51
|
Garcia-Gomez A, Rodríguez-Ubreva J, Ballestar E. Epigenetic interplay between immune, stromal and cancer cells in the tumor microenvironment. Clin Immunol 2018; 196:64-71. [PMID: 29501540 DOI: 10.1016/j.clim.2018.02.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 12/14/2022]
Abstract
Compelling evidences highlight the critical role of the tumor microenvironment as mediator of tumor progression and immunosuppression in several types of cancer. The reciprocal interplay between neoplastic and non-tumoral host cells is mediated by direct cell-to-cell contact, soluble factors and exosomes that result in differential gene expression patterns that are driven by epigenetic mechanisms. In this regard, extensive literature has described the abnormalities in the DNA methylation status and histone modification profiles in tumor cells. However, little is known about the mechanisms of epigenetic dysregulation that participate as a consequence of the intricate crosstalk among the cells within the tumor niche. This review summarizes the current knowledge on epigenetic changes that result from the interactions between myeloid, stromal and cancer cells in the tumor microenvironment and its functional impact in both tumorigenesis and tumor progression. We also discuss potential niche-specific epigenetic biomarkers to improve the prognosis and clinical treatment of cancer patients.
Collapse
Affiliation(s)
- Antonio Garcia-Gomez
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Rodríguez-Ubreva
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Esteban Ballestar
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
52
|
Lamprecht S, Sigal-Batikoff I, Shany S, Abu-Freha N, Ling E, Delinasios GJ, Moyal-Atias K, Delinasios JG, Fich A. Teaming Up for Trouble: Cancer Cells, Transforming Growth Factor-β1 Signaling and the Epigenetic Corruption of Stromal Naïve Fibroblasts. Cancers (Basel) 2018; 10:cancers10030061. [PMID: 29495500 PMCID: PMC5876636 DOI: 10.3390/cancers10030061] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/28/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
It is well recognized that cancer cells subvert the phenotype of stromal naïve fibroblasts and instruct the neighboring cells to sustain their growth agenda. The mechanisms underpinning the switch of fibroblasts to cancer-associated fibroblasts (CAFs) are the focus of intense investigation. One of the most significant hallmarks of the biological identity of CAFs is that their tumor-promoting phenotype is stably maintained during in vitro and ex vivo propagation without the continual interaction with the adjacent cancer cells. In this review, we discuss robust evidence showing that the master cytokine Transforming Growth Factor-β1 (TGFβ-1) is a prime mover in reshaping, via epigenetic switches, the phenotype of stromal fibroblasts to a durable state. We also examine, in detail, the pervasive involvement of TGFβ-1 signaling from both cancer cells and CAFs in fostering cancer development, taking colorectal cancer (CRC) as a paradigm of human neoplasia. Finally, we review the stroma-centric anticancer therapeutic approach focused on CAFs—the most abundant cell population of the tumor microenvironment (TME)—as target cells.
Collapse
Affiliation(s)
- Sergio Lamprecht
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - Ina Sigal-Batikoff
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - Shraga Shany
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
| | - Naim Abu-Freha
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - Eduard Ling
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Pediatrics Department B, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - George J Delinasios
- International Institute of Anticancer Research, Kapandriti, Athens 19014, Greece.
| | - Keren Moyal-Atias
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - John G Delinasios
- International Institute of Anticancer Research, Kapandriti, Athens 19014, Greece.
| | - Alexander Fich
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| |
Collapse
|
53
|
Ex vivo tumor culture systems for functional drug testing and therapy response prediction. Future Sci OA 2017; 3:FSO190. [PMID: 28670477 PMCID: PMC5481868 DOI: 10.4155/fsoa-2017-0003] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/23/2017] [Indexed: 02/08/2023] Open
Abstract
Optimal patient stratification is of utmost importance in the era of personalized medicine. Prediction of individual treatment responses by functional ex vivo assays requires model systems derived from viable tumor samples, which should closely resemble in vivo tumor characteristics and microenvironment. This review discusses a broad spectrum of model systems, ranging from classic 2D monolayer culture techniques to more experimental ‘cancer-on-chip’ procedures. We mainly focus on organotypic tumor slices that take tumor heterogeneity and tumor–stromal interactions into account. These 3D model systems can be exploited for patient selection as well as for fundamental research. Selection of the right model system for each specific research endeavor is crucial and requires careful balancing of the pros and cons of each technology. Selection of the right therapy for individual cancer patients is very important with the expanding number of possible treatments. How tumors respond to a therapy can be tested by treating a sample from the tumor outside the body. Various culture methods can be used to maintain this tumor sample. Each of these model systems has its own benefits and disadvantages. In this review, we discuss the advantages and drawbacks of the available model systems and how they can be used to guide personalized medicine.
Collapse
|
54
|
Iguchi E, Safgren SL, Marks DL, Olson RL, Fernandez-Zapico ME. Pancreatic Cancer, A Mis-interpreter of the Epigenetic Language. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:575-590. [PMID: 28018146 PMCID: PMC5168833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pancreatic cancer is the third leading cause of cancer mortality in the U.S. with close to 40,000 deaths per year. Pancreatic ductal adenocarcinoma (PDAC) represents approximately 90 percent of all pancreatic cancer cases and is the most lethal form of the disease. Current therapies for PDAC are ineffective and most patients cannot be treated by surgical resection. Most research efforts have primarily focused on how genetic alterations cause, alter progression, contribute to diagnosis, and influence PDAC management. Over the past two decades, a model has been advanced of PDAC initiation and progression as a multi-step process driven by the acquisition of mutations leading to loss of tumor suppressors and activation of oncogenes. The recognition of the essential roles of these genetic alterations in the development of PDAC has revolutionized our knowledge of this disease. However, none of these findings have turned into effective treatment for this dismal malignancy. In recent years, studies in the areas of chromatin modifications, and non-coding RNAs have uncovered mechanisms for regulating gene expression which occur independently of genetic alterations. Chromatin-based mechanisms are interwoven with microRNA-driven regulation of protein translation to create an integrated epigenetic language, which is grossly dysregulated in PDAC. Thus in PDAC, key tumor suppressors that are well established to play a role in PDAC may be repressed, and oncogenes can be upregulated secondary to epigenetic alterations. Unlike mutations, epigenetic changes are potentially reversible. Given this feature of epigenetic mechanisms, it is conceivable that targeting epigenetic-based events promoting and maintaining PDAC could serve as foundation for the development of new therapeutic and diagnostic approaches for this disease.
Collapse
Affiliation(s)
- Eriko Iguchi
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - David L. Marks
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Rachel L. Olson
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|