51
|
Melamed-Gal S, Loupe P, Timan B, Weinstein V, Kolitz S, Zhang J, Funt J, Komlosh A, Ashkenazi N, Bar-Ilan O, Konya A, Beriozkin O, Laifenfeld D, Hasson T, Krispin R, Molotsky T, Papir G, Sulimani L, Zeskind B, Liu P, Nock S, Hayden M, Gilbert A, Grossman I. Physicochemical, biological, functional and toxicological characterization of the European follow-on glatiramer acetate product as compared with Copaxone. eNeurologicalSci 2018; 12:19-30. [PMID: 30094354 PMCID: PMC6073084 DOI: 10.1016/j.ensci.2018.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/29/2018] [Indexed: 01/14/2023] Open
Abstract
For more than 20 years, Copaxone (glatiramer acetate, Teva), a non-biological complex drug, has been a safe and effective treatment option for multiple sclerosis. In 2016, a follow-on glatiramer acetate product (FOGA, Synthon) was approved in the EU. Traditional bulk-based methods and high-resolution assays were employed to evaluate the physicochemical, functional, and bio-recognition attributes, as well as the in vivo toxicity profile of the active substances in Copaxone and Synthon EU FOGA lots. These tests included quality control tests applied routinely in release of Copaxone lots, as well as additional characterization assays, gene expression studies and a rat toxicity study. Even though the Synthon FOGA was designed to copy and compete with Copaxone, the active substances were found to be similar in only 7 of the tested 14 (50%) methods (similar is defined as within approved specifications or within the inherent microheterogeneity range of tested Copaxone batches, or not showing statistically significant differences). With additional methods applied, consistent compositional differences in attributes of surface charge distribution, molecular size, and spatial arrangement were observed. These marked differences were concordantly observed with higher biological activity of some of the Synthon EU FOGA lots compared with Copaxone lots, including potency and cytotoxicity activities as well as gene expression of pathways that regulate apoptosis, IL-2, and inflammation signaling. These observations raise concerns for immunogenicity differences, particularly in (repeated) substitution settings. Another orthogonal finding demonstrated increased frequency of injection-site local toxicity observations for the Synthon EU FOGA in an in vivo daily dosing rat study, thus warranting further qualification of the link between compositional and functional differences in immunogenicity, and potential impact on long-term efficacy and safety.
Collapse
Affiliation(s)
- S. Melamed-Gal
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - P. Loupe
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - B. Timan
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - V. Weinstein
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - S. Kolitz
- Immuneering Corporation, Boston, MA, USA
| | - J. Zhang
- Immuneering Corporation, Boston, MA, USA
| | - J. Funt
- Immuneering Corporation, Boston, MA, USA
| | - A. Komlosh
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - N. Ashkenazi
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - O. Bar-Ilan
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - A. Konya
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - O. Beriozkin
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - D. Laifenfeld
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - T. Hasson
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - R. Krispin
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - T. Molotsky
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - G. Papir
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - L. Sulimani
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - B. Zeskind
- Immuneering Corporation, Boston, MA, USA
| | - P. Liu
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - S. Nock
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - M.R. Hayden
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - A. Gilbert
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - I. Grossman
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| |
Collapse
|
52
|
Ruggeri FS, Marcott C, Dinarelli S, Longo G, Girasole M, Dietler G, Knowles TPJ. Identification of Oxidative Stress in Red Blood Cells with Nanoscale Chemical Resolution by Infrared Nanospectroscopy. Int J Mol Sci 2018; 19:E2582. [PMID: 30200270 PMCID: PMC6163177 DOI: 10.3390/ijms19092582] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022] Open
Abstract
During their lifespan, Red blood cells (RBC), due to their inability to self-replicate, undergo an ageing degradation phenomenon. This pathway, both in vitro and in vivo, consists of a series of chemical and morphological modifications, which include deviation from the biconcave cellular shape, oxidative stress, membrane peroxidation, lipid content decrease and uncoupling of the membrane-skeleton from the lipid bilayer. Here, we use the capabilities of atomic force microscopy based infrared nanospectroscopy (AFM-IR) to study and correlate, with nanoscale resolution, the morphological and chemical modifications that occur during the natural degradation of RBCs at the subcellular level. By using the tip of an AFM to detect the photothermal expansion of RBCs, it is possible to obtain nearly two orders of magnitude higher spatial resolution IR spectra, and absorbance images than can be obtained on diffraction-limited commercial Fourier-transform Infrared (FT-IR) microscopes. Using this approach, we demonstrate that we can identify localized sites of oxidative stress and membrane peroxidation on individual RBC, before the occurrence of neat morphological changes in the cellular shape.
Collapse
Affiliation(s)
| | - Curtis Marcott
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
- Light Light Solutions, Athens, GA 30608, USA.
| | - Simone Dinarelli
- Institute of Structural Matter, ISM-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Giovanni Longo
- Institute of Structural Matter, ISM-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Marco Girasole
- Institute of Structural Matter, ISM-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Giovanni Dietler
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Tuomas P J Knowles
- Department of Chemistry, Cambridge University, Cambridge CB21EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK.
| |
Collapse
|
53
|
Ramer G, Ruggeri FS, Levin A, Knowles TPJ, Centrone A. Determination of Polypeptide Conformation with Nanoscale Resolution in Water. ACS NANO 2018; 12:6612-6619. [PMID: 29932670 PMCID: PMC11404133 DOI: 10.1021/acsnano.8b01425] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The folding and acquisition of proteins native structure is central to all biological processes of life. By contrast, protein misfolding can lead to toxic amyloid aggregates formation, linked to the onset of neurodegenerative disorders. To shed light on the molecular basis of protein function and malfunction, it is crucial to access structural information on single protein assemblies and aggregates under native conditions. Yet, current conformation-sensitive spectroscopic methods lack the spatial resolution and sensitivity necessary for characterizing heterogeneous protein aggregates in solution. To overcome this limitation, here we use photothermal-induced resonance to demonstrate that it is possible to acquire nanoscale infrared spectra in water with high signal-to-noise ratio (SNR). Using this approach, we probe supramolecular aggregates of diphenylalanine, the core recognition module of the Alzheimer's β-amyloid peptide, and its derivative Boc-diphenylalanine. We achieve nanoscale resolved IR spectra and maps in air and water with comparable SNR and lateral resolution, thus enabling accurate identification of the chemical and structural state of morphologically similar networks at the single aggregate ( i. e., fibril) level.
Collapse
Affiliation(s)
- Georg Ramer
- Center for Nanoscale Science and Technology , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
- Institute for Research in Electronics and Applied Physics , University of Maryland , College Park , Maryland 20742 , United States
| | | | - Aviad Levin
- Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
| | - Tuomas P J Knowles
- Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
- Cavendish Laboratory, Department of Physics , University of Cambridge , J J Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Andrea Centrone
- Center for Nanoscale Science and Technology , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| |
Collapse
|
54
|
Carbone ME, Ciriello R, Moscarelli P, Boraldi F, Bianco G, Guerrieri A, Bochicchio B, Pepe A, Quaglino D, Salvi AM. Interactions between elastin-like peptides and an insulating poly(ortho-aminophenol) membrane investigated by AFM and XPS. Anal Bioanal Chem 2018; 410:4925-4941. [DOI: 10.1007/s00216-018-1142-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 01/04/2023]
|
55
|
Grossman I, Kolitz S, Komlosh A, Zeskind B, Weinstein V, Laifenfeld D, Gilbert A, Bar-Ilan O, Fowler KD, Hasson T, Konya A, Wells-Knecht K, Loupe P, Melamed-Gal S, Molotsky T, Krispin R, Papir G, Sahly Y, Hayden MR. Compositional differences between Copaxone and Glatopa are reflected in altered immunomodulation ex vivo in a mouse model. Ann N Y Acad Sci 2017; 1407:75-89. [PMID: 29168242 DOI: 10.1111/nyas.13547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/06/2017] [Accepted: 10/15/2017] [Indexed: 12/30/2022]
Abstract
Copaxone (glatiramer acetate, GA), a structurally and compositionally complex polypeptide nonbiological drug, is an effective treatment for multiple sclerosis, with a well-established favorable safety profile. The short antigenic polypeptide sequences comprising therapeutically active epitopes in GA cannot be deciphered with state-of-the-art methods; and GA has no measurable pharmacokinetic profile and no validated pharmacodynamic markers. The study reported herein describes the use of orthogonal standard and high-resolution physicochemical and biological tests to characterize GA and a U.S. Food and Drug Administration-approved generic version of GA, Glatopa (USA-FoGA). While similarities were observed with low-resolution or destructive tests, differences between GA and USA-FoGA were measured with high-resolution methods applied to an intact mixture, including variations in surface charge and a unique, high-molecular-weight, hydrophobic polypeptide population observed only in some USA-FoGA lots. Consistent with published reports that modifications in physicochemical attributes alter immune-related processes, genome-wide expression profiles of ex vivo activated splenocytes from mice immunized with either GA or USA-FoGA showed that 7-11% of modulated genes were differentially expressed and enriched for immune-related pathways. Thus, differences between USA-FoGA and GA may include variations in antigenic epitopes that differentially activate immune responses. We propose that the assays reported herein should be considered during the regulatory assessment process for nonbiological complex drugs such as GA.
Collapse
Affiliation(s)
- Iris Grossman
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | - Sarah Kolitz
- Immuneering Corporation, Cambridge, Massachusetts
| | - Arthur Komlosh
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | | | - Vera Weinstein
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | - Daphna Laifenfeld
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | - Adrian Gilbert
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | - Oren Bar-Ilan
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | | | - Tal Hasson
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | - Attila Konya
- Teva Pharmaceutical Works Ltd., Gödöllő, Hungary
| | - Kevin Wells-Knecht
- Research and Development, Teva Pharmaceutical Industries, West Chester, Pennsylvania
| | - Pippa Loupe
- Research and Development, Teva Pharmaceutical Industries, Overland Park, Kansas
| | - Sigal Melamed-Gal
- Research and Development, Teva Pharmaceutical Industries, Frazer, Pennsylvania
| | - Tatiana Molotsky
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | - Revital Krispin
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | - Galia Papir
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | - Yousif Sahly
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | - Michael R Hayden
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| |
Collapse
|
56
|
Kasza Á, Penke B, Frank Z, Bozsó Z, Szegedi V, Hunya Á, Németh K, Kozma G, Fülöp L. Studies for Improving a Rat Model of Alzheimer's Disease: Icv Administration of Well-Characterized β-Amyloid 1-42 Oligomers Induce Dysfunction in Spatial Memory. Molecules 2017; 22:molecules22112007. [PMID: 29156571 PMCID: PMC6150403 DOI: 10.3390/molecules22112007] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022] Open
Abstract
During the past 15 years, several genetically altered mouse models of human Alzheimer’s disease (AD) have been developed. These costly models have greatly facilitated the evaluation of novel therapeutic approaches. Injecting synthetic β-amyloid (Aβ) 1-42 species into different parts of the brain of non-transgenic rodents frequently provided unreliable results, owing to a lack of a genuine characterization of the administered Aβ aggregates. Previously, we have published a new rat AD-model in which protofibrillar-fibrillar Aβ1-42 was administered into rat entorhinal cortex (Sipos 2007). In order to develop a more reliable model, we have injected well-characterized toxic soluble Aβ1-42 species (oligomers, protofibrils and fibrils) intracerebroventricularly (icv) into rat brain. Studies of the distribution of fluorescent-labeled Aβ1-42 in the brain showed that soluble Aβ-species diffused into all parts of the rat brain. After seven days, the Aβ-treated animals showed a significant decrease of spatial memory in Morris water maze test and impairment of synaptic plasticity (LTP) measured in acute hippocampal slices. The results of histological studies (decreased number of viable neurons, increased tau levels and decreased number of dendritic spines) also supported that icv administration of well-characterized toxic soluble Aβ species into rat brain provides a reliable rat AD-model.
Collapse
Affiliation(s)
- Ágnes Kasza
- Department of Medical Chemistry, University of Szeged, Dome square 8, Szeged H-6720, Hungary.
| | - Botond Penke
- Department of Medical Chemistry, University of Szeged, Dome square 8, Szeged H-6720, Hungary.
| | - Zsuzsanna Frank
- Department of Medical Chemistry, University of Szeged, Dome square 8, Szeged H-6720, Hungary.
| | - Zsolt Bozsó
- Department of Medical Chemistry, University of Szeged, Dome square 8, Szeged H-6720, Hungary.
| | - Viktor Szegedi
- Department of Medical Chemistry, University of Szeged, Dome square 8, Szeged H-6720, Hungary.
| | - Ákos Hunya
- LipidArt Research and Development Ltd., Temesvári krt. 62, Szeged H-6726, Hungary.
| | - Klaudia Németh
- Department of Medical Chemistry, University of Szeged, Dome square 8, Szeged H-6720, Hungary.
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla square 1, Szeged H-6720, Hungary.
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, Dome square 8, Szeged H-6720, Hungary.
| |
Collapse
|
57
|
β-Amyloid and the Pathomechanisms of Alzheimer's Disease: A Comprehensive View. Molecules 2017; 22:molecules22101692. [PMID: 28994715 PMCID: PMC6151811 DOI: 10.3390/molecules22101692] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 01/14/2023] Open
Abstract
Protein dyshomeostasis is the common mechanism of neurodegenerative diseases such as Alzheimer’s disease (AD). Aging is the key risk factor, as the capacity of the proteostasis network declines during aging. Different cellular stress conditions result in the up-regulation of the neurotrophic, neuroprotective amyloid precursor protein (APP). Enzymatic processing of APP may result in formation of toxic Aβ aggregates (β-amyloids). Protein folding is the basis of life and death. Intracellular Aβ affects the function of subcellular organelles by disturbing the endoplasmic reticulum-mitochondria cross-talk and causing severe Ca2+-dysregulation and lipid dyshomeostasis. The extensive and complex network of proteostasis declines during aging and is not able to maintain the balance between production and disposal of proteins. The effectivity of cellular pathways that safeguard cells against proteotoxic stress (molecular chaperones, aggresomes, the ubiquitin-proteasome system, autophagy) declines with age. Chronic cerebral hypoperfusion causes dysfunction of the blood-brain barrier (BBB), and thus the Aβ-clearance from brain-to-blood decreases. Microglia-mediated clearance of Aβ also declines, Aβ accumulates in the brain and causes neuroinflammation. Recognition of the above mentioned complex pathogenesis pathway resulted in novel drug targets in AD research.
Collapse
|