Wang J, Chen L, Li D, Yin Y, Wang X, Li P, Dangott LJ, Hu W, Wu G. Intrauterine growth restriction affects the proteomes of the small intestine, liver, and skeletal muscle in newborn pigs.
J Nutr 2008;
138:60-6. [PMID:
18156405 DOI:
10.1093/jn/138.1.60]
[Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Efficiency of nutrient utilization is high in neonates with normal birth weights but is reduced in those with intrauterine growth restriction (IUGR). However, the underlying mechanisms are largely unknown. This study was conducted with the piglet model and proteomics technology to test the hypothesis that IUGR affects expression of key proteins that regulate growth and development of the small intestine, liver, and muscle, the major organs involved in the digestion, absorption, and metabolism of dietary nutrients. Jejunum, liver, and gastrocnemius muscle were obtained from IUGR and normal birth-weight piglets at birth for analysis of proteomes using the 2-dimensional-PAGE MS technology. The results indicate that IUGR decreased the levels of proteins that regulate immune function (immunoglobulins and annexin A1), oxidative defense (peroxiredoxin 1, transferrin, and zeta-crystallin), intermediary metabolism (creatine kinase, alcohol dehydrogenase, L-lactate dehydrogenase, prostaglandin F synthase, apolipoprotein AI, catecho O-methyltransferase, and phosphoglycerate kinase 1), protein synthesis (eukaryotic translation initiation factor-3), and tissue growth (beta-actin, desmin, and keratin 10) in a tissue-specific manner. In addition, IUGR increased the levels of proteins that are involved in proteolysis (proteasome alpha-5 and alpha-1 subunits), response to oxidative stress (scavenger-receptor protein and alpha-1 acid glycoprotein), and ATP hydrolysis (F1-ATPase). These novel findings suggest that cellular signaling defects, redox imbalance, reduced protein synthesis, and enhanced proteolysis may be the major mechanisms responsible for abnormal absorption and metabolism of nutrients, as well as reduced growth and impaired development of the small intestine, liver, and muscle in IUGR neonates.
Collapse