51
|
Allaf AM, Wang J, Simms AG, Jiang H. Age-related alterations in retinal capillary function. Microvasc Res 2023; 148:104508. [PMID: 36822365 PMCID: PMC10258153 DOI: 10.1016/j.mvr.2023.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE To determine age-related alterations in the retinal capillary function (RCF, the ability to transport blood flow) in healthy subjects. METHODS A total of 148 healthy subjects (aged 18 to 83 years) were enrolled, and one eye of each subject was imaged. Retinal blood flow (RBF) was measured using a Retinal Function Imager, and retinal capillary density (RCD, expressed as fractal dimension Dbox) was measured using optical coherence tomography angiography. RCF was defined as the ratio of RBF to RCD, representing the ability to transport blood flow. The relationship between RCF and age was analyzed. In addition, the cohort was divided into four groups (G1, <35 years, G2, 35-49 years, G3, 50-64 years, and G4, ≥65 years) for further analysis. RESULTS With all data, the relation between the RCF and age had a trend of a quadratic model (G1-4: r = 0.16, P = 0.14). After 35 years (i.e., G2-4), the relation had a trend between the RCF and age fitted into a negative linear model (r = -0.23, P = 0.05). Moreover, after 50 years (i.e., G3-4), the negative linear model became stronger (r = -0.37, P = 0.03). The average RCF was 2.24 ± 0.22 μl/s/Dbox in G4, significantly lower than that in G2 (2.65 ± 0.56 μl/s/Dbox, P = 0.018) and G3 (2.64 ± 0.70 μl/s/Dbox, P = 0.034), but did not reach a significant level compared to that in G1 (2.55 + 0.51 μl/s/Dbox, P = 0.056). CONCLUSIONS This is the first study to determine age-related alterations in the RCF in a healthy population. Decreased RCF in the older group may represent a characteristic pattern of normal aging.
Collapse
Affiliation(s)
| | - Jianhua Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Ava-Gaye Simms
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hong Jiang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
52
|
Shams S, Stilhano RS, Silva EA. Harnessing EGLN1 Gene Editing to Amplify HIF-1α and Enhance Human Angiogenic Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542734. [PMID: 37398294 PMCID: PMC10312464 DOI: 10.1101/2023.05.29.542734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Therapeutic angiogenesis has been the focus of hundreds of clinical trials but approval for human treatment remains elusive. Current strategies often rely on the upregulation of a single proangiogenic factor, which fails to recapitulate the complex response needed in hypoxic tissues. Hypoxic oxygen tensions dramatically decrease the activity of hypoxia inducible factor prolyl hydroxylase 2 (PHD2), the primary oxygen sensing portion of the hypoxia inducible factor 1 alpha (HIF-1α) proangiogenic master regulatory pathway. Repressing PHD2 activity increases intracellular levels of HIF-1α and impacts the expression of hundreds of downstream genes directly associated with angiogenesis, cell survival, and tissue homeostasis. This study explores activating the HIF-1α pathway through Sp Cas9 knockout of the PHD2 encoding gene EGLN1 as an innovative in situ therapeutic angiogenesis strategy for chronic vascular diseases. Our findings demonstrate that even low editing rates of EGLN1 lead to a strong proangiogenic response regarding proangiogenic gene transcription, protein production, and protein secretion. In addition, we show that secreted factors of EGLN1 edited cell cultures may enhance human endothelial cell neovascularization activity in the context of proliferation and motility. Altogether, this study reveals that EGLN1 gene editing shows promise as a potential therapeutic angiogenesis strategy.
Collapse
|
53
|
Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y, Yue H, Yin Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther 2023; 8:218. [PMID: 37230968 DOI: 10.1038/s41392-023-01496-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common breathing disorder in sleep in which the airways narrow or collapse during sleep, causing obstructive sleep apnea. The prevalence of OSAS continues to rise worldwide, particularly in middle-aged and elderly individuals. The mechanism of upper airway collapse is incompletely understood but is associated with several factors, including obesity, craniofacial changes, altered muscle function in the upper airway, pharyngeal neuropathy, and fluid shifts to the neck. The main characteristics of OSAS are recurrent pauses in respiration, which lead to intermittent hypoxia (IH) and hypercapnia, accompanied by blood oxygen desaturation and arousal during sleep, which sharply increases the risk of several diseases. This paper first briefly describes the epidemiology, incidence, and pathophysiological mechanisms of OSAS. Next, the alterations in relevant signaling pathways induced by IH are systematically reviewed and discussed. For example, IH can induce gut microbiota (GM) dysbiosis, impair the intestinal barrier, and alter intestinal metabolites. These mechanisms ultimately lead to secondary oxidative stress, systemic inflammation, and sympathetic activation. We then summarize the effects of IH on disease pathogenesis, including cardiocerebrovascular disorders, neurological disorders, metabolic diseases, cancer, reproductive disorders, and COVID-19. Finally, different therapeutic strategies for OSAS caused by different causes are proposed. Multidisciplinary approaches and shared decision-making are necessary for the successful treatment of OSAS in the future, but more randomized controlled trials are needed for further evaluation to define what treatments are best for specific OSAS patients.
Collapse
Affiliation(s)
- Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xueying Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yue Zhang
- Department of Geriatrics, the 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Hongmei Yue
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
54
|
Barachini S, Biso L, Kolachalam S, Petrini I, Maggio R, Scarselli M, Longoni B. Mesenchymal Stem Cell in Pancreatic Islet Transplantation. Biomedicines 2023; 11:biomedicines11051426. [PMID: 37239097 DOI: 10.3390/biomedicines11051426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Pancreatic islet transplantation is a therapeutic option for achieving physiologic regulation of plasma glucose in Type 1 diabetic patients. At the same time, mesenchymal stem cells (MSCs) have demonstrated their potential in controlling graft rejection, the most fearsome complication in organ/tissue transplantation. MSCs can interact with innate and adaptive immune system cells either through direct cell-cell contact or through their secretome including exosomes. In this review, we discuss current findings regarding the graft microenvironment of pancreatic islet recipient patients and the crucial role of MSCs operation as cell managers able to control the immune system to prevent rejection and promote endogenous repair. We also discuss how challenging stressors, such as oxidative stress and impaired vasculogenesis, may jeopardize graft outcomes. In order to face these adverse conditions, we consider either hypoxia-exposure preconditioning of MSCs or human stem cells with angiogenic potential in organoids to overcome islets' lack of vasculature. Along with the shepherding of carbon nanotubes-loaded MSCs to the transplantation site by a magnetic field, these studies look forward to exploiting MSCs stemness and their immunomodulatory properties in pancreatic islet transplantation.
Collapse
Affiliation(s)
- Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Letizia Biso
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Aseptic Pharmacy, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Iacopo Petrini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Biancamaria Longoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
55
|
Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther 2023; 8:198. [PMID: 37169756 PMCID: PMC10175505 DOI: 10.1038/s41392-023-01460-1] [Citation(s) in RCA: 437] [Impact Index Per Article: 218.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels, is a complex and dynamic process regulated by various pro- and anti-angiogenic molecules, which plays a crucial role in tumor growth, invasion, and metastasis. With the advances in molecular and cellular biology, various biomolecules such as growth factors, chemokines, and adhesion factors involved in tumor angiogenesis has gradually been elucidated. Targeted therapeutic research based on these molecules has driven anti-angiogenic treatment to become a promising strategy in anti-tumor therapy. The most widely used anti-angiogenic agents include monoclonal antibodies and tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factor (VEGF) pathway. However, the clinical benefit of this modality has still been limited due to several defects such as adverse events, acquired drug resistance, tumor recurrence, and lack of validated biomarkers, which impel further research on mechanisms of tumor angiogenesis, the development of multiple drugs and the combination therapy to figure out how to improve the therapeutic efficacy. Here, we broadly summarize various signaling pathways in tumor angiogenesis and discuss the development and current challenges of anti-angiogenic therapy. We also propose several new promising approaches to improve anti-angiogenic efficacy and provide a perspective for the development and research of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Zhen-Ling Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Huan-Huan Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Li Zheng
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
56
|
Bahamin N, Rafieian-Kopaei M, Ahmadian S, Karimi I, Doustimotlagh AH, Mobini G, Bijad E, Shafiezadeh M. Combined treatment with Alhagi maurorum and docetaxel inhibits breast cancer progression via targeting HIF-1α/VEGF mediated tumor angiogenesis in vivo. Heliyon 2023; 9:e16292. [PMID: 37234651 PMCID: PMC10205524 DOI: 10.1016/j.heliyon.2023.e16292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Breast cancer is a challenging disease and leading cause of cancer death in women. There is no effective agent for metastatic breast cancer after surgery and chemotherapy. Alhagi maurorum (A.m) has been reported to exhibit an anticancer effect on various types of cancer cells in vitro. This study aimed to examine the suppressive effect of A.m alone and combined with docetaxel (DTX) on the breast cancer growth in mice models and the possible underlying mechanisms. In the present study, the mice were inoculated subcutaneously with the injections of 4T1 cells. Then, A.m, DTX, and their combination were administered intraperitoneally. The expressions of β-catenin (β-cat), FZD7, MMP2, HIF1-α, and VEGF A (vascular endothelial growth factor A) were investigated using RT-PCR method. Also, plasma alkaline phosphatase (ALP), alanine aminotransferase (GPT or ALT), aspartate transaminase (GOT or AST), serum creatinine, and urea were examined, and histological analyses of the tissues were conducted. The results demonstrated that A.m (500 mg/kg) combined with DTX significantly decreased the expression of β-cat, MMP2, and FZD7 as compared with the negative control group and monotherapies. Also, the mRNA levels of HIF1-α and VEGF A were suppressed significantly by DTX + A.m (500 mg/kg). Tumor weights and sizes were significantly lower and tumor inhibition rate was significantly higher in the DTX + A.m group. The A.m 500 mg/kg + DTX also suppressed the serum GPT level in tumor-bearing mice and decreased the serum urea level. Taken together, our findings suggest that DTX combined with A.m at an optimal dose of 500 mg/kg as the optimal dose can inhibit β-cat, FZD7, MMP2, and breast cancer growth via interrupting HIF-1α/VEGF signaling and might be used as a promising antiangiogenic agent for breast cancer treatment.
Collapse
Affiliation(s)
- Nayereh Bahamin
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shahin Ahmadian
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Iraj Karimi
- Pathobiology Department, Veterinary Faculty, Shahrekord University, Shahrekord, Iran
| | - Amir Hossein Doustimotlagh
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Gholamreza Mobini
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahshid Shafiezadeh
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| |
Collapse
|
57
|
Aschner M, Skalny AV, Lu R, Santamaria A, Zhou JC, Ke T, Karganov MY, Tsatsakis A, Golokhvast KS, Bowman AB, Tinkov AA. The role of hypoxia-inducible factor 1 alpha (HIF-1α) modulation in heavy metal toxicity. Arch Toxicol 2023; 97:1299-1318. [PMID: 36933023 DOI: 10.1007/s00204-023-03483-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is an oxygen-sensing transcriptional regulator orchestrating a complex of adaptive cellular responses to hypoxia. Several studies have demonstrated that toxic metal exposure may also modulate HIF-1α signal transduction pathway, although the existing data are scarce. Therefore, the present review aims to summarize the existing data on the effects of toxic metals on HIF-1 signaling and the potential underlying mechanisms with a special focus on prooxidant effect of the metals. The particular effect of metals was shown to be dependent on cell type, varying from down- to up-regulation of HIF-1 pathway. Inhibition of HIF-1 signaling may contribute to impaired hypoxic tolerance and adaptation, thus promoting hypoxic damage in the cells. In contrast, its metal-induced activation may result in increased tolerance to hypoxia through increased angiogenesis, thus promoting tumor growth and contributing to carcinogenic effect of heavy metals. Up-regulation of HIF-1 signaling is mainly observed upon Cr, As, and Ni exposure, whereas Cd and Hg may both stimulate and inhibit HIF-1 pathway. The mechanisms underlying the influence of toxic metal exposure on HIF-1 signaling involve modulation of prolyl hydroxylases (PHD2) activity, as well as interference with other tightly related pathways including Nrf2, PI3K/Akt, NF-κB, and MAPK signaling. These effects are at least partially mediated by metal-induced ROS generation. Hypothetically, maintenance of adequate HIF-1 signaling upon toxic metal exposure through direct (PHD2 modulation) or indirect (antioxidant) mechanisms may provide an additional strategy for prevention of adverse effects of metal toxicity.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518100, China
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Aristides Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.,Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13, Heraklion, Crete, Greece
| | - Kirill S Golokhvast
- Siberian Federal Scientific Centre of Agrobiotechnologies of the Russian Academy of Sciences, Krasnoobsk, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, USA
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia. .,Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia.
| |
Collapse
|
58
|
Wu Y, Li X, Ma M, Hu G, Fu X, Liu J. Characterization of the Dynamic Gastrointestinal Digests of the Preserved Eggs and Their Effect and Mechanism on HepG2 Cells. Foods 2023; 12:foods12040800. [PMID: 36832875 PMCID: PMC9955911 DOI: 10.3390/foods12040800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023] Open
Abstract
Preserved eggs, an alkaline-fermented food, have been widely searched for their anti-inflammatory activity. Their digestive characteristics in the human gastrointestinal tract and anti-cancer mechanism have not been well explained. In this study, we investigated the digestive characteristics and anti-tumor mechanisms of preserved eggs using an in vitro dynamic human gastrointestinal-IV (DHGI-IV) model. During digestion, the sample pH dynamically changed from 7.01 to 8.39. The samples were largely emptied in the stomach with a lag time of 45 min after 2 h. Protein and fat were significantly hydrolyzed with 90% and 87% digestibility, respectively. Moreover, preserved eggs digests (PED) significantly increased the free radical scavenging activity of ABTS, DPPH, FRAP and hydroxyl groups by 15, 14, 10 and 8 times more than the control group, respectively. PED significantly inhibited the growth, cloning and migration of HepG2 cells at concentrations of 250-1000 μg/mL. Meanwhile, it induced apoptosis by up/down-regulating the expression of the pro-apoptotic factor Bak and the anti-apoptotic gene Bcl-2 in the mitochondrial pathway. PED (1000 μg/mL) treatment resulted in 55% higher ROS production than the control, which also led to apoptosis. Furthermore, PED down-regulated the expression of the pro-angiogenic genes HIF-1α and VEGF. These findings provided a reliable scientific reference for the study of the anti-tumor activity of preserved eggs.
Collapse
Affiliation(s)
- Yan Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiujuan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meihu Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| | - Gan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China
| | - Xing Fu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China
| | - Jihong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
59
|
Gonzalez-Uribe V, Martinez-Tenopala R, Osorio-Martínez A, Prieto-Gomez J, Kirsch AL, Alcocer-Arreguin CR, Mojica-Gonzalez ZS. Expression of HIF-1α in pediatric asthmatic patients. Multidiscip Respir Med 2023; 18:927. [PMID: 38155704 PMCID: PMC10715186 DOI: 10.4081/mrm.2023.927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/02/2023] [Indexed: 12/30/2023] Open
Abstract
Background Several studies have suggested that HIF-1α regulates eosinophil activity and induces epithelial inflammation via NF-κB activation in the pathophysiology of asthma. The purpose of this study was to examine the expression of the transcription factors HIF-1α and nuclear HIF in mononuclear cells obtained from peripheral blood samples of healthy pediatric patients, asthmatic patients, and asthmatic exacerbations, regardless of disease severity. Methods HIF-1 levels were measured using immunocytochemistry in 133 patients aged 6 to 17 years in this crosssectional and comparative study. A microscope was used to examine glass slides, and positive cells were counted in four fields per slide using an image analyzer. Results HIF-1α and nuclear HIF levels were significantly higher in asthma patients and even higher in patients experiencing asthma attacks (p<0.0001, 95% CI). There was no significant difference in the percentage of HIF-1α expression between groups with intermittent asthma and those with mild persistent asthma, nor between patients with asthma and those experiencing asthma exacerbations. Conclusions When compared to healthy individuals, the expression of nuclear HIF and HIF-1α is increased in peripheral mononuclear cells in asthma patients and even more so in asthma exacerbations. This suggests that HIF-1α is important in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Víctor Gonzalez-Uribe
- Pediatric Allergy and Clinical Immunology, Hospital Infantil de Mexico Federico Gomez, Mexico City
- Facultad Mexicana de Medicina, Universidad La Salle Mexico, Mexico City
| | | | | | | | | | | | | |
Collapse
|
60
|
Song BX, Azhar L, Koo GKY, Marzolini S, Gallagher D, Swardfager W, Chen C, Ba J, Herrmann N, Lanctôt K. The effect of exercise on blood concentrations of angiogenesis markers in older adults: a systematic review and meta-analysis. RESEARCH SQUARE 2023:rs.3.rs-2468576. [PMID: 36711740 PMCID: PMC9882692 DOI: 10.21203/rs.3.rs-2468576/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background Physical exercise has positive impacts on health and can improve angiogenesis, which is impaired during aging, but the underlying mechanisms of benefit are unclear. This meta-analysis and systematic review investigated the effects of exercise on several peripheral angiogenesis markers in older adults to better understand the relationship between exercise and angiogenesis. Methods MEDLINE, Embase, and Cochrane CENTRAL were searched for original, peer-reviewed reports of peripheral concentrations of angiogenesis markers before and after exercise interventions in older adults (> 50 years). The risk of bias was assessed with standardized criteria. Standardized mean differences (SMD) with 95% confidence intervals (CIs) were calculated from random-effects models. Publication bias was assessed with Egger's test, funnel plots, and trim-and-fill. A priori subgroup analyses and meta-regressions were performed to investigate heterogeneity where possible. Results Of the 44 articles included in the review, 38 were included in meta-analyses for five proteins. Vascular endothelial growth factor (VEGF) was found to be higher after exercise (SMD[95%CI] = 0.18[0.03, 0.34], p = 0.02), and e-selectin (CD62E) was found to be lower after exercise (SMD[95%CI]= -0.72[-1.42, -0.03], p = 0.04). Endostatin (SMD[95%CI] = 0.28[-0.56, 1.11], p = 0.5), fibroblast growth factor 2 (SMD[95%CI] = 0.03[-0.18, 0.23], p = 0.8), and matrix metallopeptidase-9 (SMD[95%CI] = -0.26[-0.97, 0.45], p = 0.5) levels did not change after exercise. Conclusions Of the five angiogenesis blood markers evaluated in this meta-analysis, only VEGF and CD62E changed with exercise. Although more studies are needed, changes in angiogenesis markers may explain the beneficial effects of exercise on angiogenesis and health in older adults.
Collapse
|
61
|
Lee D, Nakai A, Miwa Y, Negishi K, Tomita Y, Kurihara T. Pemafibrate prevents choroidal neovascularization in a mouse model of neovascular age-related macular degeneration. PeerJ 2023; 11:e14611. [PMID: 36643635 PMCID: PMC9838199 DOI: 10.7717/peerj.14611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/30/2022] [Indexed: 01/12/2023] Open
Abstract
Background Pathological choroidal neovascularization (CNV) is one of the major causes of visual impairment in neovascular age-related macular degeneration (AMD). CNV has been suppressed by using anti-vascular endothelial growth factor (VEGF) antibodies. However, some clinical cases have demonstrated the failure of anti-VEGF therapies. Furthermore, anti-VEGF agents might induce the development of ocular atrophy. Recently, peroxisome proliferator-activated receptor alpha (PPARα) activation using pemafibrate treatment was suggested as one of the promising therapeutic targets in the prevention of ocular ischemia. However, the preventive role of pemafibrate remains unclear in CNV. We aimed to examine the preventive role of pemafibrate on laser-induced pathological CNV. Methods Adult male C57BL/6 mice were orally supplied pemafibrate (0.5 mg/kg) for four days, followed by laser irradiation. Then, pemafibrate was consecutively given to mice with the same condition. CNV was visualized with isolectin-IB4. The eye (retina and/or retinal pigment epithelium [RPE]-choroid), liver, and serum were used for biomolecular analyses. Results We found that pemafibrate administration suppressed CNV volumes. Pemafibrate administration activated PPARα downstream genes in the liver and eye (especially, RPE-choroid). Furthermore, pemafibrate administration elevated serum fibroblast growth factor 21 levels and reduced serum levels of triglycerides. Conclusions Our data suggest a promising pemafibrate therapy for suppressing CNV in AMD.
Collapse
Affiliation(s)
- Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan,Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Ayaka Nakai
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan,Ophthalmology, Keio University School of Medicine, Tokyo, Japan,Ophthalmology, Nihon University School of Medicine, Tokyo, Japan
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan,Ophthalmology, Keio University School of Medicine, Tokyo, Japan,Aichi Animal Eye Clinics, Aichi, Japan
| | - Kazuno Negishi
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Tomita
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan,Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan,Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
62
|
Mayer J, Krug C, Saller M, Feuchtinger A, Giunta R, Volkmer E, Holzbach T. Hypoxic pre-conditioned adipose-derived stem/progenitor cells embedded in fibrin conduits promote peripheral nerve regeneration in a sciatic nerve graft model. Neural Regen Res 2023; 18:652-656. [DOI: 10.4103/1673-5374.346464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
63
|
Ping Z, Chen X, Fang L, Wu K, Liu C, Chen H, Jiang X, Ma J, Yu W. Effect of Angelica Sinensis extract on the angiogenesis of preovulatory follicles (F1-F3) in late-phase laying hens. Poult Sci 2022; 102:102415. [PMID: 36566660 PMCID: PMC9801221 DOI: 10.1016/j.psj.2022.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
In order to form follicles and ovulate normally, there must be abundant blood vessels. Angelica sinensis (Oliv.) Diels (AS), as a traditional Chinese medicinal herb, has the effects of tonifying the blood and activating the blood circulation. However, the effect of AS on angiogenesis in hen-follicles remains to be discovered. In this study, we identified vascular richness, granulosa layer thickness, expression of platelet endothelial cell adhesion molecule-1 (CD31) and the content of vascular endothelial growth factor A (VEGFA) in granulosa layers to elucidate the effect of AS extract on angiogenesis in preovulatory follicles (F1-F3) of late-phase laying hens (75 wk). Based on network pharmacology, we predicted beta-sitosterol, ferulic acid, and caffeic acid as the main active components of AS, and hypoxia-inducible factor-1α (HIF1α), vascular endothelial growth factor receptor 2 (VEGFR2) as hub targets of AS in angiogenesis. The intersection targets were enriched by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and the hub targets were verified by immunofluorescence and western blot. Molecular docking of active components with hub targets was performed and verified in vitro. The results showed that AS extract promoted angiogenesis in preovulatory follicles and increased granulosa cell layer thickness, CD31 expression and content of VEGFA. Experiments in vitro and in vivo demonstrated that AS extract promoted the expression of HIF1α and VEGFA, up-regulated the phosphorylation levels of VEGFR2. These results further demonstrated the reliability of molecular docking and network pharmacology findings. In summary, AS extract can promote angiogenesis in the preovulatory follicles in late-phase laying hens.
Collapse
Affiliation(s)
- Zhenlei Ping
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xin Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Lixue Fang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kai Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaowen Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenhui Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China,Institution of Traditional Chinese Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, PR China,Corresponding author:
| |
Collapse
|
64
|
Ghosal K, Chakraborty D, Roychowdhury V, Ghosh S, Dutta S. Recent Advancement of Functional Hydrogels toward Diabetic Wound Management. ACS OMEGA 2022; 7:43364-43380. [PMID: 36506219 PMCID: PMC9730497 DOI: 10.1021/acsomega.2c05538] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/02/2022] [Indexed: 06/10/2023]
Abstract
Wound healing is a dynamic, orchestrated process comprising partially overlapping phases of hemostasis, inflammation, proliferation, and remodeling. This programmed process, dysregulated in diabetic individuals, results in chronic diabetic wounds. The normal process of healing halts at the inflammatory stage, and this prolonged inflammatory phase is characteristic of diabetic wounds. There are a few U.S. Food & Drug Administration approved skin substitutes; dermal matrixes are commercially available to manage diabetic wounds. However, expensiveness and nonresponsiveness in a few instances are the major limitations of such modalities. To address the issues, several treatment strategies have been exploited to treat chronic wounds; among them hydrogel-based systems showed promise due to favorable properties such as excellent absorption capabilities, porous structure, tunable mechanical strength, and biocompatibility. In the past two decades, hydrogels have become one of the most acceptable systems in the field of wound dressing material, offering single functionality to multifunctionality. This review focuses on the advancement of functional hydrogels explored for diabetic wound management. The process of diabetic wound healing is discussed in the light of the normal healing process, and the role of macrophages in the process is explained. This review also discusses the different approaches to treat diabetic wounds using functional hydrogels, along with their future opportunities.
Collapse
Affiliation(s)
- Krishanu Ghosal
- The
Wolfson Faculty of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Debojit Chakraborty
- Department
of Materials Science and Engineering, Indian
Institute of Technology (IIT), Delhi, New Delhi 110016, India
| | - Victor Roychowdhury
- Department
of Pharmaceutical Technology, JIS University, Agarpara, West Bengal 700109, India
| | - Santanu Ghosh
- Department
of Pharmaceutical Technology, JIS University, Agarpara, West Bengal 700109, India
| | - Soumyarup Dutta
- Department
of Pharmaceutical Technology, JIS University, Agarpara, West Bengal 700109, India
| |
Collapse
|
65
|
Luo S, Jiang Y, Anfu Zheng, Zhao Y, Wu X, Li M, Du F, Chen Y, Deng S, Chen M, Li W, Li X, Gu L, Sun Y, Xiao Z, Shen J. Targeting hypoxia-inducible factors for breast cancer therapy: A narrative review. Front Pharmacol 2022; 13:1064661. [PMID: 36532768 PMCID: PMC9751339 DOI: 10.3389/fphar.2022.1064661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/18/2022] [Indexed: 09/15/2023] Open
Abstract
Hypoxia-inducible factors (HIFs), central regulators for cells to adapt to low cellular oxygen levels, are often overexpressed and activated in breast cancer. HIFs modulate the primary transcriptional response of downstream pathways and target genes in response to hypoxia, including glycolysis, angiogenesis and metastasis. They can promote the development of breast cancer and are associated with poor prognosis of breast cancer patients by regulating cancer processes closely related to tumor invasion, metastasis and drug resistance. Thus, specific targeting of HIFs may improve the efficiency of cancer therapy. In this review, we summarize the advances in HIF-related molecular mechanisms and clinical and preclinical studies of drugs targeting HIFs in breast cancer. Given the rapid progression in this field and nanotechnology, drug delivery systems (DDSs) for HIF targeting are increasingly being developed. Therefore, we highlight the HIF related DDS, including liposomes, polymers, metal-based or carbon-based nanoparticles.
Collapse
Affiliation(s)
- Shuang Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- Department of Pharmacy, The Second People’s Hospital of Jiangyou, Mianyang, China
| | - Yu Jiang
- Department of Pharmacy, The People’s Hospital of Wusheng, Guang’an, China
| | - Anfu Zheng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhangang Xiao
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
66
|
Wang Q, Huang P, Xia C, Fu D. Network pharmacology-based strategy to investigate pharmacological mechanism of Liuwei Dihuang Pill against postmenopausal osteoporosis. Medicine (Baltimore) 2022; 101:e31387. [PMID: 36451445 PMCID: PMC9704901 DOI: 10.1097/md.0000000000031387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) has became 1 of most prevalent bone disorders with aging population. Liuwei Dihuang (LWDH) Pill, a classical kidney-tonifying prescription, is extensively used to treat PMOP in China. The aim of this study is to explore the pharmacological mechanisms of LWDH Pill against PMOP via network pharmacological strategy. The active ingredients of LWDH Pill were screened out from the Traditional Chinese Medicine System Pharmacology, Encyclopedia of Traditional Chinese Medicine and Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine Databases, and their related target genes were fished in the UniProt database. Simultaneously, the GeneCards and DisGeNET databases were used to identify the target genes of PMOP. Through establishing a protein-protein interaction network, the overlapping genes between LWDH Pill and PMOP were identified to analyze their interactions and the hub target genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to predict the underlying biological processes (BP) and signaling pathways, respectively. A total of 64 active ingredients and 653 related target genes were identified in LWDH Pill, and 292 target genes were closely associated with PMOP. After matching the target genes between LWDH Pill and PMOP, 84 overlapping targets were obtained and considered as therapeutically relevant. Through construction of a protein-protein interaction network, we identified 20 hub target genes including IL6, INS, tumor necrosis factor, AKT1, vascular endothelial growth factor A, IGF1, TP53, IL1B, MMP9, JUN, LEP, CTNNB1, EGF, PTGS2, PPARG, CXCL8, IL10, CCL2, FOS and ESR1. Gene Ontology enrichment analysis suggested that LWDH Pill exerted anti-PMOP effects via regulating multiple BP including cell proliferation and apoptosis, oxidative stress, inflammation and angiogenesis. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed several pathways, such as PI3K-AKT pathway, mitogen-activated protein kinase pathway, hypoxia-inducible factors-1 pathway, tumor necrosis factor pathway, interleukin-17 (IL-17) pathway and FoxO pathway that might be involved in modulating the above BP. Through network pharmacological approach, we investigated the potential therapeutic mechanism of LWDH Pill against postmenopausal osteoporosis in a systemic perspective. These identified multi-targets and multi-pathways provide promising directions for further revealing more exact mechanisms.
Collapse
Affiliation(s)
- Qingchan Wang
- Department of Gynaecology and Obstetrics, The Second People’s Hospital of Luqiao District, Taizhou, China
| | - Ping Huang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenjie Xia
- Department of Orthopedic Surgery, Ningbo University of Lihuili Hospital, Ningbo, China
| | - Danqing Fu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
67
|
Li L, Lu H, Zhang Y, Li Q, Shi S, Liu Y. Effect of Azelaic Acid on Psoriasis Progression Investigated Based on Phosphatidylinositol 3-Kinase (PI3K)/Protein Kinase B (AKT) Signaling Pathway. Clin Cosmet Investig Dermatol 2022; 15:2523-2534. [PMID: 36447569 PMCID: PMC9701457 DOI: 10.2147/ccid.s389760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/10/2022] [Indexed: 12/10/2023]
Abstract
OBJECTIVE To probe into the effect of azelaic acid on psoriasis based on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. METHODS Psoriasis gene expression data were downloaded from the GEO database for differential expression analysis to identify differentially expressed genes (DEGs). KEGG and GSEA analyses were performed to identify important signaling pathways that may be involved in psoriasis progression for subsequent validation. Thirty-six C57BL/6 mice aged 8 weeks old were randomly assigned into the blank control group (n = 9), negative control group (n = 9), psoriasis model group (n = 9), and azelaic acid treat group (n = 9). Mice models of psoriasis were prepared with imiquimod (IMQ) in the latter two groups, and azelaic acid ointment was applied in azelaic acid treat group. Then, hematoxylin-eosin (HE) staining was carried out to detect the effect of azelaic acid on the pathological damage of mice models of psoriasis in each group. HaCaT cells cultured in vitro were divided into blank control group, negative control group (addition of azelaic acid), IL-17 group (20 ng/mL) and IL-17+azelaic acid group, with 3 replicates for each group. Immunofluorescence assay and Western blotting were used to detect the protein expression of PI3K/AKT signaling pathway related molecules. RESULTS KEGG analysis showed that DEGs were significantly enriched in PI3K-AKT signaling pathway. GSEA analysis showed that PI3K and MTOR signaling pathways were up-regulated in psoriasis, while AUTOPHAGY signaling pathway was down-regulated. HE staining showed that azelaic acid could significantly inhibit the local skin injury in mice caused by IMQ-induced psoriasis. Moreover, azelaic acid can inhibit the expression of PI3K/AKT signaling pathway related proteins phosphorylated (p)-PI3K, p-AKT, p-mammalian target of rapamycin (mTOR), vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2), angiogenin-1 and hypoxia-inducible factor-1α (HIF-1α). These results imply that azelaic acid may inhibit the activation of PI3K/AKT signaling pathway and angiogenesis, thereby improving the symptoms of psoriasis. CONCLUSION Azelaic acid may inhibit the activation of PI3K/AKT signaling pathway and angiogenesis, thereby improving the symptoms of psoriasis.
Collapse
Affiliation(s)
- Licui Li
- Department of Dermatology and Venereology, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Dermatology, Shijiazhuang Gaocheng People’s Hospital, Shijiazhuang, People’s Republic of China
| | - Huixiu Lu
- Department of Dermatology and Venereology, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Dermatology, Shijiazhuang People’s Hospital, Shijiazhuang, People’s Republic of China
| | - Yanli Zhang
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Qian Li
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Shaomin Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Yaling Liu
- Department of Dermatology and Venereology, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| |
Collapse
|
68
|
Mechanosensitive Ion Channel PIEZO1 Signaling in the Hall-Marks of Cancer: Structure and Functions. Cancers (Basel) 2022; 14:cancers14194955. [PMID: 36230880 PMCID: PMC9563973 DOI: 10.3390/cancers14194955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Tumor cells obtain various unique characteristics, which known as hallmarks of cancers, including sustained proliferative signaling, apoptosis resistance, and metastasis. These characteristics are crucial for tumor cells survival and for supporting their rapid growth. Studies have revealed that tumorigenesis is also accompanied by alteration in mechanical properties. Tumor cells could sense various mechanical forces, such as compressive force, shear stress, and portal vein pressure, which in turn could affect tumor progression. Piezo1 is a mechanically sensitive ion channel protein that can be activated mechanically, and is closely related to various diseases. Recent studies showed that Piezo1 is overexpressed in numerous tumors and is associated with poor prognosis. Furthermore, previous studies revealed that Piezo1 mediates these cancer hallmarks, and thus links up mechanical forces with tumor progression. Therefore, the discovery of Piezo1 provides a new insight for elucidating the mechanism of tumor progression under a mechanical microenvironment. Abstract Tumor cells alter their characteristics and behaviors during tumorigenesis. These characteristics, known as hallmarks of cancer, are crucial for supporting their rapid growth, need for energy, and adaptation to tumor microenvironment. Tumorigenesis is also accompanied by alteration in mechanical properties. Cells in tumor tissue sense mechanical signals from the tumor microenvironment, which consequently drive the acquisition of hallmarks of cancer, including sustained proliferative signaling, evading growth suppressors, apoptosis resistance, sustained angiogenesis, metastasis, and immune evasion. Piezo-type mechanosensitive ion channel component 1 (Piezo1) is a mechanically sensitive ion channel protein that can be activated mechanically and is closely related to various diseases. Recent studies showed that Piezo1 mediates tumor development through multiple mechanisms, and its overexpression is associated with poor prognosis. Therefore, the discovery of Piezo1, which links-up physical factors with biological properties, provides a new insight for elucidating the mechanism of tumor progression under a mechanical microenvironment, and suggests its potential application as a tumor marker and therapeutic target. In this review, we summarize current knowledge regarding the role of Piezo1 in regulating cancer hallmarks and the underlying molecular mechanisms. Furthermore, we discuss the potential of Piezo1 as an antitumor therapeutic target and the limitations that need to be overcome.
Collapse
|
69
|
Qin Q, Liu Y, Yang Z, Aimaijiang M, Ma R, Yang Y, Zhang Y, Zhou Y. Hypoxia-Inducible Factors Signaling in Osteogenesis and Skeletal Repair. Int J Mol Sci 2022; 23:ijms231911201. [PMID: 36232501 PMCID: PMC9569554 DOI: 10.3390/ijms231911201] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Sufficient oxygen is required to maintain normal cellular and physiological function, such as a creature’s development, breeding, and homeostasis. Lately, some researchers have reported that both pathological hypoxia and environmental hypoxia might affect bone health. Adaptation to hypoxia is a pivotal cellular event in normal cell development and differentiation and in pathological settings such as ischemia. As central mediators of homeostasis, hypoxia-inducible transcription factors (HIFs) can allow cells to survive in a low-oxygen environment and are essential for the regulation of osteogenesis and skeletal repair. From this perspective, we summarized the role of HIF-1 and HIF-2 in signaling pathways implicated in bone development and skeletal repair and outlined the molecular mechanism of regulation of downstream growth factors and protein molecules such as VEGF, EPO, and so on. All of these present an opportunity for developing therapies for bone regeneration.
Collapse
|
70
|
Liu H, Wu B, Shi X, Cao Y, Zhao X, Liang D, Qin Q, Liang X, Lu W, Wang D, Liu J. Aerobic exercise-induced circulating extracellular vesicle combined decellularized dermal matrix hydrogel facilitates diabetic wound healing by promoting angiogenesis. Front Bioeng Biotechnol 2022; 10:903779. [PMID: 36082169 PMCID: PMC9445842 DOI: 10.3389/fbioe.2022.903779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Insufficient blood supply results in unsatisfactory wound healing, especially for challenging wound repair such as diabetic wound defects. Regular exercise training brings a lot of benefits to cardiovascular fitness and metabolic health including attenuation of T2DM progression. Circulating extracellular vesicles (EVs) are postulated to carry a variety of signals involved in tissue crosstalk by their modified cargoes, representing novel mechanisms for the effects of exercise. Prominently, both acute and chronic aerobic exercise training can promote the release of exercise-induced cytokines and enhance the angiogenic function of circulating angiogenic cell–derived EVs.Methods: We investigated the possible angiogenesis potential of aerobic exercise-induced circulating EVs (EXE-EVs) on diabetic wound healing. Circulating EVs were isolated from the plasma of rats subjected to 4 weeks of moderate aerobic exercise or sedentariness 24 h after the last training session. The therapeutic effect of circulating EVs was evaluated in vitro by proliferation, migration, and tube formation assays of human umbilical vein endothelial cells (HUVECs), as well as in vivo by quantification of angiogenesis and cutaneous wound healing in diabetic rats.Results: The number of circulating EVs did not change significantly in exercised rats 24 h post-exercise in comparison with the sedentary rats. Nevertheless, EXE-EVs showed remarkable pro-angiogenic effect by augmenting proliferation, migration, and tube formation of HUVECs. Furthermore, the findings of animal experiments revealed that the EXE-EVs delivered by decellularized dermal matrix hydrogel (DDMH) could significantly promote the repair of skin defects through stimulating the regeneration of vascularized skin.Discussion: The present study is the first attempt to demonstrate that aerobic exercise-induced circulating EVs could be utilized as a cell-free therapy to activate angiogenesis and promote diabetic wound healing. Our findings suggest that EXE-EVs may stand for a potential strategy for diabetic soft tissue wound repair.
Collapse
Affiliation(s)
- Haifeng Liu
- Guangzhou Medical University, Guangzhou, China
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Bing Wu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xin Shi
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, China
| | - Yanpeng Cao
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, China
| | - Xin Zhao
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, China
| | - Daqiang Liang
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Qihuang Qin
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xinzhi Liang
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Lu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Daping Wang
- Guangzhou Medical University, Guangzhou, China
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- *Correspondence: Daping Wang, ; Jun Liu,
| | - Jun Liu
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, China
- *Correspondence: Daping Wang, ; Jun Liu,
| |
Collapse
|
71
|
Pan Y, Liu Z, Tang Y, Tao J, Deng F, Lei Y, Tan Y, Zhu S, Wen X, Guo L, Li R, Deng M, Liu R. HIF-1α drives the transcription of NOG to inhibit osteogenic differentiation of periodontal ligament stem cells in response to hypoxia. Exp Cell Res 2022; 419:113324. [PMID: 36002046 DOI: 10.1016/j.yexcr.2022.113324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Osteogenic differentiation of periodontal ligament stem cells (PDLSCs) is limited in hypoxia, and HIF-1α is key to the response to hypoxia. However, its mechanisms remain largely unknown. This study discovered an osteogenesis-related gene sensitive to hypoxia in PDLSCs, and investigated the molecular mechanisms between HIF-1α and the gene. NOG, a gene that negatively regulates osteogenesis, was discovered by RNA-seq. Under normoxic conditions, HIF-1α overexpression led to enhanced expression of NOG/Noggin and inhibited the expression of osteogenesis-related genes, while inhibition of HIF-1α reversed this effect. The expression of HIF-1α, NOG/Noggin and the osteogenesis-related genes were detected by qRT-PCR or Western blot. Mechanistically, we verified that HIF-1α binds to the hypoxia response element (-1505 to -1502) in the promotor of NOG to enhance secretion of Noggin by chromatin immunoprecipitation and a dual-luciferase reporter assay. IHC staining findings in an animal model verified that Noggin-associated osteogenic differentiation was inhibited in hypoxia. NOG displayed a concordant relationship with HIF-1α, and secreted more with increasing of HIF-1α. Hypoxia stabilized HIF-1α, which bound to the HRE (-1505 to -1502) of the NOG promotor to enhance NOG transcription resulted in inhibiting osteogenic differentiation of PDLSCs. This study offers a promising therapy for periodontitis.
Collapse
Affiliation(s)
- Yingzi Pan
- Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China; School of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhihua Liu
- Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China; Department of Stomatology, The Army 955th Hospital of PLA, 52 Gadong Street, Karuo District, Changdu City, Tibet Autonomous Region, 540302, China
| | - Yaping Tang
- Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Jie Tao
- Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Fang Deng
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yuzhu Lei
- School of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yan Tan
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Shunyao Zhu
- Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Xiujie Wen
- Department of Orthodontics, Hospital of Stomatology, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Ling Guo
- Chongqing Savaid Stomatology Hospital, University of Chinese Academy of Sciences, China
| | - Rulei Li
- Department of Orthopedics, General Hospital of Tibet Military Region, Lasa, 850007, China
| | - Manjing Deng
- Chongqing Savaid Stomatology Hospital, University of Chinese Academy of Sciences, China
| | - Rui Liu
- Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.
| |
Collapse
|
72
|
Yilmaz D, Tuzer M, Unlu MB. Assessing the therapeutic response of tumors to hypoxia-targeted prodrugs with an in silico approach. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:10941-10962. [PMID: 36124576 DOI: 10.3934/mbe.2022511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tumor hypoxia is commonly recognized as a condition stimulating the progress of the aggressive phenotype of tumor cells. Hypoxic tumor cells inhibit the delivery of cytotoxic drugs, causing hypoxic areas to receive insufficient amounts of anticancer agents, which results in adverse treatment responses. Being such an obstruction to conventional therapies for cancer, hypoxia might be considered a target to facilitate the efficacy of treatments in the resistive environment of tumor sites. In this regard, benefiting from prodrugs that selectively target hypoxic regions remains an effective approach. Additionally, combining hypoxia-activated prodrugs (HAPs) with conventional chemotherapeutic drugs has been used as a promising strategy to eradicate hypoxic cells. However, determining the appropriate sequencing and scheduling of the combination therapy is also of great importance in obtaining favorable results in anticancer therapy. Here, benefiting from a modeling approach, we study the efficacy of HAPs in combination with chemotherapeutic drugs on tumor growth and the treatment response. Different treatment schedules have been investigated to see the importance of determining the optimal schedule in combination therapy. The effectiveness of HAPs in varying hypoxic conditions has also been explored in the study. The model provides qualitative conclusions about the treatment response, as the maximal benefit is obtained from combination therapy with greater cell death for highly hypoxic tumors. It has also been observed that the antitumor effects of HAPs show a hypoxia-dependent profile.
Collapse
Affiliation(s)
- Defne Yilmaz
- Department of Physics, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Mert Tuzer
- Department of Physics, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Mehmet Burcin Unlu
- Department of Physics, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8648, Japan
| |
Collapse
|
73
|
Huang X, Wang Q, Mao R, Wang Z, Shen SGF, Mou J, Dai J. Two-dimensional nanovermiculite and polycaprolactone electrospun fibers composite scaffolds promoting diabetic wound healing. J Nanobiotechnology 2022; 20:343. [PMID: 35883146 PMCID: PMC9327406 DOI: 10.1186/s12951-022-01556-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Promoting diabetic wound healing is still a challenge, and angiogenesis is believed to be essential for diabetic wound healing. Vermiculite is a natural clay material that is very easy to obtain and exhibits excellent properties of releasing bioactive ions, buffering pH, adsorption, and heat insulation. However, there are still many unsolved difficulties in obtaining two-dimensional vermiculite and using it in the biomedical field in a suitable form. RESULTS In this study, we present a versatile organic-inorganic composite scaffold, which was constructed by embedding two-dimensional vermiculite nanosheets in polycaprolactone electrospun fibers, for enhancing angiogenesis through activation of the HIF-1α signaling pathway and promoting diabetic wound healing both in vitro and in vivo. CONCLUSIONS Together, the rational-designed polycaprolactone electrospun fibers-based composite scaffolds integrated with two-dimensional vermiculite nanosheets could significantly improve neo-vascularization, re-epithelialization, and collagen formation in the diabetic wound bed, thus promoting diabetic wound healing. This study provides a new strategy for constructing bioactive materials for highly efficient diabetic wound healing.
Collapse
Affiliation(s)
- Xingtai Huang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China
| | - Qirui Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Runyi Mao
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China
| | - Zeying Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China
| | - Steve G F Shen
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China. .,Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Juan Mou
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Jiewen Dai
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China.
| |
Collapse
|
74
|
Li G, Li D, Wu C, Li S, Chen F, Li P, Ko CN, Wang W, Lee SMY, Lin L, Ma DL, Leung CH. Homocysteine-targeting compounds as a new treatment strategy for diabetic wounds via inhibition of the histone methyltransferase SET7/9. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:988-998. [PMID: 35859119 PMCID: PMC9356058 DOI: 10.1038/s12276-022-00804-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/10/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022]
Abstract
In hypoxia and hyperglycemia, SET7/9 plays an important role in controlling HIF-1α methylation and regulating the transcription of HIF-1α target genes, which are responsible for angiogenesis and wound healing. Here, we report the Ir(III) complex Set7_1a bearing acetonitrile (ACN) ligands as a SET7/9 methyltransferase inhibitor and HIF-1α stabilizer. Interestingly, Set7_1a could engage SET7/9 and strongly inhibit SET7/9 activity, especially after preincubation with homocysteine (Hcy), which is elevated in diabetes. We hypothesize that Set7_1a exchanges ACN subunits for Hcy to disrupt the interaction between SET7/9 and SAM/SAH, which are structurally related to Hcy. Inhibition of SET7/9 methyltransferase activity by Set7_1a led to reduced HIF-1α methylation at the lysine 32 residue, causing increased HIF-1α level and recruitment of HIF-1α target genes that promote angiogenesis, such as VEGF, GLUT1, and EPO, in hypoxia and hyperglycemia. Significantly, Set7_1a improved wound healing in a type 2 diabetic mouse model by activating HIF-1α signaling and downstream proangiogenic factors. To our knowledge, this is the first Hcy-targeting iridium compound shown to be a SET7/9 antagonist that can accelerate diabetic wound healing. More importantly, this study opens a therapeutic avenue for the treatment of diabetic wounds by the inhibition of SET7/9 lysine methyltransferase activity. Animal trials have demonstrated the potential of a new drug strategy to heal the wounds associated with diabetes, especially in the feet,which often lead to chronic damage, sometimes treatable only by amputation. Leung CH and Lin L at the University of Macau, China, and Ma DL at the Hong Kong Baptist University tested the new therapy on a mouse model of type 2 diabetes. The treatment uses a homocysteine-targeting metal complex that inhibits a key enzyme SET7/9 involved in the processes that cause diabetic wounds. The treatment activated a molecular signalling cascade involved in generating the new blood vessels needed for wounds to heal. It could help address the urgent need for better treatments for this serious problem.
Collapse
Affiliation(s)
- Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.,Zhuhai UM Science and Technology Research Institute, Zhuhai, 519031, China
| | - Dan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Shengnan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.,Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China. .,Zhuhai UM Science and Technology Research Institute, Zhuhai, 519031, China. .,Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
| |
Collapse
|
75
|
Han Y, Koohi-Moghadam M, Chen Q, Zhang L, Chopra H, Zhang J, Dissanayaka WL. HIF-1α Stabilization Boosts Pulp Regeneration by Modulating Cell Metabolism. J Dent Res 2022; 101:1214-1226. [PMID: 35798352 DOI: 10.1177/00220345221091528] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Stem cell-based therapeutics is a promising strategy in dental pulp regeneration. However, low cell viability after transplantation in vivo due to the ischemic microenvironment is still a critical challenge for future clinical application. With the aim of improving postimplantation cell survival and pulp tissue regeneration, stem cells from human exfoliated deciduous teeth (SHED) were preconditioned to a hypoxic condition by hypoxia-inducible factor 1α (HIF-1α) stabilization via knockdown of prolyl hydroxylase domain-containing protein 2 (PHD2) using lentiviral short hairpin RNA. HIF-1α-stabilized SHED were encapsulated in PuraMatrix hydrogel, injected into root canals of human tooth fragments, and implanted in the subcutaneous space of immunodeficient mice. After 28 d, enhanced dental pulp-like tissue formation was observed with a significantly higher level of vascularization, which could be attributed to both endothelial differentiation of SHED and recruitment of host blood vessels. Furthermore, dentin-like tissue formation in vivo and accelerated odontogenic/osteogenic differentiation both in vivo and in vitro were observed. At 7 d postimplantation, significantly less DNA damage and higher Ki67 expression were detected in the HIF-1α-stabilized SHED group compared with the control SHED. Accordingly, cell viability assay and staining for Ki67 and apoptotic cells in vitro showed that HIF-1α stabilization could decrease cell apoptosis and enhance cell survival significantly. We demonstrated that PI3K/AKT pathway activation had resulted in low caspase 3 expression in HIF-1α-stabilized SHED in hypoxic conditions. Furthermore, we found that HIF-1α-induced cell survival could also be attributed to the upregulated expression of PDK1, HK2, and Glut1, which contributes to the maintenance of reactive oxygen species homeostasis and metabolic adaptation in hypoxia. In addition, we identified Smad7 as 1 of the top 3 upregulated genes through RNA sequencing in HIF-1α-stabilized SHED and demonstrated its essential role in HK2 and Glut1 upregulation. Taken together, HIF-1α stabilization enhances cell survival of SHED through modulating various target genes and potential signaling pathways, as well as odontogenic tissue formation during dental pulp regeneration, which could benefit stem cell-based therapy in general.
Collapse
Affiliation(s)
- Y Han
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - M Koohi-Moghadam
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Q Chen
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - L Zhang
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - H Chopra
- Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - J Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - W L Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
76
|
Peng X, Ding C, Zhao Y, Hao M, Liu W, Yang M, Xiao F, Zheng Y. Poloxamer 407 and Hyaluronic Acid Thermosensitive Hydrogel-Encapsulated Ginsenoside Rg3 to Promote Skin Wound Healing. Front Bioeng Biotechnol 2022; 10:831007. [PMID: 35866029 PMCID: PMC9294355 DOI: 10.3389/fbioe.2022.831007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Ginsenoside Rg3 has shown beneficial effects in various skin diseases. The current interest in designing and developing hydrogels for biomedical applications continues to grow, inspiring the further development of drug-loaded hydrogels for tissue repair and localized drug delivery. The aim of the present study was to develop an effective and safe hydrogel (Rg3-Gel), using ginsenoside Rg3, and we evaluated the wound-healing potential and therapeutic mechanism of Rg3-Gel. The results indicated that the optimized Rg3-Gel underwent discontinuous phase transition at low and high temperatures. Rg3-Gel also exhibited good network structures, swelling water retention capacity, sustainable release performance, and excellent biocompatibility. Subsequently, the good antibacterial and antioxidant properties of Rg3-Gel were confirmed by in vitro tests. In full-thickness skin defect wounded models, Rg3-Gel significantly accelerated the wound contraction, promoted epithelial and tissue regeneration, and promoted collagen deposition and angiogenesis. In addition, Rg3-Gel increased the expression of autophagy proteins by inhibiting the MAPK and NF-KB pathways in vivo. It simultaneously regulated host immunity by increasing the abundance of beneficial bacteria and the diversity of the wound surface flora. From these preliminary evaluations, it is possible to conclude that Rg3-Gel has excellent application potential in wound-healing drug delivery systems.
Collapse
Affiliation(s)
- Xiaojuan Peng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Chuanbo Ding
- Jilin Agricultural Science and Technology University, Jilin, China
| | - Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Mingqian Hao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- *Correspondence: Wencong Liu, ; Min Yang,
| | - Min Yang
- Jilin Agricultural Science and Technology University, Jilin, China
- *Correspondence: Wencong Liu, ; Min Yang,
| | - Fengyan Xiao
- Jilin Agricultural Science and Technology University, Jilin, China
| | - Yinan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| |
Collapse
|
77
|
Mao Y, Meng L, Liu H, Lu Y, Yang K, Ouyang G, Ban Y, Chen S. Therapeutic potential of traditional Chinese medicine for vascular endothelial growth factor. J Zhejiang Univ Sci B 2022; 23:353-364. [PMID: 35557037 DOI: 10.1631/jzus.b2101055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vascular endothelial growth factor (VEGF) is the main regulator of physiological angiogenesis during embryonic development, bone growth, and reproductive function, and it also participates in a series of pathological changes. Traditional Chinese medicine (TCM), with a history of more than 2000 years, has been widely used in clinical practice, while the exploration of its mechanisms has only begun. This review summarizes the research of recent years on the influence of TCM on VEGF. It is found that many Chinese medicines and recipes have a regulatory effect on VEGF, indicating that Chinese medicine has broad prospects as a complementary and alternative therapy, providing new treatment ideas for clinical applications and the theoretical basis for research on the mechanisms of TCM.
Collapse
Affiliation(s)
- Yijia Mao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Lingkai Meng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Huayi Liu
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China.
| | - Yuting Lu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Kuo Yang
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Guangze Ouyang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Yanran Ban
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Shuang Chen
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| |
Collapse
|
78
|
Hong J, Jiang M, Guo L, Lin J, Wang Y, Tang H, Liu X. Prenatal exposure to triphenyl phosphate activated PPARγ in placental trophoblasts and impaired pregnancy outcomes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119039. [PMID: 35192884 DOI: 10.1016/j.envpol.2022.119039] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The health risks of triphenyl phosphate (TPhP) have increased since its widespread application. Using placental trophoblast cell line JEG-3, we demonstrated that TPhP could induce endoplasmic reticulum stress (ERS) and cell apoptosis through PPARγ-mediated lipid metabolism. However, the developmental toxicity of TPhP through the placenta is not known. In this study, prenatal TPhP exposure to mice was investigated. Pregnant mice were orally exposed to TPhP (1 and 5 mg/kg) from embryonic day 0 (E0) until delivery. The results showed that TPhP could accumulate in placenta and impair pregnancy outcomes. After exposure, at E18, placental hormone chorionic gonadotrophin and testosterone levels were significantly decreased, but progesterone and estradiol levels were significantly increased, and placental angiogenesis was activated in the low-dose exposure group. While, in the high-dose exposure group, only estradiol levels were significantly increased. Different with the effect on hormone level or angiogenesis, TPhP significantly increased PPARγ and its regulated lipid transport proteins FABP, FATP, and CD36, and induced lipid accumulation in placental trophoblasts of both low- and high-exposure group. RNA-seq analysis of the placenta identified differentially expressed genes that were mainly involved in the ERS and MAPK signaling pathways. Western blot analysis verified that the protein levels related to ERS stress and apoptosis were significantly increased. To further confirm the role of PPARγ in TPhP mediated placental toxicity, pregnant mice were orally exposed to TPhP (1 mg/kg) or TPhP (1 mg/kg) + GW9662 (PPARγ inhibitor, 2 mg/kg) from E0 until delivery. The results showed that GW9662 could ameliorate the effect of TPhP on placental lipid accumulation, ERS and cell apoptosis, suggesting that PPARγ mediated the placental toxicity of TPhP. Overall, our results indicated that prenatal TPhP exposure impaired pregnancy outcomes, at least partly through PPARγ regulated function of trophoblast.
Collapse
Affiliation(s)
- Jiabin Hong
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Mengzhu Jiang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Lihao Guo
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Juntong Lin
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Yao Wang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Huanwen Tang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Xiaoshan Liu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China.
| |
Collapse
|
79
|
Shao Y, Chen S, Zhou K, Gan K, Li J, Xia C. Network pharmacology explores the mechanisms of Eucommia ulmoides cortex against postmenopausal osteoporosis. Medicine (Baltimore) 2022; 101:e29257. [PMID: 35583534 PMCID: PMC9276450 DOI: 10.1097/md.0000000000029257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/21/2022] [Indexed: 01/04/2023] Open
Abstract
Postmenopausal osteoporosis (PMOP) has become one of most frequent chronic disease worldwide with aging population. Eucommia ulmoides cortex (EU), a traditional Chinese medicine, has long since been used to treat PMOP. The aim of this study is to explore pharmacological mechanisms of EU against PMOP through using network pharmacology approach.The active ingredients of EU were obtained from Traditional Chinese Medicine System Pharmacology database, and target fishing was performed on these ingredients in UniProt database for identification of their relative targets. Then, we screened the targets of PMOP using GeneCards database and DisGeNET database. The overlapping genes between PMOP and EU were obtained to performed protein-protein interaction, Gene Ontology analysis, Kyoto encyclopedia of genes, and genomes analysis.Twenty-eight active ingredients were identified in EU, and corresponded to 207 targets. Also, 292 targets were closely associated with PMOP, and 50 of them matched with the targets of EU were considered as therapeutically relevant. Gene ontology enrichment analysis suggested that EU exerted anti-PMOP effects via modulating multiple biological processes including cell proliferation, angiogenesis, and inflammatory response. Kyoto encyclopedia of genes and genomes enrichment analysis revealed several pathways, such as PI3K-AKT pathway, mitogen-activated protein kinase pathway, hypoxia-inducible factors-1 pathway, tumor necrosis factor pathway, and interleukin-17 pathway that might be involved in regulating the above biological processes.Through the method of network pharmacology, we systematically investigated the mechanisms of EU against PMOP. The multi-targets and multi-pathways identified here could provide new insights for further determination of more exact mechanisms of EU.
Collapse
Affiliation(s)
- Yan Shao
- Department of Pharmacy, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, China
| | - Song Chen
- Department of Orthopedic Surgery, the Third People's Medical and Health Group of Cixi City, Ningbo, China
| | - Ke Zhou
- Department of Orthopedic Surgery, Li Huili Hospital Affiliated to Ningbo University, Ningbo, China
| | - Kaifeng Gan
- Department of Orthopedic Surgery, Li Huili Hospital Affiliated to Ningbo University, Ningbo, China
| | - Jin Li
- Department of Orthopedic Surgery, Li Huili Hospital Affiliated to Ningbo University, Ningbo, China
| | - Chenjie Xia
- Department of Orthopedic Surgery, Li Huili Hospital Affiliated to Ningbo University, Ningbo, China
| |
Collapse
|
80
|
Hertel FC, da Silva AS, Sabino ADP, Valente FL, Reis ECC. Preconditioning Methods to Improve Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Bone Regeneration—A Systematic Review. BIOLOGY 2022; 11:biology11050733. [PMID: 35625461 PMCID: PMC9138769 DOI: 10.3390/biology11050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 12/09/2022]
Abstract
Simple Summary The evidence of the therapeutic effects of mesenchymal stromal cells (MSCs), so-called stem cells, in several diseases relies mostly on the substances they secrete, including their extracellular vesicles (EVs). EVs are an important component of cell communication and they carry a cargo that is similar to their parent cell. Cells respond differently based on their microenvironment, and so it is expected that the therapeutic potential of these vesicles can be modulated by the enrichment of their parent cell microenvironment. With this in mind, we conducted a systematic search for papers that preconditioned MSCs and collected their EVs to assess their potential to favor bone formation. The results showed different methods for MSC preconditioning, including chemical induction, culture conditions, and genetic modifications. All methods were able to improve the therapeutic effects of the derived EVs for bone formation. However, the heterogeneity among studies—regarding the type of cell, EV concentration, and scaffolds—made it difficult to compare fairly the types of preconditioning methods. In summary, the microenvironment greatly influences MSCs, and using preconditioning methods can potentially improve the therapeutic effects of their derived EVs in bone regeneration and other bone diseases. Abstract Mesenchymal stromal cells (MSCs) have long been used in research for bone regeneration, with evidence of their beneficial properties. In the segmental area of MSC-based therapies, MSC-derived extracellular vesicles (EVs) have also shown great therapeutic effects in several diseases, including bone healing. This study aimed to assess whether the conditioning of MSCs improves the therapeutic effects of their derived extracellular vesicles for bone regeneration. Electronic research was performed until February 2021 to recover the studies in the following databases: PubMed, Scopus, and Web of Science. The studies were screened based on the inclusion criteria. Relevant information was extracted, including in vitro and in vivo experiments, and the animal studies were evaluated for risk of bias by the SYRCLE tool. A total of 463 studies were retrieved, and 18 studies met the inclusion criteria (10 studies for their in vitro analysis, and 8 studies for their in vitro and in vivo analysis). The conditioning methods reported included: osteogenic medium; dimethyloxalylglycine; dexamethasone; strontium-substituted calcium silicate; hypoxia; 3D mechanical microenvironment; and the overexpression of miR-375, bone morphogenetic protein-2, and mutant hypoxia-inducible factor-1α. The conditioning methods of MSCs in the reported studies generate exosomes able to significantly promote bone regeneration. However, heterogeneity regarding cell source, conditioning method, EV isolation and concentration, and defect model was observed among the studies. The different conditioning methods reported in this review do improve the therapeutic effects of MSC-derived EVs for bone regeneration, but they still need to be addressed in larger animal models for further clinical application.
Collapse
Affiliation(s)
- Fernanda Campos Hertel
- Veterinary Department, Federal University of Viçosa, Vicosa 36570-900, Brazil; (F.C.H.); (A.S.d.S.); (F.L.V.)
| | - Aline Silvestrini da Silva
- Veterinary Department, Federal University of Viçosa, Vicosa 36570-900, Brazil; (F.C.H.); (A.S.d.S.); (F.L.V.)
| | - Adriano de Paula Sabino
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Fabrício Luciani Valente
- Veterinary Department, Federal University of Viçosa, Vicosa 36570-900, Brazil; (F.C.H.); (A.S.d.S.); (F.L.V.)
| | - Emily Correna Carlo Reis
- Veterinary Department, Federal University of Viçosa, Vicosa 36570-900, Brazil; (F.C.H.); (A.S.d.S.); (F.L.V.)
- Correspondence:
| |
Collapse
|
81
|
Photogenerated reactive oxygen species and hyperthermia by Cu 3SnS 4 nanoflakes for advanced photocatalytic and photothermal antibacterial therapy. J Nanobiotechnology 2022; 20:195. [PMID: 35443708 PMCID: PMC9022271 DOI: 10.1186/s12951-022-01403-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022] Open
Abstract
Background The rapid spread of infectious bacteria has brought great challenges to public health. It is imperative to explore effective and environment-friendly antibacterial modality to defeat antibiotic-resistant bacteria with high biosafety and broad-spectrum antibacterial property. Results Herein, biocompatible Cu3SnS4 nanoflakes (NFs) were prepared by a facile and low-cost fabrication procedure. These Cu3SnS4 NFs could be activated by visible light, leading to visible light-mediated photocatalytic generation of a myriad of reactive oxygen species (ROS). Besides, the plasmonic Cu3SnS4 NFs exhibit strong near infrared (NIR) absorption and a high photothermal conversion efficiency of 55.7%. The ROS mediated cellular oxidative damage and the NIR mediated photothermal disruption of bacterial membranes collaboratively contributed to the advanced antibacterial therapy, which has been validated by the efficient eradication of both Gram-negative Escherichia coli and Gram-positive methicillin-resistant Staphylococcus aureus strains in vitro and in vivo. Meanwhile, the exogenous copper ions metabolism from the Cu3SnS4 NFs facilitated the endothelial cell angiogenesis and collagen deposition, thus expediting the wound healing. Importantly, the inherent localized surface plasmon resonance effect of Cu3SnS4 NFs empowered them as an active substrate for surface-enhanced Raman scattering (SERS) imaging and SERS-labeled bacteria detection. Conclusions The low cost and biocompatibility together with the solar-driven broad-spectrum photocatalytic/photothermal antibacterial property of Cu3SnS4 NFs make them a candidate for sensitive bacteria detection and effective antibacterial treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01403-y.
Collapse
|
82
|
Guo Y, Ren Y, Dong X, Kan X, Zheng C. An Overview of Hepatocellular Carcinoma After Insufficient Radiofrequency Ablation. J Hepatocell Carcinoma 2022; 9:343-355. [PMID: 35502292 PMCID: PMC9056053 DOI: 10.2147/jhc.s358539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
Radiofrequency ablation (RFA) is a commonly used treatment for hepatocellular carcinoma (HCC), however, various complex conditions in clinical practice may lead to insufficient radiofrequency ablation (IRFA), allowing residual HCC to survive. In clinical practice and laboratory models, IRFA plays an important role in rapid tumor progression. Therefore, targeting the residual HCC and avoiding IRFA were worthwhile methods. A deeper understanding of IRFA is required; IRFA contributes to the improvement of proliferative activity, migration rates, and invasive capacity, and this may be due to the involvement of multiple complex processes or proteins, including epithelial mesenchymal transitions (EMTs), cancer stem cells (CSCs), autophagy, heat shock proteins (HSPs), changes of non-tumor cells and extracellular matrix, altered immune microenvironment, hypoxia-inducible factors (HIFs), growth factors, epigenetic alterations, and metabolic reprogramming. We focus on the processes of the above mechanisms and possible therapeutic approach, with a review of the literature. Additionally, we recapitulated the construction methods of various experimental models of IRFA (in vivo and in vitro).
Collapse
Affiliation(s)
- Yusheng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People’s Republic of China
| | - Yanqiao Ren
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People’s Republic of China
| | - Xiangjun Dong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People’s Republic of China
| | - Xuefeng Kan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People’s Republic of China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People’s Republic of China
- Correspondence: Chuansheng Zheng, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China, Tel/Fax +86-27-85726290, Email
| |
Collapse
|
83
|
Wgealla MMAMA, Liang H, Chen R, Xie Y, Li F, Qin M, Zhang X. Amniotic fluid derived stem cells promote skin regeneration and alleviate scar formation through exosomal miRNA-146a-5p via targeting CXCR4. J Cosmet Dermatol 2022; 21:5026-5036. [PMID: 35364624 DOI: 10.1111/jocd.14956] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/27/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Regenerative medicine is promising in wound healing. Exosomes derived from human amniotic fluid derived stem cells(hAFS) have become an important area of research for many diseases as a key paracrine factor,but its effects in wound healing remains unknown. In this study, we investigated the possible role and possible mechanisms of hAFS in skin wound healing. METHODS hAFS were isolated from human amniotic fluid via routine amniocentesis. The mice were randomly divided into 2 groups: control group and hAFS group treated with 1.25×106 hAFS cells. immunohistochemistry staining was performed for histological analysis and qRT-PCR for assessment of gene levels. Luciferase Reporter Assay was performed for verification of target gene. RESULTS Our results demonstrated that hAFS accelerated wound closure. hAFS alleviated scar formation via promoting ECM remodeling, upregulating molecular of immune response, enhancing anti-fibrotic activity and decreasing the secretion of inflammation-associated cytokines through exosomal miRNA-146a-5p via targeting CXCR4. CONCLUSIONS Taken together, hAFS was a promising cell source for wound healing. The findings in this study provide vital references and pave the way for future research.
Collapse
Affiliation(s)
- Mutwakil Mub Arak Mohammed Ali Wgealla
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China.,The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, China
| | - Hansi Liang
- Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ruihua Chen
- The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, China.,Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yufei Xie
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - Fang Li
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - Mingde Qin
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China.,The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, China
| | - Xueguang Zhang
- Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
84
|
Eid HM, Ali AA, Ali AMA, Eissa EM, Hassan RM, Abo El-Ela FI, Hassan AH. Potential Use of Tailored Citicoline Chitosan-Coated Liposomes for Effective Wound Healing in Diabetic Rat Model. Int J Nanomedicine 2022; 17:555-575. [PMID: 35153481 PMCID: PMC8828492 DOI: 10.2147/ijn.s342504] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
Purpose This study aimed to formulate citicoline-loaded chitosan-coated liposomes (CT-CS-LPs) for topical administration and evaluated for wound healing in a diabetic animal model. Methods CT-LPs were formulated via a thin-film hydration approach and coated with chitosan (CS). Box-Behnken statistical design investigated the effects of lipid amount, chitosan concentration, and cholesterol amount on vesicle diameter, surface charge, and entrapment efficiency. The potential of the optimized CT-CS-LPs gel for wound healing was further evaluated in streptozocin-induced diabetic rats. The different healing stages were evaluated by several techniques, including general and special staining techniques, in addition to antibody immunohistochemistry. Results The optimized CT-CS-LPs obtained had a mean size of 211.6 nm, a 50.7% entrapment efficiency, and a positive surface charge of 32.1 mV. In addition, the optimized CT-CS-LPs exhibited in vitro sustained release behavior. The in vivo experiments revealed that treatment with the optimized CT-CS-LPs boosts the healing process of the skin wound in diabetic rats by reducing inflammation, accelerating re-epithelization, angiogenesis, fibroblast proliferation, and connective tissue remodeling, leading to rapid wound closure. Conclusion Chitosan-coated liposomes containing citicoline have emerged as a potential approach for promoting the healing process in diabetic rats. However, the therapeutic effectiveness of the suggested approach in diabetic patients needs to be investigated.
Collapse
Affiliation(s)
- Hussein M Eid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Adel A Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
- Correspondence: Adel A Ali, Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt, Tel +20822317958, Email ;
| | - Ahmed M Abdelhaleem Ali
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia
| | - Essam M Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Randa M Hassan
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Amira H Hassan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
85
|
Hu B, Wei MM, Wang SS, Zheng JL, Chen L, Peng X, Chen JF, An HM. Herbal medicine teng-long-bu-zhong-tang inhibits the growth of human RKO colorectal cancer by regulating apoptosis, senescence, and angiogenesis. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_42_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
86
|
Gouda G, Gupta MK, Donde R, Behera L, Vadde R. Tumor microenvironment in heptocellular carcinoma. THERANOSTICS AND PRECISION MEDICINE FOR THE MANAGEMENT OF HEPATOCELLULAR CARCINOMA 2022:109-124. [DOI: 10.1016/b978-0-323-98806-3.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
87
|
Jiang TT, Ji CF, Cheng XP, Gu SF, Wang R, Li Y, Zuo J, Han J. α-Mangostin Alleviated HIF-1α-Mediated Angiogenesis in Rats With Adjuvant-Induced Arthritis by Suppressing Aerobic Glycolysis. Front Pharmacol 2021; 12:785586. [PMID: 34987400 PMCID: PMC8721667 DOI: 10.3389/fphar.2021.785586] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
A previously validated anti-rheumatic compound α-mangostin (MAN) shows significant metabolism regulatory effects. The current study aimed to clarify whether this property contributed to its inhibition on synovial angiogenesis. Male wistar rats with adjuvant-induced arthritis (AIA) were orally treated by MAN for 32 days. Afterwards, biochemical parameters and cytokines in plasma were determined by corresponding kits, and glycometabolism-related metabolites were further accurately quantified by LC-MS method. Anti-angiogenic effects of MAN were preliminarily assessed by joints based-immunohistochemical examination and matrigel plug assay. Obtained results were then validated by experiments in vitro. AIA-caused increase in circulating transforming growth factor beta, interleukin 6, hypoxia inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) in blood and local HIF-1α/VEGF expression in joints was abrogated by MAN treatment, and pannus formation within matrigel plugs implanted in AIA rats was inhibited too. Scratch and transwell assays revealed the inhibitory effects of MAN on human umbilical vein endothelial cells (HUVECs) migration. Furthermore, MAN inhibited tubule formation capability of HUVECs and growth potential of rat arterial ring-derived endothelial cells in vitro. Meanwhile, MAN eased oxidative stress, and altered glucose metabolism in vivo. Glycolysis-related metabolites including glucose 6-phosphate, fructose 6-phosphate, 3-phosphoglyceric acid and phosphoenolpyruvic acid in AIA rats were decreased by MAN, while the impaired pyruvate-synthesizing capability of lactate dehydrogenase (LDH) was recovered. Consistently, MAN restored lipopolysaccharide-elicited changes on levels of glucose and LDH in HUVECs culture system, and exerted similar effects with LDH inhibitor stiripentol on glycometabolism and VEGF production as well as tubule formation capability of HUVECs. These evidences show that MAN treatment inhibited aerobic glycolysis in AIA rats, which consequently eased inflammation-related hypoxia, and hampered pathological neovascularization.
Collapse
Affiliation(s)
- Tian-Tian Jiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wuhu, China
| | - Chao-Fan Ji
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Xiu-Ping Cheng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Shao-Fei Gu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Rui Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Yan Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Jian Zuo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Jun Han
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wuhu, China
| |
Collapse
|
88
|
Wang J, Wu H, Zhao Y, Qin Y, Zhang Y, Pang H, Zhou Y, Liu X, Xiao Z. Extracellular Vesicles from HIF-1α-Overexpressing Adipose-Derived Stem Cells Restore Diabetic Wounds Through Accelerated Fibroblast Proliferation and Migration. Int J Nanomedicine 2021; 16:7943-7957. [PMID: 34887659 PMCID: PMC8652947 DOI: 10.2147/ijn.s335438] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Inhibition of cellular adaptation to hypoxia can cause persistent inflammation, thereby increasing tissue damage and complicating wound healing in diabetes patients. Regulating cellular adaptation to hypoxic environments can help in effective wound repair. Hypoxia-inducible factor (HIF)-1α is a key regulator of cell hypoxia. Extracellular vesicles (EVs) regulate wound repair. This study investigated the mechanism of HIF-1α overexpression in adipose-derived stem cell extracellular vesicles (ADSCs-hEVs) in the repair of diabetic wounds. MATERIALS AND METHODS HIF-1α expression in diabetes patients and healthy participants was studied. High-throughput sequencing, GO, and KEGG analysis revealed that ADSCs small extracellular vesicle hypoxia environments may increase HIF-1α expression by affecting cell metabolism, differentiation, and TGF-β secretion, or by altering the PI3K/AKT pathway. Effect of addition of ADSCs-hEVs on cell proliferation and migration was investigated using Western blotting, EdU assay, transwell assay, and migration. In vivo, after 7, 14, and 21 days, important factors for diabetic wound healing were evaluated by immunohistochemistry, qRT-PCR, Masson staining, and H&E staining. RESULTS HIF-1α expression decreased in the skin of diabetes patients; interleukin (IL)-6 expression increased, and growth factor-related indexes decreased. ADSCs-hEVs significantly increased the expression and secretion of growth factors, compared with ADSCs-EVs. In vivo, ADSC-hEV treatment accelerated the healing rate and improved the healing quality of diabetic wounds compared with ADSCs-EVs. CONCLUSION Speed and quality of wound healing increased significantly in the ADSCs-hEVs group, which could inhibit early inflammation while promoting the secretion and expression of growth factors and extracellular matrix-related indexes.
Collapse
Affiliation(s)
- Jie Wang
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Hao Wu
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Yue Zhao
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Youyou Qin
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Yingbo Zhang
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Hao Pang
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Yongting Zhou
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Xueyi Liu
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Zhibo Xiao
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
89
|
Li M, Pan D, Sun H, Zhang L, Cheng H, Shao T, Wang Z. The hypoxia adaptation of small mammals to plateau and underground burrow conditions. Animal Model Exp Med 2021; 4:319-328. [PMID: 34977483 PMCID: PMC8690988 DOI: 10.1002/ame2.12183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Oxygen is one of the important substances for the survival of most life systems on the earth, and plateau and underground burrow systems are two typical hypoxic environments. Small mammals living in hypoxic environments have evolved different adaptation strategies, which include increased oxygen delivery, metabolic regulation of physiological responses and other physiological responses that change tissue oxygen utilization. Multi-omics predictions have also shown that these animals have evolved different adaptations to extreme environments. In particular, vascular endothelial growth factor (VEGF) and erythropoietin (EPO), which have specific functions in the control of O2 delivery, have evolved adaptively in small mammals in hypoxic environments. Naked mole-rats and blind mole-rats are typical hypoxic model animals as they have some resistance to cancer. This review primarily summarizes the main living environment of hypoxia tolerant small mammals, as well as the changes of phenotype, physiochemical characteristics and gene expression mode of their long-term living in hypoxia environment.
Collapse
Affiliation(s)
- Mengke Li
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Dan Pan
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Hong Sun
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
- Centre for Nutritional EcologyZhengzhou UniversityZhengzhouP.R. China
| | - Lei Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Han Cheng
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Tian Shao
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Zhenlong Wang
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| |
Collapse
|
90
|
Mingroni MA, Knapp MJ. Kinetic Studies of the Hydrogen Atom Transfer in a Hypoxia-Sensing Enzyme, FIH-1: KIE and O 2 Reactivity. Biochemistry 2021; 60:3315-3322. [PMID: 34714626 DOI: 10.1021/acs.biochem.1c00476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cellular hypoxia plays a crucial role in tissue development and adaptation to pO2. Central to cellular oxygen sensing is factor-inhibiting HIF-1α (FIH), an α-ketoglutarate (αKG)/non-heme iron(II)-dependent dioxygenase that hydroxylates a specific asparagine residue of hypoxia inducible factor-1α (HIF-1α). The high KM(O2) and rate-limiting decarboxylation step upon O2 activation are key features of the enzyme that classify it as an oxygen sensor and set it apart from other αKG/Fe(II)-dependent dioxygenases. Although the chemical intermediates following decarboxylation are presumed to follow the consensus mechanism of other αKG/Fe(II)-dependent dioxygenases, experiments have not previously demonstrated these canonical steps in FIH. In this work, a deuterated peptide substrate was used as a mechanistic probe for the canonical hydrogen atom transfer (HAT). Our data show a large kinetic isotope effect (KIE) in steady-state kinetics (Dkcat = 10 ± 1), revealing that the HAT occurs and is partially rate limiting on kcat. Kinetic studies showed that the deuterated peptide led FIH to uncouple O2 activation and provided the opportunity to spectroscopically observe the ferryl intermediate. This enzyme uncoupling was used as an internal competition with respect to the fate of the ferryl intermediate, demonstrating a large observed KIE on the uncoupling (Dk5 = 1.147 ± 0.005) and an intrinsic KIE on the HAT step (Dk > 15). The close energy barrier between αKG decarboxylation and HAT distinguishes FIH as an O2-sensing enzyme and is crucial for ensuring substrate specificity in the regulation of cellular O2 homeostasis.
Collapse
Affiliation(s)
- Michael A Mingroni
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Michael J Knapp
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
91
|
Morbidelli L, Genah S, Cialdai F. Effect of Microgravity on Endothelial Cell Function, Angiogenesis, and Vessel Remodeling During Wound Healing. Front Bioeng Biotechnol 2021; 9:720091. [PMID: 34631676 PMCID: PMC8493071 DOI: 10.3389/fbioe.2021.720091] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Wound healing is a complex phenomenon that involves different cell types with various functions, i.e., keratinocytes, fibroblasts, and endothelial cells, all influenced by the action of soluble mediators and rearrangement of the extracellular matrix (ECM). Physiological angiogenesis occurs in the granulation tissue during wound healing to allow oxygen and nutrient supply and waste product removal. Angiogenesis output comes from a balance between pro- and antiangiogenic factors, which is finely regulated in a spatial and time-dependent manner, in order to avoid insufficient or excessive nonreparative neovascularization. The understanding of the factors and mechanisms that control angiogenesis and their change following unloading conditions (in a real or simulated space environment) will allow to optimize the tissue response in case of traumatic injury or medical intervention. The potential countermeasures under development to optimize the reparative angiogenesis that contributes to tissue healing on Earth will be discussed in relation to their exploitability in space.
Collapse
Affiliation(s)
| | - Shirley Genah
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Francesca Cialdai
- ASA Campus Joint Laboratory, ASA Research Division & Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
92
|
Novaes VCN, Ervolino E, Fernandes GL, Cunha CP, Theodoro LH, Garcia VG, de Almeida JM. Influence of the treatment with the antineoplastic agents 5-fluorouracil and cisplatin on the severity of experimental periodontitis in rats. Support Care Cancer 2021; 30:1967-1980. [PMID: 34633539 DOI: 10.1007/s00520-021-06586-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE The determination on how antineoplastic agents interfere on the progression of periodontitis is critical for improvement and even development of novel therapeutic approaches for periodontal management. This study evaluated the influence of chemotherapy with 5-fluorouracil (5-FU) or cisplatin (CIS) on healthy periodontal tissues and on the progression of experimental periodontitis (EP). METHODS One hundred forty-four male rats were divided into six groups (n = 24). Each group was treated with physiological saline solution (PSS) 0.9%, 5-FU, or CIS. Experimental periodontitis (EP) was induced by ligature placement. Animals were euthanized at 7, 15, and 30 days after treatment. Data were statistically analyzed (p ≤ 0.05). RESULTS The groups with EP and treated with 5-FU or CIS showed lower percentage of bone volume in the furcation region and higher percentage of alveolar bone loss, higher number of TRAP-positive cells, and lower number of PCNA-positive cells when compared group with EP and treated with PSS (p ≤ 0.05). Groups with EP and treated with 5-FU or CIS showed high immunolabelling pattern of RANKL, TNF-α, and IL-1β, moderate of BAX, and low of HIF-1α. Histological analysis showed severe tissue breakdown in the groups with EP and treated with 5-FU or CIS. CONCLUSIONS Chemotherapy with antineoplastic agents 5-FU and CIS increased the intensity and duration of the inflammation and compromised tissue repair by reduction in cellular and vascular turnover. The more severe periodontal breakdown was caused by 5-FU.
Collapse
Affiliation(s)
- Vivian Cristina Noronha Novaes
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Edilson Ervolino
- Department of Basic Science, Histology Division, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Giovani Lopes Fernandes
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Clara Possarle Cunha
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Leticia Helena Theodoro
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Valdir Gouveia Garcia
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Juliano Milanezi de Almeida
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil.
| |
Collapse
|
93
|
Celik D, Kantarci A. Vascular Changes and Hypoxia in Periodontal Disease as a Link to Systemic Complications. Pathogens 2021; 10:1280. [PMID: 34684229 PMCID: PMC8541389 DOI: 10.3390/pathogens10101280] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022] Open
Abstract
The hypoxic microenvironment caused by oral pathogens is the most important cause of the disruption of dynamic hemostasis between the oral microbiome and the immune system. Periodontal infection exacerbates the inflammatory response with increased hypoxia and causes vascular changes. The chronicity of inflammation becomes systemic as a link between oral and systemic diseases. The vascular network plays a central role in controlling infection and regulating the immune response. In this review, we focus on the local and systemic vascular network change mechanisms of periodontal inflammation and the pathological processes of inflammatory diseases. Understanding how the vascular network influences the pathology of periodontal diseases and the systemic complication associated with this pathology is essential for the discovery of both local and systemic proactive control mechanisms.
Collapse
Affiliation(s)
- Dilek Celik
- Immunology Division, Health Sciences Institute, Trakya University, Edirne 22100, Turkey;
| | - Alpdogan Kantarci
- Forsyth Institute, Cambridge, MA 02142, USA
- School of Dental Medicine, Harvard University, Boston, MA 02142, USA
| |
Collapse
|
94
|
Gao D, Zhang Y, Bowers DT, Liu W, Ma M. Functional hydrogels for diabetic wound management. APL Bioeng 2021; 5:031503. [PMID: 34286170 PMCID: PMC8272650 DOI: 10.1063/5.0046682] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic wounds often have a slow healing process and become easily infected owing to hyperglycemia in wound beds. Once planktonic bacterial cells develop into biofilms, the diabetic wound becomes more resistant to treatment. Although it remains challenging to accelerate healing in a diabetic wound due to complex pathology, including bacterial infection, high reactive oxygen species, chronic inflammation, and impaired angiogenesis, the development of multifunctional hydrogels is a promising strategy. Multiple functions, including antibacterial, pro-angiogenesis, and overall pro-healing, are high priorities. Here, design strategies, mechanisms of action, performance, and application of functional hydrogels are systematically discussed. The unique properties of hydrogels, including bactericidal and wound healing promotive effects, are reviewed. Considering the clinical need, stimuli-responsive and multifunctional hydrogels that can accelerate diabetic wound healing are likely to form an important part of future diabetic wound management.
Collapse
Affiliation(s)
- Daqian Gao
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Yidan Zhang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Daniel T. Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Wanjun Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
95
|
Han Y, Chen Q, Zhang L, Dissanayaka WL. Indispensable Role of HIF-1α Signaling in Post-implantation Survival and Angio-/Vasculogenic Properties of SHED. Front Cell Dev Biol 2021; 9:655073. [PMID: 34368116 PMCID: PMC8343099 DOI: 10.3389/fcell.2021.655073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives Post-implantation survival and timely vascularization of stem-cell based constructs are critical factors in achieving successful outcomes in tissue regeneration approaches. Hypoxia inducible factor-1α (HIF-1α) is known to mediate adaptive functions to ischemic stress in many different cell types. The current study aimed to explore the role of HIF-1α in post-implantation survival and angio-/vasculogenesis of stem cells from human exfoliated deciduous teeth (SHED). Methods HIF-1α in SHED was suppressed using siRNA or chemical inhibitor (YC-1) and used in Matrigel plug assay conducted on severe combined immunodeficient mice. The plugs were retrieved on day 3 or 7 post-injection and analyzed for hypoxia status, ki67 expression, DNA fragmentation (TUNEL), cellularity, and vascularization by histology and immunohistochemistry for CD31, HIF-1α, pyruvate dehydrogenase kinase-1 (PDK1), hexokinase 2 (HK2), and glucose transporter 1 (Glut1). Cell viability of HIF-1α silenced SHED under different stress conditions (hypoxia, H2O2, and low glucose) in vitro was measured by CCK-8 assay. CM-H2DCFDA and MitoSOX Red were used to detect cellular and mitochondrial reactive oxygen species (ROS) levels, respectively. PDK1, HK2, and Glut1 expression were measured by western blotting and immunofluorescence. Secretory protein levels of vascular endothelial growth factor (VEGF) and the respective paracrine effects on endothelial cell proliferation and migration were detected by ELISA, CCK-8 assay, and trans-well assay, respectively. Results Histological analysis of Matrigel plugs showed significantly reduced cell survival in HIF-1α silenced or chemically inhibited SHED groups, which could be attributed to diminished metabolic adaptations as shown by decreased PDK1, HK2, and Glut1 expression. HIF-1α inhibition in SHED also resulted in significantly low blood vessel formation as observed by a low number of perfused and non-perfused vessels of human or mouse CD31 origin. The viability of HIF-1α silenced SHED was significantly affected under hypoxia, H2O2, and low-glucose conditions in vitro, which was reflected in increased cytoplasmic and mitochondrial ROS levels. Significantly reduced levels of VEGF in HIF-1α silenced SHED resulted in decreased paracrine angiogenic effects as shown by low proliferation and migration of endothelial cells. Conclusion HIF-1α plays an indispensable role in post-implantation survival and angio-/vasculogenic properties of SHED by maintaining ROS homeostasis, inducing metabolic adaptations, and VEGF secretion.
Collapse
Affiliation(s)
- Yuanyuan Han
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Qixin Chen
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Lili Zhang
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
96
|
Multi-functional silica-based mesoporous materials for simultaneous delivery of biologically active ions and therapeutic biomolecules. Acta Biomater 2021; 129:1-17. [PMID: 34010692 DOI: 10.1016/j.actbio.2021.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
Mesoporous silica-based materials, especially mesoporous bioactive glasses (MBGs), are being highly considered for biomedical applications, including drug delivery and tissue engineering, not only because of their bioactivity and biocompatibility but also due to their tunable composition and potential use as drug delivery carriers owing to their controllable nanoporous structure. Numerous researches have reported that MBGs can be doped with various therapeutic ions (strontium, copper, magnesium, zinc, lithium, silver, etc.) and loaded with specific biomolecules (e.g., therapeutic drugs, antibiotics, growth factors) achieving controllable loading and release kinetics. Therefore, co-delivery of ions and biomolecules using a single MBG carrier is highly interesting as this approach provides synergistic effects toward improved therapeutic outcomes in comparison to the strategy of sole drug or ion delivery. In this review, we discuss the state-of-the-art in the field of mesoporous silica-based materials used for co-delivery of ions and therapeutic drugs with osteogenesis/cementogenesis, angiogenesis, antibacterial and anticancer properties. The analysis of the literature reveals that specially designed mesoporous nanocarriers can release multiple ions and drugs at therapeutically safe and relevant levels, achieving the desired biological effects (in vivo, in vitro) for specific biomedical applications. It is expected that this review on the ion/drug co-delivery concept using MBG carriers will shed light on the advantages of such co-delivery systems for clinical use. Areas for future research directions are identified and discussed. STATEMENT OF SIGNIFICANCE: Many studies in literature focus on the potential of single drug or ion delivery by mesoporous silica-based materials, exploiting the bioactivity, biocompatibility, tunable composition and controllable nanoporosity of these materials. Recenlty, studies have adopted the "dual-delivery" concept, by designing multi-functional mesoporous silica-based systems which are capable to deliver both biologically active ions and biomolecules (growth factors, drugs) simultaneously in order to achieve synergy of their complementary therapeutic activities. This review summarizes the state of the art in the field, with focus on osteogenesis/cementogenesis, angiogenesis, antibacterial and anticancer properties, and discusses the challenges and prospects for further progress in this area, expecting to generate broader interest in the technology for applications in disease treatment and regenerative medicine.
Collapse
|
97
|
Murali VP, Holmes CA. Mesenchymal stromal cell-derived extracellular vesicles for bone regeneration therapy. Bone Rep 2021; 14:101093. [PMID: 34095360 PMCID: PMC8166743 DOI: 10.1016/j.bonr.2021.101093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose To analyze preclinical bone regeneration studies employing mesenchymal stromal cell (MSC)- derived extracellular vesicles (EVs) and highlight any commonalities in EV biomarker expression, miRNA cargo(s) or pathway activation that will aid in understanding the underlying therapeutic mechanisms. Methods Articles employing EVs derived from either MSCs or MSC-like osteogenic stromal cells in preclinical bone regeneration studies are included in this review. Results EVs derived from a variety of MSC types were able to successfully induce bone formation in preclinical models. Many studies failed to perform in-depth EV characterization. The studies with detailed EV characterization data report very different miRNA cargos, even in EVs isolated from the same species and cell types. Few preclinical studies have analyzed the underlying mechanisms of MSC-EV therapeutic action. Conclusion There is a critical need for mechanistic preclinical studies with thorough EV characterization to determine the best therapeutic MSC-EV source for bone regeneration therapies. Issues including controlled EV delivery, large scale production, and proper storage also need to be addressed before EV-based bone regeneration therapies can be translated for clinical bone repair. EVs from different MSC sources successfully regenerate bone in preclinical models. Studies were reviewed to find commonalities in EV cargo(s)/pathways activated in MSC-EV-based bone regeneration therapies. Issues that need to be overcome to enable clinical translation of EV-based therapies were addressed.
Collapse
Affiliation(s)
- Vishnu Priya Murali
- Department of Chemical and Biomedical Engineering, College of Engineering, Florida A&M University-Florida State University, 2525 Pottsdamer Street, Room A131, Tallahassee, FL 32310, USA
| | - Christina A Holmes
- Department of Chemical and Biomedical Engineering, College of Engineering, Florida A&M University-Florida State University, 2525 Pottsdamer Street, Room A131, Tallahassee, FL 32310, USA
| |
Collapse
|
98
|
Li Y, Xu Y, Wang R, Li W, He W, Luo X, Ye Y. Expression of Notch-Hif-1α signaling pathway in liver regeneration of rats. J Int Med Res 2021; 48:300060520943790. [PMID: 32967512 PMCID: PMC7521060 DOI: 10.1177/0300060520943790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective To investigate whether the Notch–Hif-1α signaling pathway is involved in liver regeneration. Methods Rats were divided into two groups and treated with daily intraperitoneal injections of saline (control) or the gamma-secretase inhibitor, Fli-06, for 2 days. Two-thirds of the rat livers were resected and rats were later euthanized at specific time points post-resection to analyze the remnant livers. Each group's liver/body weight ratio was calculated, and immunostaining and western blotting were used to determine the cell proliferation marker, PCNA and Ki-67 expression. Real-time PCR and western blotting were used to compare the mRNA expression of Notch homolog-1 (Notch1), hairy and enhancer of split-1 (Hes1), and vascular endothelial growth factor (Vegf), and the protein expression of NICD and HIF-1α, respectively. Results The liver/body weight ratios and number of Ki-67- and PCNA-positive cells were significantly lower in the experimental group than the control group, indicating lower levels of liver regeneration following the disruption of Notch signaling by Fli-06. The Hes1 and Vegf mRNA levels and NICD and HIF-1α protein expression levels were all down-regulated by Fli-06 treatment. Conclusion Notch–Hif-α signaling pathway activation plays an important role in liver regeneration, where it may contribute toward liver cell proliferation.
Collapse
Affiliation(s)
- Yanshan Li
- Department of Blood Transfusion, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunxiuxiu Xu
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruomei Wang
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenxin Li
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenguang He
- Department of General Surgery, Zengcheng People's Hospital, Zengcheng, China
| | - Xinxi Luo
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yibiao Ye
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
99
|
Zhao C, Zhou Y, Ma H, Wang J, Guo H, Liu H. A four-hypoxia-genes-based prognostic signature for oral squamous cell carcinoma. BMC Oral Health 2021; 21:232. [PMID: 33941139 PMCID: PMC8094530 DOI: 10.1186/s12903-021-01587-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/16/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most common maligancies of the head and neck. The prognosis was is significantly different among OSCC patients. This study aims to identify new biomarkers to establish a prognostic model to predict the survival of OSCC patients. METHODS The mRNA expression and corresponding clinical information of OSCC patients were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus. Additionally, a total of 26 hypoxia-related genes were also obtained from a previous study. Univariate Cox regression analysis and LASSO Cox regression analysis were performed to screen the optimal hypoxia-related genes which were associated with the prognosis of OSCC. to establish the predictive model (Risk Score) was established for estimating the patient's overall survival (OS). Multivariate Cox regression analysis was used to determine whether the Risk Score was an independent prognostic factor. Based on all the independent prognostic factors, nomogram was established to predict the OS probability of OSCC patients. The relative proportion of 22 immune cell types in each patient was evaluated by CIBERSORT software. RESULTS We determined that a total of four hypoxia-related genes including ALDOA, P4HA1, PGK1 and VEGFA were significantly associated with the prognosis of OSCC patients. The nomogram established based on all the independent factors could reliably predict the long-term OS of OSCC patients. In addition, our resluts indicated that the inferior prognosis of OSCC patients with high Risk Score might be related to the immunosuppressive microenvironments. CONCLUSION This study shows that high expression of hypoxia-related genes including ALDOA, P4HA1, PGK1 and VEGFA is associated with poor prognosis in OSCC patients, and they can be used as potential markers for predicting prognosis in OSCC patients.
Collapse
Affiliation(s)
- Chenguang Zhao
- Department of Emergency and General Dentistry, Tianjin Stomatology Hospital, School of Medicine, NanKai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Yingrui Zhou
- Department of Emergency and General Dentistry, Tianjin Stomatology Hospital, School of Medicine, NanKai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Hongwei Ma
- Department of Emergency and General Dentistry, Tianjin Stomatology Hospital, School of Medicine, NanKai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Jinhui Wang
- Department of Emergency and General Dentistry, Tianjin Stomatology Hospital, School of Medicine, NanKai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Haoliang Guo
- Department of Emergency and General Dentistry, Tianjin Stomatology Hospital, School of Medicine, NanKai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Hao Liu
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatology Hospital, School of Medicine, NanKai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, No. 75, Dagu North Road, Heping District, Tianjin, 300041, China.
| |
Collapse
|
100
|
Li YQ, Zheng Z, Liu QX, Lu X, Zhou D, Zhang J, Zheng H, Dai JG. Repositioning of Antiparasitic Drugs for Tumor Treatment. Front Oncol 2021; 11:670804. [PMID: 33996598 PMCID: PMC8117216 DOI: 10.3389/fonc.2021.670804] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Drug repositioning is a strategy for identifying new antitumor drugs; this strategy allows existing and approved clinical drugs to be innovatively repurposed to treat tumors. Based on the similarities between parasitic diseases and cancer, recent studies aimed to investigate the efficacy of existing antiparasitic drugs in cancer. In this review, we selected two antihelminthic drugs (macrolides and benzimidazoles) and two antiprotozoal drugs (artemisinin and its derivatives, and quinolines) and summarized the research progresses made to date on the role of these drugs in cancer. Overall, these drugs regulate tumor growth via multiple targets, pathways, and modes of action. These antiparasitic drugs are good candidates for comprehensive, in-depth analyses of tumor occurrence and development. In-depth studies may improve the current tumor diagnoses and treatment regimens. However, for clinical application, current investigations are still insufficient, warranting more comprehensive analyses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ji-Gang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|