51
|
Intracellular colon cancer-associated Escherichia coli promote protumoral activities of human macrophages by inducing sustained COX-2 expression. J Transl Med 2015; 95:296-307. [PMID: 25545478 DOI: 10.1038/labinvest.2014.161] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/14/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022] Open
Abstract
Intestinal dysbiosis has been reported in patients with colorectal cancer, and there is a high prevalence of Escherichia coli belonging to B2 phylogroup and producing a genotoxin, termed colibactin. Macrophages are one of the predominant tumor-infiltrating immune cells supporting key processes in tumor progression by producing protumoral factors such as cyclooxygenase-2 (COX-2). Here, we investigated whether B2 E. coli colonizing colon tumors could influence protumoral activities of macrophages. In contrast to commensal or nonpathogenic E. coli strains that were efficiently and rapidly degraded by macrophages at 24 h after infection, colon cancer-associated E. coli were able to resist killing by human THP-1 macrophages, to replicate intracellularly, and to persist inside host cells until at least 72 h after infection. Significant increases in COX-2 expression were observed in macrophages infected with colon cancer E. coli compared with macrophages infected with commensal and nonpathogenic E. coli strains or uninfected cells at 72 h after infection. Induction of COX-2 expression required live bacteria and was not due to colibactin production, as similar COX-2 levels were observed in macrophages infected with the wild-type colon cancer-associated E. coli 11G5 strain or a clbQ mutant unable to produce colibactin. Treatment of macrophages with ofloxacin, an antibiotic with intracellular tropism, efficiently decreased the number of intracellular bacteria and suppressed bacteria-induced COX-2 expression. This study provides new insights into the understanding of how tumor- infiltrating bacteria could influence cancer progression through their interaction with immune cells. Manipulation of microbes associated with tumors could have a deep influence on the secretion of protumoral molecules by infiltrating macrophages.
Collapse
|
52
|
|
53
|
Intracellular colon cancer-associated Escherichia coli promote protumoral activities of human macrophages by inducing sustained COX-2 expression. LABORATORY INVESTIGATION; A JOURNAL OF TECHNICAL METHODS AND PATHOLOGY 2014. [PMID: 25545478 DOI: 10.1038/labinvest.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intestinal dysbiosis has been reported in patients with colorectal cancer, and there is a high prevalence of Escherichia coli belonging to B2 phylogroup and producing a genotoxin, termed colibactin. Macrophages are one of the predominant tumor-infiltrating immune cells supporting key processes in tumor progression by producing protumoral factors such as cyclooxygenase-2 (COX-2). Here, we investigated whether B2 E. coli colonizing colon tumors could influence protumoral activities of macrophages. In contrast to commensal or nonpathogenic E. coli strains that were efficiently and rapidly degraded by macrophages at 24 h after infection, colon cancer-associated E. coli were able to resist killing by human THP-1 macrophages, to replicate intracellularly, and to persist inside host cells until at least 72 h after infection. Significant increases in COX-2 expression were observed in macrophages infected with colon cancer E. coli compared with macrophages infected with commensal and nonpathogenic E. coli strains or uninfected cells at 72 h after infection. Induction of COX-2 expression required live bacteria and was not due to colibactin production, as similar COX-2 levels were observed in macrophages infected with the wild-type colon cancer-associated E. coli 11G5 strain or a clbQ mutant unable to produce colibactin. Treatment of macrophages with ofloxacin, an antibiotic with intracellular tropism, efficiently decreased the number of intracellular bacteria and suppressed bacteria-induced COX-2 expression. This study provides new insights into the understanding of how tumor- infiltrating bacteria could influence cancer progression through their interaction with immune cells. Manipulation of microbes associated with tumors could have a deep influence on the secretion of protumoral molecules by infiltrating macrophages.
Collapse
|
54
|
Shiryaev SA, Remacle AG, Cieplak P, Strongin AY. Peptide Sequence Region That is Essential for the Interactions of the Enterotoxigenic Bacteroides fragilis Metalloproteinase II with E-cadherin. JOURNAL OF PROTEOLYSIS 2014; 1:3-14. [PMID: 25964952 PMCID: PMC4425422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bacteroides fragilis is a valuable anaerobic commensal and an essential component of the gut microbiome in humans. The presence of a short pathogenicity island in the genome is predominantly associated with the enterotoxigenic strains of B. fragilis. Metallopro-teinase II (MPII) and fragilysin (FRA) are the structurally related enzymes encoded by the pathogenicity island in the enterotoxigenic strains. Accordingly, there is a significant overlap between the cleavage preferences of MPII and FRA. These proteinases, however, are counter-transcribed in the bacterial genome suggesting their distinct and specialized functions in the course of infection. It is well established that FRA directly cleaves E-cadherin, a key protein of the cell-to-cell adhesion junctions in the intestinal epithelium. Counterintuitively, MPII directly binds to, rather than cleaves, E-cadherin. Structural modeling suggested that a potential E-cadherin binding site involves the C-terminal -helical region of the MPII catalytic domain. The sequence of this region is different in MPII and FRA. Here, we employed substitution mutagenesis of this C-terminal -helical region to isolate the MPII mutants with the potentially inactivated E-cadherin binding site. Overall, as a result of our modeling, mutagenesis and binding studies, we determined that the C-terminal ten residue segment is essential for the binding of MPII, but not of FRA3, to E-cadherin, and that the resulting MPII•E-cadherin complex does not impair E-cadherin-dependent cell-to-cell contacts. It is possible to envision that the putative cleavage targets of MPII should be explored not only on the host cell surface but also in B. fragilis.
Collapse
Affiliation(s)
- Sergey A. Shiryaev
- To whom correspondence should be addressed: , tel: 858-795-5271, fax: 858-795-5225
| | - Albert G. Remacle
- To whom correspondence should be addressed: , tel: 858-795-5271, fax: 858-795-5225
| | | | | |
Collapse
|
55
|
Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci U S A 2014; 111:18321-6. [PMID: 25489084 DOI: 10.1073/pnas.1406199111] [Citation(s) in RCA: 515] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Environmental factors clearly affect colorectal cancer (CRC) incidence, but the mechanisms through which these factors function are unknown. One prime candidate is an altered colonic microbiota. Here we show that the mucosal microbiota organization is a critical factor associated with a subset of CRC. We identified invasive polymicrobial bacterial biofilms (bacterial aggregates), structures previously associated with nonmalignant intestinal pathology, nearly universally (89%) on right-sided tumors (13 of 15 CRCs, 4 of 4 adenomas) but on only 12% of left-sided tumors (2 of 15 CRCs, 0 of 2 adenomas). Surprisingly, patients with biofilm-positive tumors, whether cancers or adenomas, all had biofilms on their tumor-free mucosa far distant from their tumors. Bacterial biofilms were associated with diminished colonic epithelial cell E-cadherin and enhanced epithelial cell IL-6 and Stat3 activation, as well as increased crypt epithelial cell proliferation in normal colon mucosa. High-throughput sequencing revealed no consistent bacterial genus associated with tumors, regardless of biofilm status. However, principal coordinates analysis revealed that biofilm communities on paired normal mucosa, distant from the tumor itself, cluster with tumor microbiomes as opposed to biofilm-negative normal mucosa bacterial communities also from the tumor host. Colon mucosal biofilm detection may predict increased risk for development of sporadic CRC.
Collapse
|
56
|
Remacle AG, Shiryaev SA, Strongin AY. Distinct interactions with cellular E-cadherin of the two virulent metalloproteinases encoded by a Bacteroides fragilis pathogenicity island. PLoS One 2014; 9:e113896. [PMID: 25411788 PMCID: PMC4239093 DOI: 10.1371/journal.pone.0113896] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/02/2014] [Indexed: 12/14/2022] Open
Abstract
Bacteroides fragilis causes the majority of Gram-negative anaerobic infections in the humans. The presence of a short, 6-kb, pathogenicity island in the genome is linked to enterotoxigenic B. fragilis (ETBF). The role of the enterotoxin in B. fragilis virulence, however, remains to be determined, as the majority of clinical isolates lack ETBF genes and healthy individuals carry enterotoxin-positive B. fragilis. The island encodes secretory metalloproteinase II (MPII) and one of three homologous enterotoxigenic fragilysin isoenzymes (FRA; also termed B. fragilis toxin or BFT). The secretory metalloproteinases expressed from the genes on the B. fragilis pathogenicity island may have pathological importance within the gut, not linked to diarrhea. MPII and FRA are counter-transcribed in the bacterial genome, implying that regardless of their structural similarity and overlapping cleavage preferences these proteases perform distinct and highly specialized functions in the course of B. fragilis infection. The earlier data by us and others have demonstrated that FRA cleaves cellular E-cadherin, an important adherens junction protein, and weakens cell-to-cell contacts. Using E-cadherin-positive and E-cadherin-deficient cancer cells, and the immunostaining, direct cell binding and pull-down approaches, we, however, demonstrated that MPII via its catalytic domain efficiently binds, rather than cleaves, E-cadherin. According to our results, E-cadherin is an adherens junction cellular receptor, rather than a proteolytic target, of the B. fragilis secretory MPII enzyme. As a result of the combined FRA and MPII proteolysis, cell-to-cell contacts and adherens junctions are likely to weaken further.
Collapse
Affiliation(s)
- Albert G. Remacle
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Sergey A. Shiryaev
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Alex Y. Strongin
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| |
Collapse
|
57
|
Abstract
Colorectal cancer (CRC) presents a considerable disease burden worldwide. The human colon is also an anatomical location with the largest number of microbes. It is natural, therefore, to anticipate a role for microbes, particularly bacteria, in colorectal carcinogenesis. The increasing accessibility of microbial meta'omics is fueling a surge in our understanding of the role that microbes and the microbiota play in CRC. In this review, we will discuss recent insights into contributions of the microbiota to CRC and explore conceptual frameworks for evaluating the role of microbes in cancer causation. We also highlight new findings on candidate CRC-potentiating species and current knowledge gaps. Finally, we explore the roles of microbial metabolism as it relates to bile acids, xenobiotics, and diet in the etiology and therapeutics of CRC.
Collapse
Affiliation(s)
- Cynthia L Sears
- Department of Medicine, Johns Hopkins University School of Medicine and the Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine and the Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Medicine and the Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA; Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
58
|
Beirão EM, Padovan ACB, Furtado JJD, Colombo AL, Medeiros EAS. Does the change on gastrointestinal tract microbiome affects host? Braz J Infect Dis 2014; 18:660-3. [PMID: 24835619 PMCID: PMC9425252 DOI: 10.1016/j.bjid.2014.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/28/2014] [Accepted: 04/21/2014] [Indexed: 01/04/2023] Open
Abstract
During the past decade, studies on the composition of human microbiota and its relation to the host became one of the most explored subjects of the medical literature. The development of high-throughput molecular technologies allowed a deeper characterization of human microbiota and a better understanding of its relationship with health and disease. Changes in human habits including wide use of antimicrobials can result in dysregulation of host–microbiome homeostasis, with multiple consequences. The purpose of this review is to highlight the most important evidence in the literature of host–microbiome interactions and illustrate how these intriguing relations may lead to new treatment and prevention strategies.
Collapse
Affiliation(s)
- Elisa M Beirão
- Department of Infectiology, Hospital Heliópolis, São Paulo, SP, Brazil.
| | - Ana Carolina B Padovan
- Micology Special Laboratory, Disciplina de Infectologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Arnaldo L Colombo
- Micology Special Laboratory, Disciplina de Infectologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Eduardo A S Medeiros
- Service of Hospital Infection Control, Disciplina de Infectologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
59
|
Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, Ellis B, Carroll KC, Albesiano E, Wick EC, Platz EA, Pardoll DM, Sears CL. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 2014; 60:208-15. [PMID: 25305284 DOI: 10.1093/cid/ciu787] [Citation(s) in RCA: 423] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Enterotoxigenic Bacteroides fragilis (ETBF) produces the Bacteroides fragilis toxin, which has been associated with acute diarrheal disease, inflammatory bowel disease, and colorectal cancer (CRC). ETBF induces colon carcinogenesis in experimental models. Previous human studies have demonstrated frequent asymptomatic fecal colonization with ETBF, but no study has investigated mucosal colonization that is expected to impact colon carcinogenesis. METHODS We compared the presence of the bft gene in mucosal samples from colorectal neoplasia patients (cases, n = 49) to a control group undergoing outpatient colonoscopy for CRC screening or diagnostic workup (controls, n = 49). Single bacterial colonies isolated anaerobically from mucosal colon tissue were tested for the bft gene with touch-down polymerase chain reaction. RESULTS The mucosa of cases was significantly more often bft-positive on left (85.7%) and right (91.7%) tumor and/or paired normal tissues compared with left and right control biopsies (53.1%; P = .033 and 55.5%; P = .04, respectively). Detection of bft was concordant in most paired mucosal samples from individual cases or controls (75% cases; 67% controls). There was a trend toward increased bft positivity in mucosa from late- vs early-stage CRC patients (100% vs 72.7%, respectively; P = .093). In contrast to ETBF diarrheal disease where bft-1 detection dominates, bft-2 was the most frequent toxin isotype identified in both cases and controls, whereas multiple bft isotypes were detected more frequently in cases (P ≤ .02). CONCLUSIONS The bft gene is associated with colorectal neoplasia, especially in late-stage CRC. Our results suggest that mucosal bft exposure is common and may be a risk factor for developing CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Brandon Ellis
- Department of Pathology, Johns Hopkins University School of Medicine
| | - Karen C Carroll
- Department of Pathology, Johns Hopkins University School of Medicine
| | | | | | - Elizabeth A Platz
- Department of Oncology Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Drew M Pardoll
- Department of Medicine Department of Oncology Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cynthia L Sears
- Department of Medicine Department of Oncology Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
60
|
Abreu MT, Peek RM. Gastrointestinal malignancy and the microbiome. Gastroenterology 2014; 146:1534-1546.e3. [PMID: 24406471 PMCID: PMC3995897 DOI: 10.1053/j.gastro.2014.01.001] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/18/2013] [Accepted: 01/03/2014] [Indexed: 12/13/2022]
Abstract
Microbial species participate in the genesis of a substantial number of malignancies-in conservative estimates, at least 15% of all cancer cases are attributable to infectious agents. Little is known about the contribution of the gastrointestinal microbiome to the development of malignancies. Resident microbes can promote carcinogenesis by inducing inflammation, increasing cell proliferation, altering stem cell dynamics, and producing metabolites such as butyrate, which affect DNA integrity and immune regulation. Studies in human beings and rodent models of cancer have identified effector species and relationships among members of the microbial community in the stomach and colon that increase the risk for malignancy. Strategies to manipulate the microbiome, or the immune response to such bacteria, could be developed to prevent or treat certain gastrointestinal cancers.
Collapse
Affiliation(s)
- Maria T Abreu
- Division of Gastroenterology, Departments of Medicine and Microbiology and Immunology, University of Miami, Miami, Florida
| | - Richard M Peek
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
61
|
Abstract
Increasing knowledge about the gut microbiota composition together with a resurgence in attention to the impact of the host immune system on tumor development triggered our interest in exploring how the interplay of the microbiota and the immune system represents an emerging area of interest. Determining how the immune system may alter gut microbiota composition, or the converse, and whether these interactions increase or reduce cancer risk may be relevant to generate more effective colon cancer preventive strategies.
Collapse
Affiliation(s)
- Florencia McAllister
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Franck Housseau
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Cynthia L. Sears
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
62
|
Brim H, Zahaf M, Laiyemo AO, Nouraie M, Pérez-Pérez GI, Smoot DT, Lee E, Razjouyan H, Ashktorab H. Gastric Helicobacter pylori infection associates with an increased risk of colorectal polyps in African Americans. BMC Cancer 2014; 14:296. [PMID: 24774100 PMCID: PMC4022546 DOI: 10.1186/1471-2407-14-296] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 03/04/2014] [Indexed: 12/12/2022] Open
Abstract
Background Gastric Helicobacter pylori (H. pylori) infection and colorectal polyps are more prevalent in African Americans than in the general population. We aimed to investigate whether gastric H. pylori infection is associated with colorectal polyps in African Americans. Methods Medical records of African Americans, 40 years and older (n = 1256) who underwent bidirectional gastrointestinal endoscopy on the same day were reviewed. H. pylori status was assessed by immunohistochemistry on gastric specimens. Colorectal polyps were confirmed by histological examination of colorectal biopsies. A subset of serum samples from healthy and polyp-bearing patients (n = 163) were analyzed by ELISA for anti-H. pylori and anti-CagA antibodies. The crude and adjusted effect of H. pylori on the risk of colorectal adenoma and polyp were computed by logistic regression models. Results The prevalence of colorectal polyps and adenomas were 456 (36%) and 300 (24%) respectively. Colorectal polyps were more prevalent in gastric H. pylori infected than non-infected subjects [43% vs. 34%; Odds Ratio (OR) (95% CI): 1.5 (1.2-1.9), P = 0.001]. Patients with H. pylori-associated chronic active gastritis were at high risk to have adenomas [Unadjusted OR (95% CI): 1.3 (1.0-1.8); P = 0.04]. There was no difference in histopathology, size, or location of polyps with respect to H. pylori status. Gastric H. pylori infection, age, male gender and high risk clinical presentations were independent risk factors for colorectal polyps. Serological testing also revealed a higher prevalence of H. pylori and its toxin Cag-A in polyp patients vs. non polyp patients’ sera, although in a non-statistically significant manner. Conclusions This study showed that current gastric H. pylori infection is associated with an increased risk of colorectal polyps in African Americans. Patients with H. pylori induced gastritis may benefit from early screening colonoscopy as a preventative measure for colorectal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, Washington, DC, USA.
| |
Collapse
|
63
|
Shiryaev SA, Aleshin AE, Muranaka N, Kukreja M, Routenberg DA, Remacle AG, Liddington RC, Cieplak P, Kozlov IA, Strongin AY. Structural and functional diversity of metalloproteinases encoded by the Bacteroides fragilis pathogenicity island. FEBS J 2014; 281:2487-502. [PMID: 24698179 DOI: 10.1111/febs.12804] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 01/04/2023]
Abstract
Bacteroides fragilis causes the majority of anaerobic infections in humans. The presence of a pathogenicity island in the genome discriminates pathogenic and commensal B. fragilis strains. The island encodes metalloproteinase II (MPII), a potential virulence protein, and one of three homologous fragilysin isozymes (FRA; also termed B. fragilis toxin or BFT). Here, we report biochemical data on the structural-functional characteristics of the B. fragilis pathogenicity island proteases by reporting the crystal structure of MPII at 2.13 Å resolution, combined with detailed characterization of the cleavage preferences of MPII and FRA3 (as a representative of the FRA isoforms), identified using a high-throughput peptide cleavage assay with 18 583 substrate peptides. We suggest that the evolution of the MPII catalytic domain can be traced to human and archaebacterial proteinases, whereas the prodomain fold is a feature specific to MPII and FRA. We conclude that the catalytic domain of both MPII and FRA3 evolved differently relative to the prodomain, and that the prodomain evolved specifically to fit the B. fragilis pathogenicity. Overall, our data provide insights into the evolution of cleavage specificity and activation mechanisms in the virulent metalloproteinases.
Collapse
|
64
|
Zhu Q, Jin Z, Wu W, Gao R, Guo B, Gao Z, Yang Y, Qin H. Analysis of the intestinal lumen microbiota in an animal model of colorectal cancer. PLoS One 2014; 9:e90849. [PMID: 24603888 PMCID: PMC3946251 DOI: 10.1371/journal.pone.0090849] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/30/2014] [Indexed: 12/25/2022] Open
Abstract
Recent reports have suggested that multiple factors such as host genetics, environment and diet can promote the progression of healthy mucosa towards sporadic colorectal carcinoma. Accumulating evidence has additionally associated intestinal bacteria with disease initiation and progression. In order to examine and analyze the composition of gut microbiota in the absence of confounding influences, we have established an animal model of 1, 2-dimethylhydrazine (DMH)-induced colon cancer. Using this model, we have performed pyrosequencing of the V3 region of the 16S rRNA genes in this study to determine the diversity and breadth of the intestinal microbial species. Our findings indicate that the microbial composition of the intestinal lumen differs significantly between control and tumor groups. The abundance of Firmicutes was elevated whereas the abundance of Bacteroidetes and Spirochetes was reduced in the lumen of CRC rats. Fusobacteria was not detected in any of the healthy rats and there was no significant difference in observed Proteobacteria species when comparing the bacterial communities between our two groups. Interestingly, the abundance of Proteobacteria was higher in CRC rats. At the genus level, Bacteroides exhibited a relatively higher abundance in CRC rats compared to controls (14.92% vs. 9.22%, p<0.001). Meanwhile, Prevotella (55.22% vs. 26.19%), Lactobacillus (3.71% vs. 2.32%) and Treponema (3.04% vs. 2.43%), were found to be significantly more abundant in healthy rats than CRC rats (p<0.001, respectively). We also demonstrate a significant reduction of butyrate-producing bacteria such as Roseburia and Eubacterium in the gut microbiota of CRC rats. Furthermore, a significant increase in Desulfovibrio, Erysipelotrichaceae and Fusobacterium was also observed in the tumor group. A decrease in probiotic species such as Ruminococcus and Lactobacillus was likewise observed in the tumor group. Collectively, we can conclude that a significant difference in intestinal bacterial flora exists between healthy rats and CRC rats.
Collapse
Affiliation(s)
- Qingchao Zhu
- Department of Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Zhiming Jin
- Department of Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Wen Wu
- Department of Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Renyuan Gao
- Department of Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Bomin Guo
- Department of Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Zhiguang Gao
- Department of Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Yongzhi Yang
- Department of Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Huanlong Qin
- Department of Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
65
|
Huse SM, Young VB, Morrison HG, Antonopoulos DA, Kwon J, Dalal S, Arrieta R, Hubert NA, Shen L, Vineis JH, Koval JC, Sogin ML, Chang EB, Raffals LE. Comparison of brush and biopsy sampling methods of the ileal pouch for assessment of mucosa-associated microbiota of human subjects. MICROBIOME 2014; 2:5. [PMID: 24529162 PMCID: PMC3931571 DOI: 10.1186/2049-2618-2-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/15/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Mucosal biopsy is the most common sampling technique used to assess microbial communities associated with the intestinal mucosa. Biopsies disrupt the epithelium and can be associated with complications such as bleeding. Biopsies sample a limited area of the mucosa, which can lead to potential sampling bias. In contrast to the mucosal biopsy, the mucosal brush technique is less invasive and provides greater mucosal coverage, and if it can provide equivalent microbial community data, it would be preferable to mucosal biopsies. RESULTS We compared microbial samples collected from the intestinal mucosa using either a cytology brush or mucosal biopsy forceps. We collected paired samples from patients with ulcerative colitis (UC) who had previously undergone colectomy and ileal pouch anal anastomosis (IPAA), and profiled the microbial communities of the samples by sequencing V4-V6 or V4-V5 16S rRNA-encoding gene amplicons. Comparisons of 177 taxa in 16 brush-biopsy sample pairs had a mean R2 of 0.94. We found no taxa that varied significantly between the brush and biopsy samples after adjusting for multiple comparisons (false discovery rate ≤0.05). We also tested the reproducibility of DNA amplification and sequencing in 25 replicate pairs and found negligible variation (mean R2 = 0.99). A qPCR analysis of the two methods showed that the relative yields of bacterial DNA to human DNA were several-fold higher in the brush samples than in the biopsies. CONCLUSIONS Mucosal brushing is preferred to mucosal biopsy for sampling the epithelial-associated microbiota. Although both techniques provide similar assessments of the microbial community composition, the brush sampling method has relatively more bacterial to host DNA, covers a larger surface area, and is less traumatic to the epithelium than the mucosal biopsy.
Collapse
Affiliation(s)
- Susan M Huse
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Vincent B Young
- Department of Internal Medicine, Division of Infectious Diseases, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hilary G Morrison
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | | | - John Kwon
- Department of Medicine, Section of Gastroenterology, The University of Chicago, Knapp Center for Biomedical Discovery, Chicago, IL, USA
| | - Sushila Dalal
- Department of Medicine, Section of Gastroenterology, The University of Chicago, Knapp Center for Biomedical Discovery, Chicago, IL, USA
| | - Rose Arrieta
- Department of Medicine, Section of Gastroenterology, The University of Chicago, Knapp Center for Biomedical Discovery, Chicago, IL, USA
| | - Nathaniel A Hubert
- Department of Medicine, Section of Gastroenterology, The University of Chicago, Knapp Center for Biomedical Discovery, Chicago, IL, USA
| | - Lici Shen
- Department of Medicine, Section of Gastroenterology, The University of Chicago, Knapp Center for Biomedical Discovery, Chicago, IL, USA
| | - Joseph H Vineis
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Jason C Koval
- Institute for Genomics and Systems Biology, Argonne National Laboratory, Argonne, IL, USA
| | - Mitchell L Sogin
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Eugene B Chang
- Department of Medicine, Section of Gastroenterology, The University of Chicago, Knapp Center for Biomedical Discovery, Chicago, IL, USA
| | - Laura E Raffals
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
66
|
Chen CH, Lin Z, Garimella S, Zheng L, Shi R, Cooks RG, Ouyang Z. Development of a mass spectrometry sampling probe for chemical analysis in surgical and endoscopic procedures. Anal Chem 2013; 85:11843-50. [PMID: 24251679 DOI: 10.1021/ac4025279] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A sampling probe based on ambient desorption ionization was designed for in vivo chemical analysis by mass spectrometry in surgical and endoscopic procedures. Sampling ionization of analytes directly from tissue was achieved by sealing the sampling tip against the tissue surface without allowing leakage of the auxiliary gas used for desorption ionization. The desorbed charged species were transferred over a long distance (up to 4 m) through a flexible tube of internal diameter as small as 1/16 in. to the inlet of the mass spectrometer used for analysis. The conditions used for desorption electrospray ionization (DESI) were optimized to achieve biocompatibility for clinical applications while obtaining adequate efficiency for the analysis. This optimization involved the removal of high voltage and use of pure water as a spray solvent instead of the organic solvents or aqueous mixtures normally used. Improved sensitivity was achieved under these conditions by increasing the gas flow rate in the transfer tube. The destructive effect on tissue surfaces associated with typical desorption ionization was avoided by altering the local gas dynamics in the sample area without compromising the overall analysis efficiency.
Collapse
Affiliation(s)
- Chien-Hsun Chen
- Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana 47907
| | | | | | | | | | | | | |
Collapse
|
67
|
Faecal microbiota transplantation for the treatment of recurrent Clostridium difficile infection: current promise and future needs. Curr Opin Gastroenterol 2013; 29:628-32. [PMID: 24100717 PMCID: PMC4127992 DOI: 10.1097/mog.0b013e328365d326] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The use of faecal microbiota transplantation (FMT) as treatment for recurrent Clostridium difficile infection (CDI) has increased rapidly over the past few years. In this review, we highlight clinical studies of FMT for treatment of recurrent CDI and discuss the safety, standardization and future of this treatment option. The major risk factor for CDI is prior antibiotic use, which results in an altered state of the gut microbiota characterized by decreased microbial diversity. This altered gut microbiota increases the patient's susceptibility to CDI. In patients with recurrent CDI, the microbiota remains in a state with decreased diversity, and FMT from a healthy individual restores the gut microbiota and subsequently colonization resistance against the pathogen. RECENT FINDINGS Recent studies have shown the success rate for FMT as treatment for recurrent CDI being greater than 90%. Standardized, frozen preparations of faeces can be used, which increases the availability of faeces for FMT and decreases the cost of screening individual donors. In addition, there have been recent advances in identifying a defined microbial community isolated from faeces that can restore colonization resistance against C. difficile. SUMMARY The use of FMT is a successful treatment for recurrent CDI when primary treatment options have failed. However, more work needs to define potential long-term consequences of this treatment and understand how specific members of the gut microbiota can restore colonization resistance against C. difficile.
Collapse
|
68
|
Shiryaev SA, Remacle AG, Chernov AV, Golubkov VS, Motamedchaboki K, Muranaka N, Dambacher CM, Capek P, Kukreja M, Kozlov IA, Perucho M, Cieplak P, Strongin AY. Substrate cleavage profiling suggests a distinct function of Bacteroides fragilis metalloproteinases (fragilysin and metalloproteinase II) at the microbiome-inflammation-cancer interface. J Biol Chem 2013; 288:34956-67. [PMID: 24145028 DOI: 10.1074/jbc.m113.516153] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Enterotoxigenic anaerobic Bacteroides fragilis is a significant source of inflammatory diarrheal disease and a risk factor for colorectal cancer. Two distinct metalloproteinase types (the homologous 1, 2, and 3 isoforms of fragilysin (FRA1, FRA2, and FRA3, respectively) and metalloproteinase II (MPII)) are encoded by the B. fragilis pathogenicity island. FRA was demonstrated to be important to pathogenesis, whereas MPII, also a potential virulence protein, remained completely uncharacterized. Here, we, for the first time, extensively characterized MPII in comparison with FRA3, a representative of the FRA isoforms. We employed a series of multiplexed peptide cleavage assays to determine substrate specificity and proteolytic characteristics of MPII and FRA. These results enabled implementation of an efficient assay of MPII activity using a fluorescence-quenched peptide and contributed to structural evidence for the distinct substrate cleavage preferences of MPII and FRA. Our data imply that MPII specificity mimics the dibasic Arg↓Arg cleavage motif of furin-like proprotein convertases, whereas the cleavage motif of FRA (Pro-X-X-Leu-(Arg/Ala/Leu)↓) resembles that of human matrix metalloproteinases. To the best of our knowledge, MPII is the first zinc metalloproteinase with the dibasic cleavage preferences, suggesting a high level of versatility of metalloproteinase proteolysis. Based on these data, we now suggest that the combined (rather than individual) activity of MPII and FRA is required for the overall B. fragilis virulence in vivo.
Collapse
Affiliation(s)
- Sergey A Shiryaev
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037 and
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Affiliation(s)
- David Gurwitz
- Department of Human Molecular Genetics and Biochemistry; Sackler Faculty of Medicine; Tel-Aviv University; Tel-Aviv; Israel
| |
Collapse
|