51
|
Xia Y, Gao Z, Liao X, Pan C, Zhang Y, Feng X. Rapid synthesis of hierarchical, flower-like Ag microstructures with a gemini surfactant as a directing agent for SERS applications. CrystEngComm 2017. [DOI: 10.1039/c7ce01573a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Various hierarchical Ag microstructures, including sensitive SERS substrate flower-like structures, can be designed and rapidly synthesized under different conditions.
Collapse
Affiliation(s)
- Yan Xia
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P.R. China
- Key Laboratory of Biomedical Polymers
| | - Zhinong Gao
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P.R. China
- Key Laboratory of Biomedical Polymers
| | - Xueming Liao
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P.R. China
- Key Laboratory of Biomedical Polymers
| | - Chenchen Pan
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P.R. China
- Key Laboratory of Biomedical Polymers
| | - Yingfang Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P.R. China
- Key Laboratory of Biomedical Polymers
| | - Xuesong Feng
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P.R. China
| |
Collapse
|
52
|
Islam MS, Shortall SM, Mekhail GM, Callender SP, Madkhali O, Bharwani Z, Ayyash D, Kobernyk K, Wettig SD. Effect of counterions on the micellization and monolayer behaviour of cationic gemini surfactants. Phys Chem Chem Phys 2017; 19:10825-10834. [DOI: 10.1039/c7cp00775b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effect of various inorganic and organic counterions on the aggregation behavior of gemini surfactants was examined to investigate the dominant influence of the anions on their micellization and aggregation behavior.
Collapse
Affiliation(s)
- M. S. Islam
- School of Pharmacy, University of Waterloo
- Waterloo ON N2L 3G1
- Canada
- Waterloo Institute for Nanotechnology
- University of Waterloo
| | - S. M. Shortall
- School of Pharmacy, University of Waterloo
- Waterloo ON N2L 3G1
- Canada
- Waterloo Institute for Nanotechnology
- University of Waterloo
| | - G. M. Mekhail
- School of Pharmacy, University of Waterloo
- Waterloo ON N2L 3G1
- Canada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University
- Abbasiya Square
| | - S. P. Callender
- School of Pharmacy, University of Waterloo
- Waterloo ON N2L 3G1
- Canada
- Waterloo Institute for Nanotechnology
- University of Waterloo
| | - O. Madkhali
- School of Pharmacy, University of Waterloo
- Waterloo ON N2L 3G1
- Canada
- Waterloo Institute for Nanotechnology
- University of Waterloo
| | - Z. Bharwani
- School of Pharmacy, University of Waterloo
- Waterloo ON N2L 3G1
- Canada
| | - D. Ayyash
- School of Pharmacy, University of Waterloo
- Waterloo ON N2L 3G1
- Canada
| | - K. Kobernyk
- School of Pharmacy, University of Waterloo
- Waterloo ON N2L 3G1
- Canada
| | - S. D. Wettig
- School of Pharmacy, University of Waterloo
- Waterloo ON N2L 3G1
- Canada
- Waterloo Institute for Nanotechnology
- University of Waterloo
| |
Collapse
|
54
|
Fisicaro E, Compari C, Bacciottini F, Contardi L, Pongiluppi E, Barbero N, Viscardi G, Quagliotto P, Donofrio G, Krafft MP. Nonviral gene-delivery by highly fluorinated gemini bispyridinium surfactant-based DNA nanoparticles. J Colloid Interface Sci 2016; 487:182-191. [PMID: 27769002 DOI: 10.1016/j.jcis.2016.10.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 11/19/2022]
Abstract
Biological and thermodynamic properties of a new homologous series of highly fluorinated bispyridinium cationic gemini surfactants, differing in the length of the spacer bridging the pyridinium polar heads in 1,1' position, are reported for the first time. Interestingly, gene delivery ability is closely associated with the spacer length due to a structural change of the molecule in solution. This conformation change is allowed when the spacer reaches the right length, and it is suggested by the trends of the apparent and partial molar enthalpies vs molality. To assess the compounds' biological activity, they were tested with an agarose gel electrophoresis mobility shift assay (EMSA), MTT proliferation assay and Transient Transfection assays on a human rhabdomyosarcoma cell line. Data from atomic force microscopy (AFM) allow for morphological characterization of DNA nanoparticles. Dilution enthalpies, measured at 298K, enabled the determination of apparent and partial molar enthalpies vs molality. All tested compounds (except that with the longest spacer), at different levels, can deliver the plasmid when co-formulated with 1,2-dioleyl-sn-glycero-3-phosphoethanolamine (DOPE). The compound with a spacer formed by eight carbon atoms gives rise to a gene delivery ability that is comparable to that of the commercial reagent. The compound with the longest spacer compacts DNA in loosely condensed structures by forming bows, which are not suitable for transfection. Regarding the compounds' hydrogenated counterparts, the tight relationship between the solution thermodynamics data and their biological performance is amazing, making "old" methods the foundation to deeply understanding "new" applications.
Collapse
Affiliation(s)
- Emilia Fisicaro
- University of Parma, Department of Pharmacy, Parco Area delle Scienze, 27/A, 43124 Parma, Italy.
| | - Carlotta Compari
- University of Parma, Department of Pharmacy, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Franco Bacciottini
- University of Parma, Department of Pharmacy, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Laura Contardi
- University of Parma, Department of Pharmacy, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Erika Pongiluppi
- University of Parma, Department of Pharmacy, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Nadia Barbero
- University of Torino, Department of Chemistry, Interdepartmental "Nanostructured Surfaces and Interfaces" NIS Centre, Via P. Giuria, 7, 10125 Torino, Italy
| | - Guido Viscardi
- University of Torino, Department of Chemistry, Interdepartmental "Nanostructured Surfaces and Interfaces" NIS Centre, Via P. Giuria, 7, 10125 Torino, Italy
| | - Pierluigi Quagliotto
- University of Torino, Department of Chemistry, Interdepartmental "Nanostructured Surfaces and Interfaces" NIS Centre, Via P. Giuria, 7, 10125 Torino, Italy
| | - Gaetano Donofrio
- University of Parma, Department of Veterinary Sciences, Via del Taglio, 10, 43126 Parma, Italy
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg Cedex, France
| |
Collapse
|
55
|
Fisicaro E, Contardi L, Compari C, Bacciottini F, Pongiluppi E, Viscardi G, Barbero N, Quagliotto P, Różycka-Roszak B. Solution Thermodynamics of highly fluorinated gemini bispyridinium surfactants for biomedical applications. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.07.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
56
|
Mekhail GM, Kamel AO, Awad GA, Mortada ND, Rodrigo RL, Spagnuolo PA, Wettig SD. Synthesis and evaluation of alendronate-modified gelatin biopolymer as a novel osteotropic nanocarrier for gene therapy. Nanomedicine (Lond) 2016; 11:2251-73. [PMID: 27527003 DOI: 10.2217/nnm-2016-0151] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To synthesize an osteotropic alendronate functionalized gelatin (ALN-gelatin) biopolymer for nanoparticle preparation and targeted delivery of DNA to osteoblasts for gene therapy applications. MATERIALS & METHODS Alendronate coupling to gelatin was confirmed using Fourier transform IR, (31)PNMR, x-ray diffraction (XRD) and differential scanning calorimetry. ALN-gelatin biopolymers prepared at various alendronate/gelatin ratios were utilized to prepare nanoparticles and were optimized in combination with DNA and gemini surfactant for transfecting both HEK-293 and MG-63 cell lines. RESULTS Gelatin functionalization was confirmed using the above methods. Uniform nanoparticles were obtained from a nanoprecipitation technique. ALN-gelatin/gemini/DNA complexes exhibited higher transfection efficiency in MG-63 osteosarcoma cell line compared with the positive control. CONCLUSION ALN-gelatin is a promising biopolymer for bone targeting of either small molecules or gene therapy applications.
Collapse
Affiliation(s)
- George M Mekhail
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.,Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Khalifa El-Maamon Street, Abbasiya Square, Cairo 11566, Egypt
| | - Amany O Kamel
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.,Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Khalifa El-Maamon Street, Abbasiya Square, Cairo 11566, Egypt
| | - Gehanne As Awad
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Khalifa El-Maamon Street, Abbasiya Square, Cairo 11566, Egypt
| | - Nahed D Mortada
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Khalifa El-Maamon Street, Abbasiya Square, Cairo 11566, Egypt
| | - Rowena L Rodrigo
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Paul A Spagnuolo
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Shawn D Wettig
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|