51
|
Histone deacetylase inhibitors in hematological malignancies and solid tumors. Arch Pharm Res 2015; 38:933-49. [PMID: 25653088 DOI: 10.1007/s12272-015-0571-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/28/2015] [Indexed: 01/23/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are emerging as promising anticancer drugs. Because aberrant activity and expression of HDACs have been implicated in various cancer types, a wide range of HDAC inhibitors are being investigated as anticancer agents. Furthermore, due to the demonstrable anticancer activity in both in vitro and in vivo studies, numerous HDAC inhibitors have undergone a rapid phase of clinical development in various cancer types, either as a monotherapy or in combination with other anticancer agents. Although preclinical trials show that HDAC inhibitors have a variety of biological effects across multiple pathways, including regulation of gene expression, inducing apoptosis and cell cycle arrest, inhibiting angiogenesis, and regulation of DNA damage and repair, the mechanism by which the clinical activity is mediated remains unclear. Understanding the mechanisms of anticancer activity of HDAC inhibitors is essential not only for rational drug design for targeted therapies, but for the design of optimized clinical protocols. This paper describes the links between HDACs and cancer, and the underlying mechanisms of action of HDAC inhibitors against hematological malignancies and solid tumors. Further, this review presents the clinical outcomes of vorinostat, romidepsin, and belinostat, which are approved by the United States Food and Drug Administration for the treatment of lymphomas.
Collapse
|
52
|
Islam MN, Islam MS, Hoque MA, Kato T, Nishino N, Ito A, Yoshida M. Bicyclic tetrapeptide histone deacetylase inhibitors with methoxymethyl ketone and boronic acid zinc-binding groups. Bioorg Chem 2014; 57:121-126. [DOI: 10.1016/j.bioorg.2014.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/11/2014] [Accepted: 10/13/2014] [Indexed: 11/28/2022]
|
53
|
Islam MN, Islam MS, Hoque MA, Kato T, Nishino N, Ito A, Yoshida M. Bicyclic tetrapeptides as potent HDAC inhibitors: effect of aliphatic loop position and hydrophobicity on inhibitory activity. Bioorg Med Chem 2014; 22:3862-70. [PMID: 25022972 DOI: 10.1016/j.bmc.2014.06.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/15/2014] [Accepted: 06/17/2014] [Indexed: 11/17/2022]
Abstract
Several histone deacetylase (HDAC) inhibiting bicyclic tetrapeptides have been designed and synthesized through intramolecular ring-closing metathesis (RCM) reaction and peptide cyclization. We designed bicyclic tetrapeptides based on CHAP31, trapoxin B and HC-toxin I. The HDAC inhibitory and p21 promoter assay results showed that the aliphatic loop position as well as the hydrophobicity plays an important role toward the activity of the bicyclic tetrapeptide HDAC inhibitors.
Collapse
Affiliation(s)
- Md Nurul Islam
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan; Department of Chemistry, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Md Shahidul Islam
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan; Department of Chemistry, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Ashraful Hoque
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan; Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Tamaki Kato
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan
| | - Norikazu Nishino
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan
| | - Akihiro Ito
- Chemical Genetics Laboratory/Chemical Genomics Research Group, RIKEN Advanced Science Institute, Saitama 351-0198, Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory/Chemical Genomics Research Group, RIKEN Advanced Science Institute, Saitama 351-0198, Japan
| |
Collapse
|
54
|
Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur J Med Chem 2014; 77:422-87. [PMID: 24685980 DOI: 10.1016/j.ejmech.2014.03.018] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 03/02/2014] [Accepted: 03/06/2014] [Indexed: 12/16/2022]
Abstract
A Hybrid drug which comprises the incorporation of two drug pharmacophores in one single molecule are basically designed to interact with multiple targets or to amplify its effect through action on another bio target as one single molecule or to counterbalance the known side effects associated with the other hybrid part(.) The present review article offers a detailed account of the design strategies employed for the synthesis of anticancer agents via molecular hybridization techniques. Over the years, the researchers have employed this technique to discover some promising chemical architectures displaying significant anticancer profiles. Molecular hybridization as a tool has been particularly utilized for targeting tubulin protein as exemplified through the number of research papers. The microtubule inhibitors such as taxol, colchicine, chalcones, combretasatin, phenstatins and vinca alkaloids have been utilized as one of the functionality of the hybrids and promising results have been obtained in most of the cases with some of the tubulin based hybrids exhibiting anticancer activity at nanomolar level. Linkage with steroids as biological carrier vector for anticancer drugs and the inclusion of pyrrolo [2,1-c] [1,4]benzodiazepines (PBDs), a family of DNA interactive antitumor antibiotics derived from Streptomyces species in hybrid structure based drug design has also emerged as a potential strategy. Various heteroaryl based hybrids in particular isatin and coumarins have also been designed and reported to posses' remarkable inhibitory potential. Apart from presenting the design strategies, the article also highlights the structure activity relationship along with mechanistic insights revealed during the biological evaluation of the hybrids.
Collapse
|
55
|
Schotes C, Ostrovskyi D, Senger J, Schmidtkunz K, Jung M, Breit B. Total synthesis of (18S)- and (18R)-homolargazole by rhodium-catalyzed hydrocarboxylation. Chemistry 2014; 20:2164-8. [PMID: 24478039 DOI: 10.1002/chem.201303300] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Indexed: 11/05/2022]
Abstract
Homolargazole derivatives, in which the macrocycle of natural largazole is extended by one methylene group, were prepared by the recently developed rhodium-catalyzed hydrocarboxylation reaction onto allenes. This strategy gives access to both the (18S)- and (18R)-stereoisomers in high stereoselectivity under ligand control.
Collapse
Affiliation(s)
- Christoph Schotes
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg i. Bg. (Germany), Fax: (+49) 761-203-8715
| | | | | | | | | | | |
Collapse
|
56
|
Wang J, Sun F, Han L, Hou X, Pan X, Liu R, Tang W, Fang H. Design, synthesis, and preliminary bioactivity studies of substituted purine hydroxamic acid derivatives as novel histone deacetylase (HDAC) inhibitors. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00203b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Histone deacetylase (HDAC) is a clinically validated target for anti-tumor therapy. In order to increase HDAC inhibition and efficiency, we developed a series of novel substituted purine hydroxamic acids as potent HDAC inhibitors.
Collapse
Affiliation(s)
- Junhua Wang
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmacy
- Shandong University
- Jinan 250012
| | - Feng'e Sun
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmacy
- Shandong University
- Jinan 250012
| | - Leiqiang Han
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmacy
- Shandong University
- Jinan 250012
| | - Xuben Hou
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmacy
- Shandong University
- Jinan 250012
| | - Xiaole Pan
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmacy
- Shandong University
- Jinan 250012
| | - Renshuai Liu
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmacy
- Shandong University
- Jinan 250012
| | - Weiping Tang
- Division of Pharmaceutical Sciences
- School of Pharmacy
- University of Wisconsin
- Madison 53705
- USA
| | - Hao Fang
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmacy
- Shandong University
- Jinan 250012
| |
Collapse
|
57
|
Zhang X, Zhang J, Su M, Zhou Y, Chen Y, Li J, Lu W. Design, synthesis and biological evaluation of 4′-demethyl-4-deoxypodophyllotoxin derivatives as novel tubulin and histone deacetylase dual inhibitors. RSC Adv 2014. [DOI: 10.1039/c4ra05508j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, we have designed and synthesized a class of 4′-demethyl-4-deoxypodophyllotoxin derivatives as tubulin–HDAC dual inhibitors.
Collapse
Affiliation(s)
- Xuan Zhang
- Institute of Drug Discovery and Development
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062, PR China
| | - Jie Zhang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203, PR. China
| | - Mingbo Su
- National Center for Drug Screening
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203, PR China
| | - Yubo Zhou
- National Center for Drug Screening
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203, PR China
| | - Yi Chen
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203, PR. China
| | - Jia Li
- National Center for Drug Screening
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203, PR China
| | - Wei Lu
- Institute of Drug Discovery and Development
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062, PR China
| |
Collapse
|
58
|
The discovery and optimization of novel dual inhibitors of topoisomerase ii and histone deacetylase. Bioorg Med Chem 2013; 21:6981-95. [DOI: 10.1016/j.bmc.2013.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/07/2013] [Accepted: 09/07/2013] [Indexed: 11/22/2022]
|
59
|
The design and synthesis of a new class of RTK/HDAC dual-targeted inhibitors. Molecules 2013; 18:6491-503. [PMID: 23736786 PMCID: PMC6269723 DOI: 10.3390/molecules18066491] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 05/21/2013] [Accepted: 05/24/2013] [Indexed: 12/12/2022] Open
Abstract
Over the years, the development of targeted medicines has made significant achievements. As a typical example, receptor tyrosine kinases (RTK) inhibitors have become important chemotherapy drugs for a variety of cancers. However, the effectiveness of these agents is always hindered by poor response rates and acquired drug resistance. In order to overcome these limitations, several dual-targeted inhibitors with quinazoline core were designed and synthesized. Though these compounds can simultaneously inhibit histone deacetylases (HDAC) as well as RTK, the structure-activity relationship (SAR) is still not clear enough. To further explore this type of dual-targeted inhibitors, a new class of quinazoline derivatives were designed and synthesized. Their activity evaluations include in vitro inhibitory activity of HDAC, epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). The SAR study indicated that the introduction of polar group such as hydroxamate on the 4-position of the quinazoline core is more likely to provide a potent HDACi/HER2i hybrid rather than HDACi/EGFRi molecule.
Collapse
|
60
|
Zhang X, Zhang J, Tong L, Luo Y, Su M, Zang Y, Li J, Lu W, Chen Y. The discovery of colchicine-SAHA hybrids as a new class of antitumor agents. Bioorg Med Chem 2013; 21:3240-4. [PMID: 23602523 DOI: 10.1016/j.bmc.2013.03.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/08/2013] [Accepted: 03/10/2013] [Indexed: 01/18/2023]
Abstract
A novel class of colchicine-SAHA hybrids were designed and synthesised based on the synergistic antitumor effect of tubulin inhibitors and histone deacetylases (HDAC) inhibitors. To the best of our knowledge, this is the first design of molecules that are dual inhibitors of tubulin and HDAC. Biological evaluations of these compounds included the inhibitory activity of HDAC, in vitro cell cycle analysis in BEL-7402 cells as well as cytotoxicity in five cancer cell lines.
Collapse
Affiliation(s)
- Xuan Zhang
- Institute of Drug Discovery and Development, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
A survey of marine natural compounds and their derivatives with anti-cancer activity reported in 2011. Molecules 2013; 18:3641-73. [PMID: 23529027 PMCID: PMC6270579 DOI: 10.3390/molecules18043641] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 12/13/2022] Open
Abstract
Cancer continues to be a major public health problem despite the efforts that have been made in the search for novel drugs and treatments. The current sources sought for the discovery of new molecules are plants, animals and minerals. During the past decade, the search for anticancer agents of marine origin to fight chemo-resistance has increased greatly. Each year, several novel anticancer molecules are isolated from marine organisms and represent a renewed hope for cancer therapy. The study of structure-function relationships has allowed synthesis of analogues with increased efficacy and less toxicity. In this report, we aim to review 42 compounds of marine origin and their derivatives that were published in 2011 as promising anticancer compounds.
Collapse
|
62
|
Patil V, Canzoneri JC, Samatov TR, Lührmann R, Oyelere AK. Molecular architecture of zinc chelating small molecules that inhibit spliceosome assembly at an early stage. RNA (NEW YORK, N.Y.) 2012; 18:1605-11. [PMID: 22832025 PMCID: PMC3425776 DOI: 10.1261/rna.034819.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The removal of intervening sequences (introns) from a primary RNA transcript is catalyzed by the spliceosome, a large ribonucleoprotein complex. At the start of each splicing cycle, the spliceosome assembles anew in a sequentially ordered manner on the pre-mRNA intron to be removed. We describe here the identification of a series of naphthalen-2-yl hydroxamate compounds that inhibit pre-mRNA splicing in vitro with mid- to high-micromolar values of IC(50). These hydroxamates stall spliceosome assembly at the A complex stage. A structure-activity analysis of lead compounds revealed three pharmacophores that are essential for splicing inhibition. Specifically, a hydroxamate as a zinc-binding group and a 6-methoxynaphthalene cap group are both critical, and a linker chain comprising eight to nine methylene groups is also important, for the specific binding to the docking site of a target protein molecule and precise positioning of the zinc binding group. As we found no correlation between the inhibition patterns of known histone deacetylases on the one hand and pre-mRNA splicing on the other, we conclude that these compounds may function through the inhibition of the activities of other, at present, unknown spliceosome-associated zinc metalloprotein(s).
Collapse
Affiliation(s)
- Vishal Patil
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Josh C. Canzoneri
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Timur R. Samatov
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
- Corresponding authorsE-mail E-mail
| | - Adegboyega K. Oyelere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
- Corresponding authorsE-mail E-mail
| |
Collapse
|
63
|
Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med Chem 2012; 4:505-24. [PMID: 22416777 DOI: 10.4155/fmc.12.3] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Histone deacetylase inhibitors (HDACis) have now emerged as a powerful new class of small-molecule therapeutics acting through the regulation of the acetylation states of histone proteins (a form of epigenetic modulation) and other non-histone protein targets. Over 490 clinical trials have been initiated in the last 10 years, culminating in the approval of two structurally distinct HDACis - SAHA (vorinostat, Zolinza™) and FK228 (romidepsin, Istodax™). However, the current HDACis have serious limitations, including ineffectively low concentrations in solid tumors and cardiac toxicity, which is hindering their progress in the clinic. Herein, we review the primary paradigms being pursued to overcome these hindrances, including HDAC isoform selectivity, localized administration, and targeting cap groups to achieve selective tissue and cell type distribution.
Collapse
|
64
|
Abstract
The use of drug-like macrocycles is emerging as an exciting area of medicinal chemistry, with several recent examples highlighting the favorable changes in biological and physicochemical properties that macrocyclization can afford. Natural product macrocycles and their synthetic derivatives have long been clinically useful and attention is now being focused on the wider use of macrocyclic scaffolds in medicinal chemistry in the search for new drugs for increasingly challenging targets. With the increasing awareness of concepts of drug-likeness and the dangers of ‘molecular obesity’, functionalized macrocyclic scaffolds could provide a way to generate ligand-efficient molecules with enhanced properties. In this review we will separately discuss the effects of macrocyclization upon potency, selectivity and physicochemical properties, concentrating on recent case histories in oncology drug discovery. Additionally, we will highlight selected advances in the synthesis of macrocycles and provide an outlook on the future use of macrocyclic scaffolds in medicinal chemistry.
Collapse
|
65
|
Guerrant W, Patil V, Canzoneri JC, Oyelere AK. Dual targeting of histone deacetylase and topoisomerase II with novel bifunctional inhibitors. J Med Chem 2012; 55:1465-77. [PMID: 22260166 DOI: 10.1021/jm200799p] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Strategies to ameliorate the flaws of current chemotherapeutic agents, while maintaining potent anticancer activity, are of particular interest. Agents which can modulate multiple targets may have superior utility and fewer side effects than current single-target drugs. To explore the prospect in cancer therapy of a bivalent agent that combines two complementary chemo-active groups within a single molecular architecture, we have synthesized dual-acting histone deacetylase and topoisomerase II inhibitors. These dual-acting agents are derived from suberoylanilide hydroxamic acid (SAHA) and anthracycline daunorubicin, prototypical histone deacetylase (HDAC) and topoisomerase II (Topo II) inhibitors, respectively. We report herein that these agents present the signatures of inhibition of HDAC and Topo II in both cell-free and whole-cell assays. Moreover, these agents potently inhibit the proliferation of representative cancer cell lines.
Collapse
Affiliation(s)
- William Guerrant
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | | | | | | |
Collapse
|
66
|
Lombardi PM, Cole KE, Dowling DP, Christianson DW. Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Curr Opin Struct Biol 2011; 21:735-43. [PMID: 21872466 DOI: 10.1016/j.sbi.2011.08.004] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
Metal-dependent histone deacetylases (HDACs) catalyze the hydrolysis of acetyl-L-lysine side chains in histone and nonhistone proteins to yield l-lysine and acetate. This chemistry plays a critical role in the regulation of numerous biological processes. Aberrant HDAC activity is implicated in various diseases, and HDACs are validated targets for drug design. Two HDAC inhibitors are currently approved for cancer chemotherapy, and other inhibitors are in clinical trials. To date, X-ray crystal structures are available for four human HDACs (2, 4, 7, and 8) and three HDAC-related deacetylases from bacteria (histone deacetylase-like protein (HDLP); histone deacetylase-like amidohydrolase (HDAH); acetylpolyamine amidohydrolase (APAH)). Structural comparisons among these enzymes reveal a conserved constellation of active site residues, suggesting a common mechanism for the metal-dependent hydrolysis of acetylated substrates. Structural analyses of HDACs and HDAC-related deacetylases guide the design of tight-binding inhibitors, and future prospects for developing isozyme-specific inhibitors are quite promising.
Collapse
Affiliation(s)
- Patrick M Lombardi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | | | | | | |
Collapse
|
67
|
Ilies M, Dowling DP, Lombardi PM, Christianson DW. Synthesis of a new trifluoromethylketone analogue of l-arginine and contrasting inhibitory activity against human arginase I and histone deacetylase 8. Bioorg Med Chem Lett 2011; 21:5854-8. [PMID: 21875805 DOI: 10.1016/j.bmcl.2011.07.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 01/12/2023]
Abstract
As part of our continuing search for new amino acid inhibitors of metalloenzymes, we now report the synthesis and biological evaluation of the trifluoromethylketone analogue of L-arginine, (S)-2-amino-8,8,8-trifluoro-7-oxo-octanoic acid (10). While this novel amino acid was initially designed as a potential inhibitor of human arginase I, it exhibits no measurable inhibitory activity against this enzyme. Surprisingly, however, 10 is a potent inhibitor of human histone deacetylase 8, with IC(50)=1.5 ± 0.2 μM. Additionally, 10 weakly inhibits the related bacterial enzyme, acetylpolyamine amidohydrolase, with IC(50)=110 ± 30 μM. The lack of inhibitory activity against human arginase I may result from unfavorable interactions of the bulky trifluoromethyl group of 10 in the constricted active site. Since the active site of histone deacetylase 8 is less constricted, we hypothesize that it accommodates 10 as the gem-diol, which mimics the tetrahedral intermediate and its flanking transition states in catalysis. Therefore, we suggest that 10 represents a new lead in the design of an amino acid or peptide-based inhibitor of histone deacetylases with simpler structure than previously studied trifluoromethylketones.
Collapse
Affiliation(s)
- Monica Ilies
- Department of Chemistry, Drexel University, Philadelphia, PA 19104-2875, USA
| | | | | | | |
Collapse
|
68
|
Cole KE, Dowling DP, Boone MA, Phillips AJ, Christianson DW. Structural basis of the antiproliferative activity of largazole, a depsipeptide inhibitor of the histone deacetylases. J Am Chem Soc 2011; 133:12474-7. [PMID: 21790156 DOI: 10.1021/ja205972n] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Largazole is a macrocyclic depsipeptide originally isolated from the marine cyanobacterium Symploca sp., which is indigenous to the warm, blue-green waters of Key Largo, Florida (whence largazole derives its name). Largazole contains an unusual thiazoline-thiazole ring system that rigidifies its macrocyclic skeleton, and it also contains a lipophilic thioester side chain. Hydrolysis of the thioester in vivo yields largazole thiol, which exhibits remarkable antiproliferative effects and is believed to be the most potent inhibitor of the metal-dependent histone deacetylases (HDACs). Here, the 2.14 Å-resolution crystal structure of the HDAC8-largazole thiol complex is the first of an HDAC complexed with a macrocyclic inhibitor and reveals that ideal thiolate-zinc coordination geometry is the key chemical feature responsible for its exceptional affinity and biological activity. Notably, the core structure of largazole is conserved in romidepsin, a depsipeptide natural product formulated as the drug Istodax recently approved for cancer chemotherapy. Accordingly, the structure of the HDAC8-largazole thiol complex is the first to illustrate the mode of action of a new class of therapeutically important HDAC inhibitors.
Collapse
Affiliation(s)
- Kathryn E Cole
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | | | | | | | | |
Collapse
|
69
|
Marsault E, Peterson ML. Macrocycles Are Great Cycles: Applications, Opportunities, and Challenges of Synthetic Macrocycles in Drug Discovery. J Med Chem 2011; 54:1961-2004. [DOI: 10.1021/jm1012374] [Citation(s) in RCA: 591] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Eric Marsault
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke Québec, J1H5N4, Canada
| | - Mark L. Peterson
- Tranzyme Pharma Inc., 3001 12e Avenue Nord, Sherbrooke, Québec, J1H5N4, Canada
| |
Collapse
|