51
|
Romeo S, Dei Tos AP. Soft tissue tumors associated with EWSR1 translocation. Virchows Arch 2010; 456:219-34. [PMID: 19936782 DOI: 10.1007/s00428-009-0854-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 10/07/2009] [Accepted: 10/17/2009] [Indexed: 01/26/2023]
Abstract
The Ewing sarcoma breakpoint region 1 (EWSR1; also known as EWS) represents one of the most commonly involved genes in sarcoma translocations. In fact, it is involved in a broad variety of mesenchymal lesions which includes Ewing's sarcoma/peripheral neuroectodermal tumor, desmoplastic small round cell tumor,clear cell sarcoma, angiomatoid fibrous histiocytoma, extraskeletal myxoid chondrosarcoma, and a subset of myxoid liposarcoma. The fusion products between EWSR1 and partners usually results in fusion of the N-terminal transcription-activating domain of EWSR1 and the C-terminal DNA-binding domain of the fusion partner, eventually generating novel transcription factors. EWSR1 rearrangement can be visualized by the means of fluorescence in situ hybridization (FISH). As soft tissue sarcomas represent a diagnostically challenging group, FISH analysis is an extremely useful confirmatory diagnostic tool. However, as in most instances a split-apart approach is used, the results of molecular genetics must be evaluated in context with morphology.
Collapse
Affiliation(s)
- Salvatore Romeo
- Department of Pathology, General Hospital of Treviso, Piazza Ospedale 1, Treviso, Italy
| | | |
Collapse
|
52
|
Iwasaki H, Nabeshima K, Nishio J, Jimi S, Aoki M, Koga K, Hamasaki M, Hayashi H, Mogi A. Pathology of soft-tissue tumors: Daily diagnosis, molecular cytogenetics and experimental approach. Pathol Int 2009; 59:501-21. [DOI: 10.1111/j.1440-1827.2009.02401.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
53
|
Alvegård T, Hall KS, Bauer H, Rydholm A. The Scandinavian Sarcoma Group: 30 years' experience. ACTA ORTHOPAEDICA. SUPPLEMENTUM 2009; 80:1-104. [PMID: 19919379 DOI: 10.1080/17453690610046602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
54
|
Forni C, Minuzzo M, Virdis E, Tamborini E, Simone M, Tavecchio M, Erba E, Grosso F, Gronchi A, Aman P, Casali P, D'Incalci M, Pilotti S, Mantovani R. Trabectedin (ET-743) promotes differentiation in myxoid liposarcoma tumors. Mol Cancer Ther 2009; 8:449-57. [PMID: 19190116 DOI: 10.1158/1535-7163.mct-08-0848] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Differentiation is a complex set of events that can be blocked by rearrangements of regulatory genes producing fusion proteins with altered properties. In the case of myxoid liposarcoma (MLS) tumors, the causative abnormality is a fusion between the CHOP transcription factor and the FUS or EWS genes. CHOP belongs to and is a negative regulator of the large CAAT/enhancer binding protein family whose alpha, beta, and delta members are master genes of adipogenesis. Recent clinical data indicate a peculiar sensitivity of these tumors to the natural marine compound trabectedin. One hypothesis is that the activity of trabectedin is related to the inactivation of the FUS-CHOP oncogene. We find that trabectedin causes detachment of the FUS-CHOP chimera from targeted promoters. Reverse transcription-PCR and chromatin immunoprecipitation analysis in a MLS line and surgical specimens of MLS patients in vivo show activation of the CAAT/enhancer binding protein-mediated transcriptional program that leads to morphologic changes of terminal adipogenesis. The activity is observed in cells with type 1 but not type 8 fusions. Hence, the drug induces maturation of MLS lipoblasts in vivo by targeting the FUS-CHOP-mediated transcriptional block. These data provide a rationale for the specific activity of trabectedin and open the perspective of combinatorial treatments with drugs acting on lipogenic pathways.
Collapse
Affiliation(s)
- Claudia Forni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Daigeler A, Klein-Hitpass L, Stricker I, Müller O, Kuhnen C, Chromik AM, Steinstraesser L, Goertz O, Steinau HU, Lehnhardt M. Malignant fibrous histiocytoma--pleomorphic sarcoma, NOS gene expression, histology, and clinical course. A pilot study. Langenbecks Arch Surg 2009; 395:261-75. [PMID: 19159951 DOI: 10.1007/s00423-009-0465-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 01/12/2009] [Indexed: 01/14/2023]
Abstract
PURPOSE The new classification of malignant fibrous histiocytoma leaves only a small group of tumors without further line of differentiation, so-called pleomorphic sarcomas, not otherwise specified (NOS) as a pseudo-entity. This study focused on these tumors and analyzed the association of gene expression profiles to clinical outcome. MATERIALS AND METHODS Ten fresh samples of pleomorphic NOS sarcomas were evaluated histopathologically and by means of microarray analysis. Analysis of expression profiles was performed by clustering methods as well as by statistical analysis of primary vs recurrent tumors, irradiated vs nonirradiated tumors, tumors of patients above and below 60 years of age, male and female, and of tumors that developed metastatic or recurrent disease during the clinical course and those that did not. RESULTS Tumor clustering did not correlate to any histopathological or clinical finding. Detailed gene expression analysis showed a variety of genes whose upregulation (platelet-derived growth factor receptor alpha polypeptide, solute carrier family 39 member 14, solute carrier family 2 member 3, pleiotrophin, trophinin, pleckstrin and Sec7 domain containing 3, enolase 2, biglycan, SH3 and cysteine-rich domain, matrix metalloproteinases 16) and whose downregulation (tissue inhibitor of metalloproteinase 4, hairy/enhancer of split related with YRPW motif 2, protein tyrosine phosphatase receptor-type Z polypeptide 1, SH3 domain GRB2-like 2, microtubule-associated protein 7, potassium voltage-gated channel shaker-related subfamily member 1, RUN and FYVE domain containing 3, Sin3A-associated protein 18 kDa, proline-rich 4, calcium/calmodulin-dependent protein kinase ID, myeloid/lymphoid or mixed-lineage leukemia translocated to 3, insulin-like growth factor binding protein 5, nucleoside diphosphate-linked moiety X-type motif 9, NudC domain containing 3, imprinted in Prader-Willi syndrome, TAF6-like RNA polymerase II p300/CBP-associated factor 65 kDa, WD repeat and SOCS box-containing 2, adenosine diphosphate ribosylation factor 3, KRR1, proliferation-associated 2G4; CD36, complement component (3b/4b) receptor 1, solute carrier family 4 sodium bicarbonate cotransporter member 4, lipoprotein lipase (LPL), GATA binding protein 3, LPL, glutathione peroxidase 3, D: -aspartate oxidase, apolipoprotein E, sphingomyelin phosphodiesterase acid-like 3A) were associated with poor clinical outcome in terms of development of metastatic or recurrent disease. CONCLUSIONS The classification of these tumors may undergo further changes in the future. Gene expression profiling can provide additional information to categorize pleomorphic sarcoma (NOS) and reveal potential prognostic factors in this "entity."
Collapse
Affiliation(s)
- Adrien Daigeler
- Department of Plastic Surgery, Burn Center, Hand surgery, Sarcoma Reference Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Daigeler A, Klein-Hitpass L, Chromik MA, Müller O, Hauser J, Homann HH, Steinau HU, Lehnhardt M. Heterogeneous in vitro effects of doxorubicin on gene expression in primary human liposarcoma cultures. BMC Cancer 2008; 8:313. [PMID: 18959781 PMCID: PMC2585096 DOI: 10.1186/1471-2407-8-313] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 10/29/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Doxorubicin is considered one of the most potent established chemotherapeutics in the treatment of liposarcoma; however, the response rates usually below 30%, are still disappointing. This study was performed to identify gene expression changes in liposarcoma after doxorubicin treatment. METHODS Cells of 19 primary human liposarcoma were harvested intraoperatively and brought into cell culture. Cells were incubated with doxorubicin for 24 h, RNA was isolated and differential gene expression was analysed by the microarray technique. RESULTS A variety of genes involved in apoptosis were up and down regulated in different samples revealing a heterogeneous expression pattern of the 19 primary tumor cell cultures in response to doxorubicin treatment. However, more than 50% of the samples showed up-regulation of pro-apoptotic genes such as TRAIL Receptor2, CDKN1A, GADD45A, FAS, CD40, PAWR, NFKBIA, IER3, PSEN1, RIPK2, and CD44. The anti-apoptotic genes TNFAIP3, PEA15, Bcl2A1, NGFB, and BIRC3 were also up-regulated. The pro-apoptotic CD14, TIA1, and ITGB2 were down-regulated in more than 50% of the tumor cultures after treatment with doxorubicin, as was the antiapoptotic YWHAH. CONCLUSION Despite a correlation of the number of differentially regulated genes to the tumor grading and to a lesser extent histological subtype, the expression patterns varied strongly; however, especially among high grade tumors the responses of selected apoptosis genes were similar. The predescribed low clinical response rates of low grade liposarcoma to doxorubicin correspond to our results with only little changes on gene expression level and also divergent findings concerning the up- and down-regulation of single genes in the different sarcoma samples.
Collapse
Affiliation(s)
- Adrien Daigeler
- Department of Plastic Surgery, Burn Center, Hand surgery, Sarcoma Reference Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
The myxoid liposarcoma FUS-DDIT3 fusion oncoprotein deregulates NF-kappaB target genes by interaction with NFKBIZ. Oncogene 2008; 28:270-8. [PMID: 18850010 DOI: 10.1038/onc.2008.378] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
FUS (also called TLS), EWSR1 and TAF15 (also called TAF2N) are related genes involved in tumor type-specific fusion oncogenes in human malignancies. The FUS-DDIT3 fusion oncogene results from a t(12;16)(q13;p11) chromosome translocation and has a causative role in the initiation of myxoid/round cell liposarcomas (MLS/RCLS). The FUS-DDIT3 protein induces increased expression of the CAAT/enhancer-binding protein (C/EBP) and nuclear factor-kappaB (NF-kappaB)-controlled gene IL8, and the N-terminal FUS part is required for this activation. Chromatin immunoprecipitation analysis showed that FUS-DDIT3 binds the IL8 promoter. Expression studies of the IL8 promoter harboring a C/EBP-NF-kappaB composite site pinpointed the importance of NF-kappaB for IL8 expression in FUS-DDIT3-expressing cells. We therefore probed for possible interaction of FUS-DDIT3 with members of the NF-kappaB family. The nuclear factor NFKBIZ colocalizes with FUS-DDIT3 in nuclear structures, and immunoprecipitation experiments showed that FUS-DDIT3 binds the C-terminal of NFKBIZ. We also report that additional NF-kappaB-controlled genes are upregulated at the mRNA level in FUS-DDIT3-expressing cell lines and they can be induced by NFKBIZ. Taken together, the results indicate that FUS-DDIT3 deregulates some NF-kappaB-controlled genes through interactions with NFKBIZ. Similar mechanisms may be a part of the transformation process in other tumor types carrying FUS, EWSR1 and TAF15 containing fusion oncogenes.
Collapse
|
58
|
Andersson MK, Ståhlberg A, Arvidsson Y, Olofsson A, Semb H, Stenman G, Nilsson O, Aman P. The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response. BMC Cell Biol 2008; 9:37. [PMID: 18620564 PMCID: PMC2478660 DOI: 10.1186/1471-2121-9-37] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 07/11/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND FUS, EWS and TAF15 are structurally similar multifunctional proteins that were first discovered upon characterization of fusion oncogenes in human sarcomas and leukemias. The proteins belong to the FET (previously TET) family of RNA-binding proteins and are implicated in central cellular processes such as regulation of gene expression, maintenance of genomic integrity and mRNA/microRNA processing. In the present study, we investigated the expression and cellular localization of FET proteins in multiple human tissues and cell types. RESULTS FUS, EWS and TAF15 were expressed in both distinct and overlapping patterns in human tissues. The three proteins showed almost ubiquitous nuclear expression and FUS and TAF15 were in addition present in the cytoplasm of most cell types. Cytoplasmic EWS was more rarely detected and seen mainly in secretory cell types. Furthermore, FET expression was downregulated in differentiating human embryonic stem cells, during induced differentiation of neuroblastoma cells and absent in terminally differentiated melanocytes and cardiac muscle cells. The FET proteins were targeted to stress granules induced by heat shock and oxidative stress and FUS required its RNA-binding domain for this translocation. Furthermore, FUS and TAF15 were detected in spreading initiation centers of adhering cells. CONCLUSION Our results point to cell-specific expression patterns and functions of the FET proteins rather than the housekeeping roles inferred from earlier studies. The localization of FET proteins to stress granules suggests activities in translational regulation during stress conditions. Roles in central processes such as stress response, translational control and adhesion may explain the FET proteins frequent involvement in human cancer.
Collapse
Affiliation(s)
- Mattias K Andersson
- Lundberg Laboratory for Cancer Research, Department of Pathology, Sahlgrenska Academy at Göteborg University, Göteborg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Pérez-Mancera PA, Bermejo-Rodríguez C, Sánchez-Martín M, Abollo-Jiménez F, Pintado B, Sánchez-García I. FUS-DDIT3 prevents the development of adipocytic precursors in liposarcoma by repressing PPARgamma and C/EBPalpha and activating eIF4E. PLoS One 2008; 3:e2569. [PMID: 18596980 PMCID: PMC2434200 DOI: 10.1371/journal.pone.0002569] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 05/27/2008] [Indexed: 11/24/2022] Open
Abstract
Background FUS-DDIT3 is a chimeric protein generated by the most common chromosomal translocation t(12;16)(q13;p11) linked to liposarcomas, which are characterized by the accumulation of early adipocytic precursors. Current studies indicate that FUS-DDIT3- liposarcoma develops from uncommitted progenitors. However, the precise mechanism whereby FUS-DDIT3 contributes to the differentiation arrest remains to be elucidated. Methodology/Principal Findings Here we have characterized the adipocyte regulatory protein network in liposarcomas of FUS-DITT3 transgenic mice and showed that PPARγ2 and C/EBPα expression was altered. Consistent with in vivo data, FUS-DDIT3 MEFs and human liposarcoma cell lines showed a similar downregulation of both PPARγ2 and C/EBPα expression. Complementation studies with PPARγ but not C/EBPα rescued the differentiation block in committed adipocytic precursors expressing FUS-DDIT3. Our results further show that FUS-DDIT3 interferes with the control of initiation of translation by upregulation of the eukaryotic translation initiation factors eIF2 and eIF4E both in FUS-DDIT3 mice and human liposarcomas cell lines, explaining the shift towards the truncated p30 isoform of C/EBPα in liposarcomas. Suppression of the FUS-DDIT3 transgene did rescue this adipocyte differentiation block. Moreover, eIF4E was also strongly upregulated in normal adipose tissue of FUS-DDIT3 transgenic mice, suggesting that overexpression of eIF4E may be a primary event in the initiation of liposarcomas. Reporter assays showed FUS-DDIT3 is involved in the upregulation of eIF4E in liposarcomas and that both domains of the fusion protein are required for affecting eIF4E expression. Conclusions/Significance Taken together, this study provides evidence of the molecular mechanisms involve in the disruption of normal adipocyte differentiation program in liposarcoma harbouring the chimeric gene FUS-DDIT3.
Collapse
Affiliation(s)
- Pedro A. Pérez-Mancera
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/ Universidad de Salamanca, Salamanca, Spain
| | - Camino Bermejo-Rodríguez
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/ Universidad de Salamanca, Salamanca, Spain
| | - Manuel Sánchez-Martín
- Department of Medicine, University of Salamanca, Salamanca, Spain
- Genetically Engineered Mouse Facility, SEA, University of Salamanca, Salamanca, Spain
| | - Fernando Abollo-Jiménez
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/ Universidad de Salamanca, Salamanca, Spain
| | - Belén Pintado
- Genetically Engineered Mouse Facility, Centro Nacional de Biotecnología (CNB)- Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Isidro Sánchez-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/ Universidad de Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
60
|
Characterization of the 12q amplicons by high-resolution, oligonucleotide array CGH and expression analyses of a novel liposarcoma cell line. Cancer Lett 2008; 260:37-47. [DOI: 10.1016/j.canlet.2007.10.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/14/2007] [Accepted: 10/15/2007] [Indexed: 11/18/2022]
|
61
|
Fadlelmola FM, Zhou M, de Leeuw RJ, Dosanjh NS, Harmer K, Huntsman D, Lam WL, Banerjee D. Sub-megabase resolution tiling (SMRT) array-based comparative genomic hybridization profiling reveals novel gains and losses of chromosomal regions in Hodgkin Lymphoma and Anaplastic Large Cell Lymphoma cell lines. Mol Cancer 2008; 7:2. [PMID: 18179710 PMCID: PMC2254646 DOI: 10.1186/1476-4598-7-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 01/07/2008] [Indexed: 01/09/2023] Open
Abstract
Background Hodgkin lymphoma (HL) and Anaplastic Large Cell Lymphoma (ALCL), are forms of malignant lymphoma defined by unique morphologic, immunophenotypic, genotypic, and clinical characteristics, but both overexpress CD30. We used sub-megabase resolution tiling (SMRT) array-based comparative genomic hybridization to screen HL-derived cell lines (KMH2 and L428) and ALCL cell lines (DEL and SR-786) in order to identify disease-associated gene copy number gains and losses. Results Significant copy number gains and losses were observed on several chromosomes in all four cell lines. Assessment of copy number alterations with 26,819 DNA segments identified an average of 20 genetic alterations. Of the recurrent minimally altered regions identified, 11 (55%) were within previously published regions of chromosomal alterations in HL and ALCL cell lines while 9 (45%) were novel alterations not previously reported. HL cell lines L428 and KMH2 shared gains in chromosome cytobands 2q23.1-q24.2, 7q32.2-q36.3, 9p21.3-p13.3, 12q13.13-q14.1, and losses in 13q12.13-q12.3, and 18q21.32-q23. ALCL cell lines SR-786 and DEL, showed gains in cytobands 5p15.32-p14.3, 20p12.3-q13.11, and 20q13.2-q13.32. Both pairs of HL and ALCL cell lines showed losses in 18q21.32-18q23. Conclusion This study is considered to be the first one describing HL and ALCL cell line genomes at sub-megabase resolution. This high-resolution analysis allowed us to propose novel candidate target genes that could potentially contribute to the pathogenesis of HL and ALCL. FISH was used to confirm the amplification of all three isoforms of the trypsin gene (PRSS1/PRSS2/PRSS3) in KMH2 and L428 (HL) and DEL (ALCL) cell lines. These are novel findings that have not been previously reported in the lymphoma literature, and opens up an entirely new area of research that has not been previously associated with lymphoma biology. The findings raise interesting possibilities about the role of signaling pathways triggered by membrane associated serine proteases in HL and aggressive NHL, similar to those described in epithelial tumors.
Collapse
Affiliation(s)
- Faisal M Fadlelmola
- Centre for Translational and Applied Genomics (CTAG), Department of Pathology and Laboratory Medicine, British Columbia Cancer Agency, Vancouver Cancer Centre, Vancouver, BC, V5Z 4E6, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Kopp HG, Patel S, Brücher B, Hartmann JT. Potential combination chemotherapy approaches for advanced adult-type soft-tissue sarcoma. Am J Clin Dermatol 2008; 9:207-17. [PMID: 18572972 DOI: 10.2165/00128071-200809040-00001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Soft-tissue sarcomas (STS) include a spectrum of histologically and clinically different tumors. Patients with these tumors are typically relatively young and the course of disease is characterized by early metastasis as well as limited response to chemotherapy. However, a few subtypes, such as small round-cell tumors and rhabdomyosarcoma (other than pleomorphic), are considered chemotherapy sensitive. In addition, reflecting successful translational research of recent years, gastrointestinal stromal tumor and dermatofibrosarcoma protuberans have become model diseases for targeted oncologic therapy. We summarize current treatment options for metastatic STS, including established first-line chemotherapy approaches, mainly with anthracyclines and/or ifosfamide and second-line treatment choices beyond anthracyclines. Until only a few years ago, treatment choices for metastatic STS were easy to review because of the very limited number of active compounds available. However, with the advent of novel therapeutic strategies such as the anti-angiogenic approach and a multitude of novel compounds available both outside and within clinical studies, it has potentially become more difficult to keep track of currently available treatment options for STS and their clinical safety and efficacy. In this practice-oriented article, we therefore review treatment goals in advanced STS and provide an overview of compounds with proven activity in this setting. Anthracyclines with or without ifosfamide are still considered standard of care for most STS subtypes, especially for high-grade tumors. There is no evidence-based recommendation regarding use of second-line treatment options. However, a number of established compounds, including dacarbazine/temozolomide, gemcitabine, taxanes, trofosfamide, DNA topoisomerase I inhibitors, DNA minor groove binders, and bendamustine have shown activity. Recently, trabectedin, a DNA minor groove binder initially isolated from a sea sponge, has proven effective and received European approval for use in treatment-refractory STS. In addition, novel compounds such as bevacizumab, multi-tyrosine kinase inhibitors, mammalian target of rapamycin inhibitors, imatinib, and the thrombospondin agonist ABT 510 represent attractive partners for the above-mentioned cytostatic agents, or may even be effective single agents in the clinically advanced setting. Novel combinations are being evaluated in clinical studies. In order to be successful, it may be necessary to combine not only different compounds but also different targets beyond the proliferation machinery of sarcoma cells such as tumor angiogenesis, the tumor stromal compartment, or tumor cell oncogene products.
Collapse
Affiliation(s)
- Hans-Georg Kopp
- Medical Center II, Department of Oncology, Hematology, Rheumatology, Immunology, and Pulmonology, South West German Comprehensive Cancer Center, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | | | | | | |
Collapse
|
63
|
Bode-Lesniewska B, Frigerio S, Exner U, Abdou MT, Moch H, Zimmermann DR. Relevance of translocation type in myxoid liposarcoma and identification of a novel EWSR1-DDIT3 fusion. Genes Chromosomes Cancer 2007; 46:961-71. [PMID: 17647282 DOI: 10.1002/gcc.20478] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The clinical course of myxoid/round cell liposarcoma (MRCL) is characterized by frequent local recurrences and metastases at unusual sites. MRCLs carry specific translocations, t(12;16) or rarely t(12;22), linking the FUS or the EWSR1 gene with the DDIT3 gene, respectively. Nine FUS/DDIT3 and three EWSR1/DDIT3 variants of fusion transcripts have been described thus far. In search of prognostic markers for MRCL, we analyzed the translocation types of 31 patients and related them to the event free and overall survival. Using break-apart FISH and RT-PCR combined with DNA sequencing, we detected FUS/DDIT3 fusions in 30 sarcomas, while an EWSR1/DDIT3 translocation was identified in one tumor. FUS/DDIT3 type II (exons 5-2) was most commonly detected (20 cases), followed by type I (7-2) (7 cases) and type III (8-2) (3 cases). A single tumor carrying a t(12;22) translocation expressed a hitherto unknown EWSR1-DDIT3 fusion transcript (13-3) linking the complete RNA-binding domain of EWSR1 with a short piece of the 5'-UTR and the entire open reading frame of the DDIT3 gene. Interestingly, five of six patients with type I (7-2) FUS/DDIT3 fusions displayed local recurrences and/or metastatic spread within the first 3 years, generally requiring chemotherapeutical treatment (median disease-free survival 17 months). In contrast, 9 of 13 patients with type II FUS/DDIT3 translocations remained at 3 years disease-free (median disease-free survival 75 months). Since the total number of patients is still limited, further studies are required to verify a putative association of type I FUS/DDIT3-fusion transcripts with a prognosis of MRCL.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Base Sequence
- Calmodulin-Binding Proteins/genetics
- Chromosomes, Human, Pair 12
- Chromosomes, Human, Pair 16
- Chromosomes, Human, Pair 22
- DNA Primers
- Female
- Humans
- In Situ Hybridization, Fluorescence
- Liposarcoma, Myxoid/genetics
- Male
- Middle Aged
- Oncogene Proteins, Fusion/genetics
- Polymerase Chain Reaction
- RNA-Binding Protein EWS
- RNA-Binding Proteins/genetics
- Recombinant Fusion Proteins/genetics
- Repressor Proteins/genetics
- Transcription Factor CHOP/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- B Bode-Lesniewska
- Institute of Surgical Pathology, University Hospital, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
64
|
Abstract
When connective tissue undergoes malignant transformation, glioblastomas and sarcomas arise. However, the ancient biochemical mechanisms, which are now operational in sarcomas distorted by mutations and gene fusions in misaligned chromosomes, were originally acquired by those cells that emerged during the Cambrian explosion. Preserved throughout evolution up to the genus Homo, these mechanisms dictate the apoptosis- and senescence-resistant immortality of malignant cells. A 'retroviral paradox' distinguishes human sarcomas from those of the animal world. In contrast to the retrovirally induced sarcomatous transformation of animal (avian, murine, feline and simian) cells, human sarcomas have so far failed to yield a causative retroviral isolate. However, the proto-oncogenes/oncogenes transduced from their host cells by retroviruses of animals are the same that are active in human sarcomas. Since the encoded oncoproteins arise after birth, they are recognized frequently by the immune system of the host. Immune lymphocytes that kill autologous sarcoma cells in vitro commonly fail to do so in vivo. Sarcoma vaccines generate immune T- and natural killer cell reactions; even when vaccinated patients do not show a clinical response, their tumors become more sensitive to chemotherapy. The aim of this review is to lay a solid molecular biological foundation for the conclusion that targeting the sarcoma oncogenes will result in regression of the disease.
Collapse
Affiliation(s)
- Joseph G Sinkovics
- Cancer Institute of St. Joseph's Hospital Affiliated with the HL Moffitt Cancer Center, The University of South Florida College of Medicine, Department of Medical Microbiology and Immunology, Tampa, Florida, USA.
| |
Collapse
|