPs) pollution. Specially, the main removal way of MPs from wastewater is to transfer MPs from liquid to solid phase, leading to its enrichment in waste activated sludge (WAS). Anaerobic digestion has been served as the most potential technique to achieve both resource recovery and sludge reduction, herein this review provides current information on occurrence, effect, and fate of MPs in anaerobic digestion of WAS. The effects of MPs on WAS anaerobic digestion are greatly related to forms, particles sizes, contents, compositions and leachates of MPs. Also, the presence of MPs not only can change the effects of other pollutants on anaerobic digestion of WAS, but also can affect the fates of them. Besides, the future perspectives focused on the fate, effect and final removal of MPs during WAS anaerobic digestion process are outlined.
Collapse
Affiliation(s)
- Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wen-Jing Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hong-Yu Jin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wen-Zong Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Chun-Xue Yang
- Heilongjiang Cold Region Wetland Ecology and Environment Research Key Laboratory, School of Geography and Tourism, Harbin University, Harbin 150086, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
81
|
Menendez D, Alvarez A, Peon P, Ardura A, Garcia-Vazquez E. From the ocean to jellies forth and back? Microplastics along the commercial life cycle of red algae. MARINE POLLUTION BULLETIN 2021; 168:112402. [PMID: 34000708 DOI: 10.1016/j.marpolbul.2021.112402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Red algae are increasingly exploited for direct consumption and for production of gelling agents like agar and carrageenan, widely employed in food and personal care products. In this article we identify knowledge gaps about microplastics in the whole commercial life cycle of gelling red algae, from their marine production to the final wastewater treatment. Recommendations for new research include studies of microplastics deposition on red algae at sea, during the industrial process of production of gelling agents, and indeed about improvements of microplastics retention in wastewater treatment plants.
Collapse
Affiliation(s)
- Daniel Menendez
- Department of Functional Biology, University of Oviedo, C/ Julian Claveria s/n, 33006 Oviedo, Spain
| | - Almudena Alvarez
- Centro de Experimentación Pesquera, Dirección General de Pesca Marítima, Consejería de Medio Rural y Cohesión Territorial del Principado de Asturias, Escuela de Formación Profesional Náutico Pesquera, 2ª planta, Avda. Príncipe de Asturias s/n, 33212 Gijón, Spain
| | - Paloma Peon
- Centro de Experimentación Pesquera, Dirección General de Pesca Marítima, Consejería de Medio Rural y Cohesión Territorial del Principado de Asturias, Escuela de Formación Profesional Náutico Pesquera, 2ª planta, Avda. Príncipe de Asturias s/n, 33212 Gijón, Spain
| | - Alba Ardura
- Department of Functional Biology, University of Oviedo, C/ Julian Claveria s/n, 33006 Oviedo, Spain.
| | - Eva Garcia-Vazquez
- Department of Functional Biology, University of Oviedo, C/ Julian Claveria s/n, 33006 Oviedo, Spain
| |
Collapse
|
82
|
Rius-Ayra O, Biserova-Tahchieva A, LLorca-Isern N. Surface-functionalised materials for microplastic removal. MARINE POLLUTION BULLETIN 2021; 167:112335. [PMID: 33839572 DOI: 10.1016/j.marpolbul.2021.112335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Microplastic (MP) pollution is a matter of great concern attracting increasing attention due to its adverse effects on the environment. Different technologies and methodologies have been developed to remove these pollutants. Herein, we focus on a promising environmental solution that involves surface modification to change the wettability properties of MPs or solid materials by conferring superhydrophobicity and superoleophilicity to increase the selectivity for MP separation. Both processes can be used to selectively separate MPs because of the changes in the wettable properties of the MP or by changing the oil used in the case of superhydrophobic surfaces. We show two distinct methods based on changing the wettability properties of surfaces that could lead to innovative and environmental applications. We also discuss some of the challenges that need to be overcome.
Collapse
Affiliation(s)
- O Rius-Ayra
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1 - 11, 08028 Barcelona, Spain.
| | - A Biserova-Tahchieva
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1 - 11, 08028 Barcelona, Spain
| | - N LLorca-Isern
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1 - 11, 08028 Barcelona, Spain
| |
Collapse
|
83
|
Golwala H, Zhang X, Iskander SM, Smith AL. Solid waste: An overlooked source of microplastics to the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144581. [PMID: 33482549 DOI: 10.1016/j.scitotenv.2020.144581] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 05/21/2023]
Abstract
Microplastics pollution is one of the most pressing environmental problems of the 21st century. While microplastics are pervasive throughout various environmental compartments, research to date has primarily focused on marine systems. Land-based microplastics sources (e.g., solid waste) have received comparatively little attention, although they account for the main flow of microplastics into aquatic environments. Solid waste microplastics sources primarily include landfill refuse, sludge, and food waste. Microplastics in these waste streams can be associated with various micropollutants that can have deleterious impacts on ecosystem health as they enter the food chain. Thus, understanding the occurrence, fate, and degradation pathways of solid waste microplastics is essential to develop comprehensive control and mitigation strategies. This study critically reviewed these key aspects of microplastics in municipal solid waste landfill refuse, sewage sludge, and food waste, and identified the interconnections of these components in the proliferation of microplastics to the environment. Additionally, microplastics related laws and regulations and their relevance to solid waste microplastics mitigation are discussed.
Collapse
Affiliation(s)
- Harmita Golwala
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA
| | - Xueyao Zhang
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA
| | - Syeed Md Iskander
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA; Department of Civil and Environmental Engineering, North Dakota State University, 1410 North 14th Avenue, Fargo, ND 58102, USA.
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA.
| |
Collapse
|
84
|
Wang Z, Gao J, Zhao Y, Dai H, Jia J, Zhang D. Plastisphere enrich antibiotic resistance genes and potential pathogenic bacteria in sewage with pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144663. [PMID: 33454495 DOI: 10.1016/j.scitotenv.2020.144663] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) and pharmaceuticals are common emerging pollutants in sewage, and their coexistence may have more negative effects on the environments. This study chose tetracycline (TC), ampicillin (AMP) and triclosan (TCS) to investigate the responses of antibiotic resistance genes (ARGs) and microbial communities on different MPs (polyvinyl chloride (PVC), polyethylene (PE)) biofilms (plastisphere). The adsorption capacity of three pharmaceuticals on PVC and PE decreased in the order of AMP > TC > TCS. PE was more conducive to microbial attachment than PVC. MPs led to the increase of the total copies of ARGs and mobile genetic elements (MGEs) in the sewage. Importantly, multidrug ARGs and MGEs were enriched on plastisphere. Furthermore, the co-occurrence of TC and MPs led to higher risks of spreading ARGs and MGEs. In addition, potential pathogenic bacteria Legionella, Mycobacterium, Neisseria and Arcobacter were more abundant on plastisphere than those in sewage, and these bacteria might be the hosts for ARGs and MGEs. This study showed that plastisphere could be repositories of ARGs and MGEs in sewage and accumulated potential pathogenic bacteria.
Collapse
Affiliation(s)
- Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Huihui Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jingxin Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Da Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
85
|
Monteleone A, Schary W, Wenzel F, Langhals H, Dietrich DR. Label-free identification and differentiation of different microplastics using phasor analysis of fluorescence lifetime imaging microscopy (FLIM)-generated data. Chem Biol Interact 2021; 342:109466. [PMID: 33865829 DOI: 10.1016/j.cbi.2021.109466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022]
Abstract
As plastic pollution is becoming an increasing worldwide problem, a variety of different techniques for the detection and in-depth characterization of plastics, including spectroscopy and chromatography methods, were introduced to the public. Recently we presented fluorescence lifetime imaging microscopy (FLIM) a new approach for the identification and characterization of microplastics using their fluorescence lifetime (τ) for differentiation. A very powerful extension of the recently established FLIM could be phasor analysis, which allows data representation in an interactive 2D graphical phasor plot thereby enabling a global view of the fluorescence decay in each pixel of the measured image. Microplastic particles generated from six different types of plastics were subjected to excitation wavelengths of 440 nm, upon which specific fluorescence lifetimes as well as the photon yield were determined using FLIM and phasor analysis. We could show that phasor analysis for FLIM with a laser pulse repetition frequency of 40 MHz was able to generate specific locations in the phasor plot for the plastics for fast differentiation, e.g. resulting in well-defined phasor plot positions for ABS at 3.019 ns, PPE at 6.239 ns, PET bottle from Germany at 2.703 ns and PET bottle from USA at 2.711 ns. Phasor analysis for FLIM proves to be a fast, label-free, and sensitive method for the identification and differentiation of plastics also with the aid of visualization variation enabling techniques such as heat treatment of plastics.
Collapse
Affiliation(s)
- Adrian Monteleone
- Faculty of Medical and Life Sciences, Hochschule Furtwangen, Villingen-Schwenningen, Germany; Human and Environmental Toxicology, University Konstanz, Constance, Germany
| | - Weronika Schary
- Faculty of Medical and Life Sciences, Hochschule Furtwangen, Villingen-Schwenningen, Germany
| | - Folker Wenzel
- Faculty of Medical and Life Sciences, Hochschule Furtwangen, Villingen-Schwenningen, Germany.
| | - Heinz Langhals
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel R Dietrich
- Human and Environmental Toxicology, University Konstanz, Constance, Germany.
| |
Collapse
|
86
|
Issac MN, Kandasubramanian B. Effect of microplastics in water and aquatic systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19544-19562. [PMID: 33655475 PMCID: PMC7924819 DOI: 10.1007/s11356-021-13184-2] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/22/2021] [Indexed: 05/21/2023]
Abstract
Surging dismissal of plastics into water resources results in the splintered debris generating microscopic particles called microplastics. The reduced size of microplastic makes it easier for intake by aquatic organisms resulting in amassing of noxious wastes, thereby disturbing their physiological functions. Microplastics are abundantly available and exhibit high propensity for interrelating with the ecosystem thereby disrupting the biogenic flora and fauna. About 71% of the earth surface is occupied by oceans, which holds 97% of the earth's water. The remaining 3% is present as water in ponds, streams, glaciers, ice caps, and as water vapor in the atmosphere. Microplastics can accumulate harmful pollutants from the surroundings thereby acting as transport vectors; and simultaneously can leach out chemicals (additives). Plastics in marine undergo splintering and shriveling to form micro/nanoparticles owing to the mechanical and photochemical processes accelerated by waves and sunlight, respectively. Microplastics differ in color and density, considering the type of polymers, and are generally classified according to their origins, i.e., primary and secondary. About 54.5% of microplastics floating in the ocean are polyethylene, and 16.5% are polypropylene, and the rest includes polyvinyl chloride, polystyrene, polyester, and polyamides. Polyethylene and polypropylene due to its lower density in comparison with marine water floats and affect the oceanic surfaces while materials having higher density sink affecting seafloor. The effects of plastic debris in the water and aquatic systems from various literature and on how COVID-19 has become a reason for microplastic pollution are reviewed in this paper.
Collapse
Affiliation(s)
- Merlin N Issac
- CIPET: Institute of Plastics Technology (IPT), HIL Colony, Edayar Road, Pathalam, Eloor, Udyogamandal P.O., Kochi, Kerala, 683501, India
| | - Balasubramanian Kandasubramanian
- Nano-Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, Maharashtra, 411025, India.
| |
Collapse
|
87
|
Rostami S, Talaie MR, Talaiekhozani A, Sillanpää M. Evaluation of the available strategies to control the emission of microplastics into the aquatic environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18908-18917. [PMID: 33594573 DOI: 10.1007/s11356-021-12888-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
No effective strategy has been found so far to control the emission of microplastics. The purpose of this article is to review the available control strategies, as well as barriers to developing them. Based on the estimations in the available literature, decomposition of larger plastics, clothes washing and tire abrasion play an essential part in the total emission rate of microplastics into the ocean. Nonetheless, there is no corresponding information regarding the soil, and more information is needed to prioritize the emission sources of microplastics more preciously. Generally, there have been two approaches for the management of the microplastic issues, including the substitution of non-plastic materials for plastic ones in products such as personal care products, and microplastic removal from wastewater. The former is in its infancy and has commenced only in a few developed countries. Existing wastewater treatment plants (WWTPs) as the other approach can transfer a significant portion of the microplastics into the sludge. The result is that the final destination of these microplastics can be the soil. Since there is little information on how serious the impact of microplastics is on the soil as compared with water, the currently used WWTPs cannot be considered as a final remedy. Furthermore, there has been not been any specifically designed techniques to remove microplastics from wastewater efficiently and economically.
Collapse
Affiliation(s)
- Sadegh Rostami
- Chemical Engineering Department, Shiraz University, Shiraz, Iran.
| | | | | | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, QLD, 4350, Australia
| |
Collapse
|
88
|
Rius-Ayra O, Llorca-Isern N. A robust and anticorrosion non-fluorinated superhydrophobic aluminium surface for microplastic removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144090. [PMID: 33348156 DOI: 10.1016/j.scitotenv.2020.144090] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/10/2020] [Accepted: 11/22/2020] [Indexed: 05/26/2023]
Abstract
Solid particulate pollutants such as microplastics constitute a global environmental issue in the 21st century. Many studies are exploring ways of removing these particles from marine environments such as seas and oceans. Here, we present a superhydrophobic surface obtained by combining anodisation and the liquid-phase deposition of lauric acid. The superhydrophobic surface was examined by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) to elucidate its hierarchical structure and wetting state, while time-of-flight secondary ion mass spectrometry (TOF-SIMS) and high-resolution X-ray photoelectron spectroscopy (HR-XPS) were applied to identify the chemical composition of the surface, which revealed that aluminium laurate decreased the surface free energy. As microplastics are usually found in saline water, it was important to study the anticorrosion properties of the surface. Polarisation curves of the anodised surface showed excellent anticorrosion properties in 3.5 wt% NaCl aqueous solution, which was enhanced by the superhydrophobic properties when the aluminium surface was anodised for 60 min. The functionalised surface was superhydrophobic (154°) and superoleophilic (0°). These wetting properties allowed the surface to remove microplastics from the NaCl aqueous solution with an efficiency higher than 99%. Thus, we present a novel application of a superhydrophobic and anticorrosive surface in the removal of microplastics. This has not been reported previously and provides a new scope for superwettable materials and their environmental applications.
Collapse
Affiliation(s)
- Oriol Rius-Ayra
- CPCM, Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Nuria Llorca-Isern
- CPCM, Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
89
|
Sarkar DJ, Das Sarkar S, Das BK, Sahoo BK, Das A, Nag SK, Manna RK, Behera BK, Samanta S. Occurrence, fate and removal of microplastics as heavy metal vector in natural wastewater treatment wetland system. WATER RESEARCH 2021; 192:116853. [PMID: 33513468 DOI: 10.1016/j.watres.2021.116853] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 05/23/2023]
Abstract
Microplastics pollution in aquatic ecosystems is of great concern; however, systemic investigations are still lacking in freshwater wetland systems used for wastewater treatment. The present study discusses such freshwater wetland system in Eastern India to understand its microplastics transport mechanism, heavy metals association and microplastics removal efficiency. Microplastics (63 µm - 5 mm) were heavily found in surface water and sediments of treatment ponds (7.87 to 20.39 items/L and 2124.84 to 6886.76 items/kg) and associated wastewater canals (30.46 to 137.72 items/L and 1108.78 to 34612.87 items/kg). A high content of toxic metals (As, Cd, Cr, Cu, Ni, Pb and Zn) were found on the microplastics with polyethylene terephthalate and polyethylene as major plastics types which were also found in fishes and macroinvertebrates of treatment ponds. Machine learning algorithm revealed a close association between microplastics content in fishes and surface water, indicating risk associated with floating microplastics to the aquatic biota. The study also revealed that microplastics were acting as heavy metals vector and potentially causing fish contamination. Surface water microplastics removing efficiency of the treatment ponds was estimated to be 53%. The study bespeaks about transport of microplastics through wastewater canals and their retention in treatment ponds emphasizing sustainability maintenance of natural wastewater treatment systems especially considering microplastics contamination to the aquatic biota of freshwater wetland systems.
Collapse
Affiliation(s)
- Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Soma Das Sarkar
- Fisheries Resource Assessment and Informatics Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India.
| | - Bigan Kumar Sahoo
- Fisheries Resource Assessment and Informatics Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Akankshya Das
- Center for Development of Advanced Computing, Kolkata 700091, India
| | - Subir Kumar Nag
- Fisheries Resource Assessment and Informatics Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Ranjan Kumar Manna
- Riverine and Estuarine Fisheries Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Srikanta Samanta
- Riverine and Estuarine Fisheries Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| |
Collapse
|
90
|
Braun M, Mail M, Heyse R, Amelung W. Plastic in compost: Prevalence and potential input into agricultural and horticultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143335. [PMID: 33199003 DOI: 10.1016/j.scitotenv.2020.143335] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
To maintain and improve soil fertility, compost application is a widely recommended practice. We hypothesized that this practice is, however, also a main entry path for plastic into soil. Hence, we i) quantified the prevalence of plastic in eight composts from different composting plants and hardware stores to derive estimations about related plastic inputs into soil, and ii) characterized the properties of these plastic residues in regard to size and shape for further risk assessment. Plastic remains were analyzed via density separation (ZnCl2) and light microscopy. Testing this method recovered 80 ± 29% of spiked plastic items. Applying this method revealed that all composts contained plastic particles in detectable amounts, with contents ranging from 12 ± 8 to 46 ± 8 particles kg-1, corresponding to calculated plastic weights of 0.05 ± 0.08 to 1.36 ± 0.59 g kg-1. Because of this high variability, an a-priori discrimination of plastic loads between compost types cannot be achieved. Upscaling these loads to common recommendations in composting practice, which range from 7 to 35 t compost ha-1, suggest that compost application to agricultural fields goes along with plastic loads of 84,000 to 1,610,000 plastic items ha-1 per year (a), respectively, amounting to 0.34 to 47.53 kg plastic ha-1 a-1. Large potential inputs should thus also occur for horticultural soils, where application rates of compost usually vary between 6.48 and 19.44 t ha-1, therewith resulting in a minimum plastic contamination of 77,770 plastic items and 0.31 kg plastic ha-1 a-1, but a maximum amount of up to 894,240 plastic items and 26.4 kg plastic ha-1 a-1. We conclude that compost application must be considered as potential source of plastic for both agricultural and horticultural soils, and technical solutions are needed to minimize these contamination risks while continuing this practice as important option to secure soil health.
Collapse
Affiliation(s)
- Melanie Braun
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany.
| | - Matthias Mail
- Nees Institute for Biodiversity of Plants, University of Bonn, Venusbergweg 22, 53115 Bonn, Germany; Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rene Heyse
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany
| | - Wulf Amelung
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany
| |
Collapse
|
91
|
Rahman A, Sarkar A, Yadav OP, Achari G, Slobodnik J. Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: A scoping review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143872. [PMID: 33310568 DOI: 10.1016/j.scitotenv.2020.143872] [Citation(s) in RCA: 269] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 05/02/2023]
Abstract
Microplastics are an emerging global environmental contaminant that are affecting multiple spheres. Despite their ubiquity in all spheres of life and ecology, little is known about the health effects of microplastics exposure to humans. This scoping review explores the existing evidence on the potential human health effects of microplastics and subsequent knowledge gaps. An electronic search of published articles in PubMed, Scopus, EMBASE, Cochrane databases, and Google Scholar was conducted using a combination of subject headings and keywords relating to microplastics and human health effects. The initial search resulted in 17,043 published articles and grey literature documents. After a full review of published articles and their references, 129 publications were identified for further detailed review. These articles indicate that human exposure to microplastics can occur through ingestion, inhalation, and dermal contact due to their presence in food, water, air, and consumer products. Microplastics exposure can cause toxicity through oxidative stress, inflammatory lesions, and increased uptake or translocation. Several studies have demonstrated the potentiality of metabolic disturbances, neurotoxicity, and increased cancer risk in humans. Moreover, microplastics have been found to release their constituent compounds as well as those that are adsorbed onto their surface. Further research is needed to quantify the effects of microplastics on human health and their pathogenesis.
Collapse
Affiliation(s)
- Arifur Rahman
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University St. John's, NL A1B 3V6, Canada.
| | - Atanu Sarkar
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University St. John's, NL A1B 3V6, Canada.
| | - Om Prakash Yadav
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University St. John's, NL A1B 3V6, Canada.
| | - Gopal Achari
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | | |
Collapse
|
92
|
Sunitha TG, Monisha V, Sivanesan S, Vasanthy M, Prabhakaran M, Omine K, Sivasankar V, Darchen A. Micro-plastic pollution along the Bay of Bengal coastal stretch of Tamil Nadu, South India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144073. [PMID: 33279200 DOI: 10.1016/j.scitotenv.2020.144073] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 05/06/2023]
Abstract
In the present-day context, micro-plastic particles in a marine environment are increasingly ubiquitous and of considerable persistence. In line with the micro-plastic pollution, the present contribution is devoted to the investigation of micro-plastic particles (MPs) along the urban sandy beach called Marina, the renowned longest beach in India. Along the sea coast of about 5 km, the quantification of micro-plastic particles using optical microscope evidenced the granular, filamentous, filmy and tubular fragments in a total of 72 marine samples including those filtered in the marine water column (WAT; 24 samples), those found in wet sediment (WET; 24 samples) and those found in dry sand (DSS; 24 samples). The filamentous-typed plastics of 79%, 57% and 52%, respectively in WET, WAT and DSS dominated over the other granular and tubular types. The micro-plastic particles were in the range of 60-820 items per m3, 60-1620 items per kg and 20-1540 items per kg for WAT, WET and DSS, respectively. The standard deviation for the microplastics abundance were 193.1, 396.6 and 364.6 for WAT, WET and DSS respectively. Upon visual inspection, the micro particles were observed in eight different colors and most of the samples were found to contain two different fragment types. Apart from the optical microscopic examination, the micro-plastics particles were studied by scanning electron microscope (SEM) coupled with elemental analysis by energy dispersive spectroscopy (EDS). The energy spectral graphs displayed that the micro-filaments and micro-tubular particles contained polyesters and fluoro-polymers. The presence of few micro-filaments of polypropylene and polyethylene was also evidenced from their atomic percentage values of carbon of about 88% and 93%, respectively. The presence of fluoro-polymers and polyesters was also confirmed by Fourier Transform Infra-Red (FTIR). Excepting the fluoro-polymers, the micro-plastics particles contained elements arising from sea water (Na, Cl, S, Mg, Ca, K). Heavy metals such as Cu, Mn, Mo, Ru and Rh were observed in micro-tubular fragments. Fe and Ti elements were detected with the highest atomic percentage of 17.19 and 19.84 in micro-tubular fragments. All the observations and analyses give a photography of the nature and the spatial distribution of MPs along this Indian beach.
Collapse
Affiliation(s)
- T G Sunitha
- Department of Chemistry, Pachaiyappa's College (affiliated to University of Madras, Chennai 600005), Chennai 600 030, Tamil Nadu, India
| | - V Monisha
- Department of Chemistry, Pachaiyappa's College (affiliated to University of Madras, Chennai 600005), Chennai 600 030, Tamil Nadu, India
| | - S Sivanesan
- Department of Chemistry, Pachaiyappa's College (affiliated to University of Madras, Chennai 600005), Chennai 600 030, Tamil Nadu, India
| | - M Vasanthy
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - M Prabhakaran
- Department of Botany, Pachaiyappa's College (affiliated to University of Madras, Chennai 600005), Chennai 600 030, Tamil Nadu, India
| | - K Omine
- Department of Civil Engineering, School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 8528521, Japan
| | - V Sivasankar
- Department of Chemistry, Pachaiyappa's College (affiliated to University of Madras, Chennai 600005), Chennai 600 030, Tamil Nadu, India.
| | - A Darchen
- UMR CNRS no 6226, Institut des Sciences Chimiques de Rennes, ENSCR, 11, Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
| |
Collapse
|
93
|
Sun H, Jiao R, Wang D. The difference of aggregation mechanism between microplastics and nanoplastics: Role of Brownian motion and structural layer force. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115942. [PMID: 33158612 DOI: 10.1016/j.envpol.2020.115942] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
In recent years, microplastics (MPs) and nanoplastics (NPs) have attracted worldwide attention because of the potential risks they pose to aquatic environments, but there are few studies on the difference of aggregation mechanism between MPs and NPs. In this study, 100 nm and 1 μm polystyrene plastics were selected as models to explore the aggregation mechanism of MPs/NPs under different aquatic environments. The influence of ion species and concentrations on the aggregation behaviors and kinetics were systematically investigated to predict the effects of water quality on the occurrence form of MPs and NPs based on DLVO theory and revised modified Smoluchowski theory. Results showed concentration, valence and hydrated ability of cations jointly affected the aggregation behavior of NPs. The critical coagulation concentration ratio of cations were consistent with Schulze-Hardy rules. But the different aggregation rate coefficients of same valent cations were ascribed to the structural layer force. Anion species played a role in the reaction-controlled regime by producing hydrogen ions to neutralize negative charges on NPs surfaces. Due to the strong Brownian motion and structural layer force, NPs would be stable in freshwater but preferentially aggregated when transport through brackish water, estuaries, eutrophication and high hardness areas and sea water, forming the accumulation hot spots of NPs in the sediment. While for MPs, physical process controlled the aggregation mechanism of them, leading to high stability in natural water and eventually transporting into marine environments. This study provided a theoretical foundation for assessing the transport, distribution, fate and ecological risks of MPs and NPs in realistic aquatic environments.
Collapse
Affiliation(s)
- Hongyan Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruyuan Jiao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
94
|
Liu W, Zhang J, Liu H, Guo X, Zhang X, Yao X, Cao Z, Zhang T. A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms. ENVIRONMENT INTERNATIONAL 2021; 146:106277. [PMID: 33227584 DOI: 10.1016/j.envint.2020.106277] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 05/12/2023]
Abstract
Wastewater treatment plants (WWTPs) are considered to be the main sources of microplastic contaminants in the aquatic environment, and an in-depth understanding of the behavior of microplastics among the critical treatment technologies in WWTPs is urgently needed. In this paper, the characteristics and removal of microplastics in 38 WWTPs in 11 countries worldwide were reviewed. The abundance of microplastics in the influent, effluent, and sludge was compared. Then, based on existing data, the removal efficiency of microplastics in critical treatment technologies were compared by quantitative analysis. Particularly, detailed mechanisms of critical treatment technologies including primary settling treatment with flocculation, bioreactor system, advanced oxidation and membrane filtration were discussed. Thereafter, the abundance load and ecological hazard of the microplastics discharged from WWTPs into the aquatic and soil environments were summarized. The abundance of microplastics in the influent ranged from 0.28 particles L-1 to 3.14 × 104 particles L-1, while that in the effluent ranged from 0.01 particles L-1 to 2.97 × 102 particles L-1. The microplastic abundance in the sludge within the range of 4.40 × 103-2.40 × 105 particles kg-1. In addition, there are still 5.00 × 105-1.39 × 1010 microplastic particles discharged into the aquatic environment each day Moreover, among the critical treatment technologies, the quantitative analysis revealed that filter-based treatment technologies exhibited the best microplastics removal efficiency. Fibers and microplastics with large particle sizes (0.5-5 mm) were easily separated by primary settling. Polyethene and small-particle size microplastics (<0.5 mm) were easily trapped by bacteria in the activated sludge of bioreactor system. The negative impact of microplastics from wastewater treatment plant was worthy of attention. Moreover, unknown transformation products of microplastics and their corresponding toxicity need in-depth research.
Collapse
Affiliation(s)
- Weiyi Liu
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jinlan Zhang
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Hang Liu
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaonan Guo
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiyue Zhang
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaolong Yao
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Zhiguo Cao
- School of Environment, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
95
|
Krause S, Baranov V, Nel HA, Drummond JD, Kukkola A, Hoellein T, Sambrook Smith GH, Lewandowski J, Bonet B, Packman AI, Sadler J, Inshyna V, Allen S, Allen D, Simon L, Mermillod-Blondin F, Lynch I. Gathering at the top? Environmental controls of microplastic uptake and biomagnification in freshwater food webs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115750. [PMID: 33172701 DOI: 10.1016/j.envpol.2020.115750] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Microplastics are ubiquitous in the environment, with high concentrations being detected now also in river corridors and sediments globally. Whilst there has been increasing field evidence of microplastics accumulation in the guts and tissues of freshwater and marine aquatic species, the uptake mechanisms of microplastics into freshwater food webs, and the physical and geological controls on pathway-specific exposures to microplastics, are not well understood. This knowledge gap is hampering the assessment of exposure risks, and potential ecotoxicological and public health impacts from microplastics. This review provides a comprehensive synthesis of key research challenges in analysing the environmental fate and transport of microplastics in freshwater ecosystems, including the identification of hydrological, sedimentological and particle property controls on microplastic accumulation in aquatic ecosystems. This mechanistic analysis outlines the dominant pathways for exposure to microplastics in freshwater ecosystems and identifies potentially critical uptake mechanisms and entry pathways for microplastics and associated contaminants into aquatic food webs as well as their risk to accumulate and biomagnify. We identify seven key research challenges that, if overcome, will permit the advancement beyond current conceptual limitations and provide the mechanistic process understanding required to assess microplastic exposure, uptake, hazard, and overall risk to aquatic systems and humans, and provide key insights into the priority impact pathways in freshwater ecosystems to support environmental management decision making.
Collapse
Affiliation(s)
- Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom; Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023, Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), 69622, Villeurbanne, France.
| | - Viktor Baranov
- Department of Biology II, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Holly A Nel
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
| | - Jennifer D Drummond
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
| | - Anna Kukkola
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
| | - Timothy Hoellein
- Loyola University Chicago, Department of Biology, Chicago, United States
| | - Gregory H Sambrook Smith
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
| | - Joerg Lewandowski
- Department of Ecohydrology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Department of Geography, Humboldt University of Berlin, Berlin, Germany
| | - Berta Bonet
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
| | - Aaron I Packman
- Department of Civil and Environmental Engineering, Northwestern Center for Water Research, Northwestern University, Evanston, Chicago, United States
| | - Jon Sadler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
| | - Valentyna Inshyna
- Department of Biology II, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Steve Allen
- Strathclyde University, Glasgow, United Kingdom
| | | | - Laurent Simon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023, Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), 69622, Villeurbanne, France
| | - Florian Mermillod-Blondin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023, Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), 69622, Villeurbanne, France
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
| |
Collapse
|
96
|
Horton AA, Cross RK, Read DS, Jürgens MD, Ball HL, Svendsen C, Vollertsen J, Johnson AC. Semi-automated analysis of microplastics in complex wastewater samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115841. [PMID: 33120336 DOI: 10.1016/j.envpol.2020.115841] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/02/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
In order to assess risks to the natural environment from microplastics, it is necessary to have reliable information on all potential inputs and discharges. This relies on stringent quality control measures to ensure accurate reporting. Here we focus on wastewater treatment works (WwTWs) and the complex sample matrices these provide. Composite samples of both influent and effluent were collected over a 24 h period on two separate occasions from eight different WwTWs across the UK. Sludge samples were taken on five occasions from five WwTWs. The WwTW treatments included activated sludge, trickling filter and biological aerated flooded filter with or without tertiary treatment. Using micro-FTIR analysis, microplastics ≥25 μm were identified and quantified. Procedural blanks were used to derive limits of detection (LOD) and limits of quantification (LOQ). Where values were above the LOQ, microplastics in the influent ranged from 955 to 17,214 microplastic particles/L and in the effluent from 2 to 54 microplastic particles/L, giving an average removal rate of 99.8%. Microplastics could be quantified in sludge at concentrations of 301-10,380 microplastics/g dry weight, this analytical method therefore revealing higher concentrations than reported in previous studies. The most common polymers present overall were polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET). We also report on critical considerations for blank corrections and quality control measures to ensure reliable microplastic analysis across different sample types.
Collapse
Affiliation(s)
- Alice A Horton
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK; National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK.
| | - Richard K Cross
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Daniel S Read
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Monika D Jürgens
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Hollie L Ball
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Claus Svendsen
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Jes Vollertsen
- Department of Civil Engineering, Aalborg University, Thomas Manns Vej 23, 9220, Aalborg, Denmark
| | - Andrew C Johnson
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| |
Collapse
|
97
|
Preliminary Screening for Microplastic Concentrations in the Surface Water of the Ob and Tom Rivers in Siberia, Russia. SUSTAINABILITY 2020. [DOI: 10.3390/su13010080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To date, the largest Russian rivers discharging to the Arctic Ocean remain a “blank spot” on the world map of data on the distribution of microplastics in freshwater systems. This study characterizes the abundance and morphology of microplastics in surface water of the Ob River and its large tributary, the Tom River, in western Siberia. The average number of particles for the two rivers ranged from 44.2 to 51.2 items per m3 or from 79.4 to 87.5 μg per m3 in the Tom River and in the Ob River, respectively. Of the recovered microplastics, 93.5% were less than 1 mm in their largest dimension, the largest group (45.5% of total counts) consisted of particles with sizes range 0.30–1.00 mm. Generally, microfragments of irregular shape were the most abundant among the Ob and Tom samples (47.4%) and exceeded microfibers (22.1%), microfilms (20.8%), and microspheres (9.74%) by average counts. Results from this study provide a baseline for understanding the scale of the transport of microplastics by the Ob River system into the Arctic Ocean and add to currently available data on microplastics abundance and diversity in freshwater systems of differing global geographic locations.
Collapse
|
98
|
Wang Z, Gao J, Li D, Dai H, Zhao Y. Co-occurrence of microplastics and triclosan inhibited nitrification function and enriched antibiotic resistance genes in nitrifying sludge. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123049. [PMID: 32526436 DOI: 10.1016/j.jhazmat.2020.123049] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
As more and more microplastics (MPs) and triclosan (TCS), which are added in consumer products, enter wastewater treatment plants with sewage, there are concerns about the impacts of the co-occurrence of MPs and TCS on biological wastewater treatment. In this study, the co-effects of four 1 mg/L MPs (polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC) and polyamide (PA)) and 0.5 mg/L TCS on nitrification were investigated in lab-scale nitrifying sequencing batch reactors (SBRs) (SBR-PE, SBR-PS, SBR-PVC and SBR-PA) relative to control which received no MPs (SBR-CK). The removal rates of NH4+-N and TCS in SBR-CK were around 100% and 92%, respectively. Compared with SBR-CK, no measurable inhibition was observed on nitrification in SBR-PE and SBR-PS, however, SBR-PVC and SBR-PA rapidly lost nitrification function during 14 days, which might be due to the reducing of MLSS caused by PVC, PA and TCS co-loading. Furthermore, PS, PVC and PA decreased the removal of TCS. The co-occurrence of TCS and PS, PVC, PA increased extracellular polymeric substances, reduced microbial diversity and shifted microbial communities. Notably, the acrA-03, mexF, fabI, intI1, intI3 and IS613 genes were enriched by MPs and TCS co-loading. Therefore, the removal of MPs and TCS from wastewater should be prioritized.
Collapse
Affiliation(s)
- Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Dingchang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Huihui Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
99
|
Efficiency of Wastewater Treatment Plants (WWTPs) for Microplastic Removal: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17218014. [PMID: 33143273 PMCID: PMC7663475 DOI: 10.3390/ijerph17218014] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/15/2023]
Abstract
Plastic is widely used for human activities (food packaging, medical, technological devices, etc.) and there is a growing concern regarding the risks for environmental and human health because they have still not been fully evaluated. Particularly, microplastics (primary and secondary) are present in all environmental compartments and this poses a potential threat because of their entry into the food chain. Furthermore, microplastics can absorb numerous pollutants that can be accumulated in the human body through bioaccumulation and biomagnification processes. We carried out a systematic review using a PRISMA approach to verify the efficiency of wastewater treatment plants (WWTPs) for microplastic removal. The international databases (PubMed, Science Direct, Scopus) were used to find published studies on efficiency of wastewater treatment plants (WWTPs) for microplastic removal. The search period was between January 2010 and June 2020. Over 1000 full research papers were initially selected through the use of keywords. After that, the papers were further selected by English language, title, and abstract, and duplicate papers and non-relevant papers were eliminated according to eligibility criteria. Finally, we included 15 full research papers. In each of the 15 full research papers selected, the microplastics identified were categorized by the authors for shape, size, and type of polymers identified. The characterization of the various types of microplastics was performed by Fourier Transform Infrared Spectroscopy (FTIR) or Raman spectroscopy. We have observed how wastewater treatments plants located in different continents (Europe, Asia, North America) mostly use a primary and secondary type of treatment that allows one to reach a high percentage of microplastics removal from wastewater. Most of the wastewater treatments plants investigated reported a microplastics removal efficiency greater than 90%, but despite this, millions of microplastics continue to be released every day into the aquatic environment. Then, in the near future, efficient and common standardized protocols for monitoring MPs should be drawn up, as well as increasing the knowledge of sources and strategies to further reduce microplastics contamination of treated wastewater.
Collapse
|
100
|
Abstract
Microplastics, as an emerging contaminant, have been shown to threaten the sustainability of ecosystems, and there is also concern about human exposure, as microplastic particles tend to bioaccumulate and biomagnify through the food chain. While microplastics in marine environments have been extensively studied, research on microplastics in terrestrial ecosystems is just starting to gain momentum. In this paper, we used scientometric analysis to understand the current status of microplastic research in terrestrial systems. The global scientific literature on microplastics in terrestrial ecosystems, based on data from the Web of Science between 1986 and 2020, was explored with the VOSviewer scientometric software. Co-occurrence visualization maps and citation analysis were used to identify the relationship among keywords, authors, organizations, countries, and journals focusing on the issues of terrestrial microplastics. The results show that research on microplastics in terrestrial systems just started in the past few years but is increasing rapidly. Science of the Total Environment ranks first among the journals publishing papers on terrestrial microplastics. In addition, we also highlighted the desire to establish standards/protocols for extracting and quantifying microplastics in soils. Future studies are recommended to fill the knowledge gaps on the abundance, distribution, ecological and economic effects, and toxicity of microplastics.
Collapse
|