51
|
Abstract
Human cytomegalovirus (HCMV) is a member of the Herpesviridae family and is recognized as a significant pathogen to certain subgroups of the human population. It has become apparent that HCMV manipulation of the host cell cycle as well as the immune response promotes the replication and propagation of the virus. The ability of HCMV to modulate components of the host immune system and the response to infection most likely contributes to the pathology associated with this virus. This review will address the mechanisms HCMV has adapted to modulate the cell cycle to promote viral replication as well as the different ways it can prevent the "death" of an infected cell.
Collapse
Affiliation(s)
- Jonathan P Castillo
- Program in Immunology and Virology, Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | |
Collapse
|
52
|
Patrone M, Percivalle E, Secchi M, Fiorina L, Pedrali-Noy G, Zoppé M, Baldanti F, Hahn G, Koszinowski UH, Milanesi G, Gallina A. The human cytomegalovirus UL45 gene product is a late, virion-associated protein and influences virus growth at low multiplicities of infection. J Gen Virol 2003; 84:3359-3370. [PMID: 14645917 DOI: 10.1099/vir.0.19452-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) encodes a protein related to the large (R1) subunit of ribonucleotide reductase (RR), but does not encode the corresponding small (R2) subunit. The R1 homologue, UL45, lacks many catalytic residues, and its impact on deoxyribonucleotide (dNTP) production remains unknown. Here, UL45 is shown to accumulate at late stages of infection and to be a virion tegument protein. To study UL45 function in its genome context, UL45 was disrupted by transposon insertion. The UL45-knockout (UL45-KO) mutant exhibited a growth defect in fibroblasts at a low m.o.i. and also a cell-to-cell spread defect. This did not result from a reduced dNTP supply because dNTP pools were unchanged in resting cells infected with the mutant virus. Irrespective of UL45 expression, all cellular RR subunits - S-phase RR subunits, and the p53-dependent p53R2 - were induced by infection. p53R2 was targeted to the infected cell nucleus, suggesting that HCMV diverts a mechanism normally activated by DNA damage response. Cells infected with the UL45-KO mutant were moderately sensitized to Fas-induced apoptosis relative to those infected with the parental virus. Together with the report on the UL45-KO endotheliotropic HCMV mutant (Hahn et al., J Virol 76, 9551-9555, 2002), these data suggest that UL45 does not share the prominent antiapototic role attributed to the mouse cytomegalovirus homologue M45 (Brune et al., Science 291, 303-305, 2001).
Collapse
Affiliation(s)
- Marco Patrone
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Elena Percivalle
- Servizio di Virologia, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Massimiliano Secchi
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Loretta Fiorina
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Guido Pedrali-Noy
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Monica Zoppé
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Fausto Baldanti
- Servizio di Virologia, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gabriele Hahn
- Max von Pettenkofer-Institut, Lehrstuhl für Virologie, LMU-München, München, Germany
| | - Ulrich H Koszinowski
- Max von Pettenkofer-Institut, Lehrstuhl für Virologie, LMU-München, München, Germany
| | - Gabriele Milanesi
- Department of Medicine and Surgery, San Paolo Hospital, University of Milano, via A. di Rudinı ` 8, I-20142 Milano, Italy
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Andrea Gallina
- Department of Medicine and Surgery, San Paolo Hospital, University of Milano, via A. di Rudinı ` 8, I-20142 Milano, Italy
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| |
Collapse
|
53
|
Abstract
Human cytomegalovirus (HCMV), a betaherpesvirus, represents the major infectious cause of birth defects, as well as an important pathogen for immunocompromised individuals. The viral nucleocapsid containing a linear double-stranded DNA of 230 kb is surrounded by a proteinaceous tegument, which is itself enclosed by a loosely applied lipid bilayer. Expression of the HCMV genome is controlled by a cascade of transcriptional events that leads to the synthesis of three categories of viral proteins designated as immediate-early, early, and late. Clinical manifestations can be seen following primary infection, reinfection, or reactivation. About 10% of infants are infected by the age of 6 months following transmission from their mothers via the placenta, during delivery, or by breastfeeding. HCMV is a significant post-allograft pathogen and contributes to graft loss independently from graft rejection. Histopathologic examination of necropsy tissues demonstrates that the virus enters via the epithelium of the upper alimentary, respiratory, or genitourinary tracts. Hematogenous spreading is typically followed by infection of ductal epithelial cells. Infections are kept under control by the immune system. However, total HCMV clearance is rarely achieved, and the viral genome remains at selected sites in a latent state. Virological and molecular detection of HCMV, as well as serological demonstration of a specific immune response, are used for diagnosis. Treatment of HCMV infections is difficult because there are few options. The presently available drugs produced a significant clinical improvement, but suffer from poor oral bioavailability, low potency, development of resistance in clinical practice, and dose-limiting toxicities.
Collapse
Affiliation(s)
- Santo Landolfo
- Department of Public Health and Microbiology, University of Turin, Via Santena 9, 10126 Turin, Italy.
| | | | | | | |
Collapse
|
54
|
Minisini R, Tulone C, Lüske A, Michel D, Mertens T, Gierschik P, Moepps B. Constitutive inositol phosphate formation in cytomegalovirus-infected human fibroblasts is due to expression of the chemokine receptor homologue pUS28. J Virol 2003; 77:4489-501. [PMID: 12663756 PMCID: PMC152109 DOI: 10.1128/jvi.77.8.4489-4501.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An open reading frame (ORF), US28, with homology to mammalian chemokine receptors has been identified in the genome of human cytomegalovirus (HCMV). Its protein product, pUS28, has been shown to bind several human CC chemokines, including RANTES, MCP-1, and MIP-1 alpha, and the CX(3)C chemokine fractalkine with high affinity. Addition of CC chemokines to cells expressing pUS28 was reported to cause a pertussis toxin-sensitive increase in the concentration of cytosolic free Ca(2+). Recently, pUS28 was shown to mediate constitutive, ligand-independent, and pertussis toxin-insensitive activation of phospholipase C via G(q/11)-dependent signaling pathways in transiently transfected COS-7 cells. Since these findings are not easily reconciled with the former observations, we analyzed the role of pUS28 in mediating CC chemokine activation of pertussis toxin-sensitive G proteins in cell membranes and phospholipase C in intact cells. The transmembrane signaling functions of pUS28 were studied in HCMV-infected cells rather than in cDNA-transfected cells. Since DNA sequence analysis of ORF US28 of different laboratory and clinical strains had revealed amino acid sequence differences in the amino-terminal portion of pUS28, we compared two laboratory HCMV strains, AD169 and Toledo, and one clinical strain, TB40/E. The results showed that infection of human fibroblasts with all three HCMV strains led to a vigorous, constitutively enhanced formation of inositol phosphates which was insensitive to pertussis toxin. This effect was critically dependent on the presence of the US28 ORF in the HCMV genome but was independent of the amino acid sequence divergence of the three HCMV strains investigated. The constitutive activity of pUS28 is not explained by expression of pUS28 at high density in HCMV-infected cells. The pUS28 ligands RANTES and MCP-1 failed to stimulate binding of guanosine 5'-O-(3-[(35)S]thiotriphosphate to membranes of HCMV-infected cells and did not enhance constitutive activation of phospholipase C in intact HCMV-infected cells. These findings raise the possibility that the effects of CC chemokines and pertussis toxin on G protein-mediated transmembrane signaling previously observed in HCMV-infected cells are either independent of or not directly mediated by the protein product of ORF US28.
Collapse
|
55
|
Kalejta RF, Shenk T. Proteasome-dependent, ubiquitin-independent degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp71 protein. Proc Natl Acad Sci U S A 2003; 100:3263-8. [PMID: 12626766 PMCID: PMC152280 DOI: 10.1073/pnas.0538058100] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2002] [Indexed: 12/24/2022] Open
Abstract
Most of the substrates degraded by the proteasome are marked with polyubiquitin chains. However, there are a limited number of examples of nonubiquitinated proteins that are degraded by the proteasome. Here, we describe the degradation of the retinoblastoma family of tumor suppressor proteins by the proteasome in the absence of polyubiquitination. The retinoblastoma protein (p105), p107, and p130 are each targeted for degradation by the pp71 protein, which is encoded by the UL82 gene of human cytomegalovirus. It functions to direct their degradation in the absence of other viral proteins. While the pp71-mediated degradation of the retinoblastoma family of proteins requires proteasome function, it occurs without the attachment of ubiquitin to the substrates and in the absence of a functioning ubiquitin-conjugation system.
Collapse
Affiliation(s)
- Robert F Kalejta
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
56
|
Kalejta RF, Bechtel JT, Shenk T. Human cytomegalovirus pp71 stimulates cell cycle progression by inducing the proteasome-dependent degradation of the retinoblastoma family of tumor suppressors. Mol Cell Biol 2003; 23:1885-95. [PMID: 12612064 PMCID: PMC149485 DOI: 10.1128/mcb.23.6.1885-1895.2003] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The oncoproteins of the DNA tumor viruses, adenovirus E1A, simian virus 40 T antigen, and papillomavirus E7, each interact with the retinoblastoma family of tumor suppressors, leading to cell cycle stimulation, apoptosis induction, and cellular transformation. These proteins utilize a conserved LXCXE motif, which is also found in cellular proteins, to target the retinoblastoma family. Here, we describe a herpesvirus protein that shares a subset of the properties of the DNA tumor virus oncoproteins but maintains important differences as well. The human cytomegalovirus pp71 protein employs an LXCXD motif to attack the retinoblastoma family members and induce DNA synthesis in quiescent cells. pp71 binds to and induces the degradation of the hypophosphorylated forms of the retinoblastoma protein and its family members p107 and p130 in a proteasome-dependent manner. However, pp71 does not induce apoptosis and fails to transform cells. Thus, the similarities and differences in comparison to E1A, T antigen, and E7 make pp71 an interesting new tool with which to further dissect the role of the retinoblastoma/E2F pathway in cellular growth control and carcinogenesis.
Collapse
Affiliation(s)
- Robert F Kalejta
- Molecular Biology Department, Princeton University, Princeton, NJ 08544-1014, USA
| | | | | |
Collapse
|
57
|
Kalejta RF, Shenk T. The human cytomegalovirus UL82 gene product (pp71) accelerates progression through the G1 phase of the cell cycle. J Virol 2003; 77:3451-9. [PMID: 12610120 PMCID: PMC149542 DOI: 10.1128/jvi.77.6.3451-3459.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
As viruses are reliant upon their host cell to serve as proper environments for their replication, many have evolved mechanisms to alter intracellular conditions to suit their own needs. For example, human cytomegalovirus induces quiescent cells to enter the cell cycle and then arrests them in late G(1), before they enter the S phase, a cell cycle compartment that is presumably favorable for viral replication. Here we show that the protein product of the human cytomegalovirus UL82 gene, pp71, can accelerate the movement of cells through the G(1) phase of the cell cycle. This activity would help infected cells reach the late G(1) arrest point sooner and thus may stimulate the infectious cycle. pp71 also induces DNA synthesis in quiescent cells, but a pp71 mutant protein that is unable to induce quiescent cells to enter the cell cycle still retains the ability to accelerate the G(1) phase. Thus, the mechanism through which pp71 accelerates G(1) cell cycle progression appears to be distinct from the one that it employs to induce quiescent cells to exit G(0) and subsequently enter the S phase.
Collapse
Affiliation(s)
- Robert F Kalejta
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | |
Collapse
|
58
|
Wiebusch L, Asmar J, Uecker R, Hagemeier C. Human cytomegalovirus immediate-early protein 2 (IE2)-mediated activation of cyclin E is cell-cycle-independent and forces S-phase entry in IE2-arrested cells. J Gen Virol 2003; 84:51-60. [PMID: 12533700 DOI: 10.1099/vir.0.18702-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In human cytomegalovirus (HCMV) infection, the isolated expression of the viral immediate-early protein 2 (IE2) 86 kDa regulatory protein coincides with an up-regulation of cyclin E gene expression, both in fibroblasts and U373 cells. Since IE2 also interferes with cell-cycle progression, it is unclear whether IE2 is a genuine activator of cyclin E or whether IE2-arrested cells contain elevated levels of cyclin E primarily as a consequence of them being arrested at the beginning of S phase. It is important to distinguish between these possibilities in order to define and analyse at a mechanistic level the proliferative and anti-proliferative capacities of IE2. Here we have shown that IE2 can activate cyclin E independent of the cell-cycle state and can therefore function as a genuine activator of cyclin E gene expression. A mutant of IE2 that failed to activate cyclin E also failed to promote G1/S transition. Instead, cells became arrested in G1. S-phase entry could be rescued in these cells by co-expression of cyclin E, but these cells still arrested in early S phase, as is the case with wild-type IE2. Our data demonstrate that IE2 can promote two independent cell-cycle functions at the same time: (i) the induction of G1/S transition via up-regulation of cyclin E, and (ii) a block in cell-cycle progression in early S phase. In G1, the proliferative activity of IE2 appears to be dominant over the anti-proliferative force, whereas after G1/S transition, this situation is reversed.
Collapse
Affiliation(s)
- Lüder Wiebusch
- Department of Pediatrics, Laboratory for Molecular Biology, Charité, CCM-Ziegelstr. 5-9, Humboldt-University, Berlin, Germany
| | - Jasmin Asmar
- Department of Pediatrics, Laboratory for Molecular Biology, Charité, CCM-Ziegelstr. 5-9, Humboldt-University, Berlin, Germany
| | - Ralf Uecker
- Department of Pediatrics, Laboratory for Molecular Biology, Charité, CCM-Ziegelstr. 5-9, Humboldt-University, Berlin, Germany
| | - Christian Hagemeier
- Department of Pediatrics, Laboratory for Molecular Biology, Charité, CCM-Ziegelstr. 5-9, Humboldt-University, Berlin, Germany
| |
Collapse
|
59
|
Wiebusch L, Uecker R, Hagemeier C. Human cytomegalovirus prevents replication licensing by inhibiting MCM loading onto chromatin. EMBO Rep 2003; 4:42-6. [PMID: 12524519 PMCID: PMC1315807 DOI: 10.1038/sj.embor.embor707] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2002] [Revised: 10/13/2002] [Accepted: 11/04/2002] [Indexed: 12/11/2022] Open
Abstract
To allow DNA replication only once per cell cycle, origins of replication are reactivated ('licensed') during each G1 phase. Licensing is facilitated by assembly of the pre-replicative complex (pre-RC) at origins that concludes with loading the mini-chromosome maintenance (MCM) complex onto chromatin. Here we show that a virus exploits pre-RC assembly to selectively inhibit cellular DNA replication. Infection of quiescent primary fibroblasts with human cytomegalovirus (HCMV) induces all pre-RC factors. Although this is sufficient to assemble the MCM-loading factors onto chromatin, as it is in serum-stimulated cells, the virus inhibits loading of the MCM complex itself, thereby prematurely abrogating replication licensing. This provides a new level of control in pre-RC assembly and a mechanistic rationale for the unusual HCMV-induced G1 arrest that occurs despite the activation of the cyclin E-dependent transcription programme. Thus, this particularly large virus might thereby secure the supply with essential replication factors but omit competitive cellular DNA replication.
Collapse
Affiliation(s)
- Lüder Wiebusch
- Department of Pediatrics, Laboratory for Molecular Biology, Charité CCM-Ziegelstrasse, 5–9, Humboldt University 10098 Berlin, Germany
| | - Ralf Uecker
- Department of Pediatrics, Laboratory for Molecular Biology, Charité CCM-Ziegelstrasse, 5–9, Humboldt University 10098 Berlin, Germany
| | - Christian Hagemeier
- Department of Pediatrics, Laboratory for Molecular Biology, Charité CCM-Ziegelstrasse, 5–9, Humboldt University 10098 Berlin, Germany
- Tel: +49 30 450 566041; Fax: +49 30 450 566913;
| |
Collapse
|
60
|
Noris E, Zannetti C, Demurtas A, Sinclair J, De Andrea M, Gariglio M, Landolfo S. Cell cycle arrest by human cytomegalovirus 86-kDa IE2 protein resembles premature senescence. J Virol 2002; 76:12135-48. [PMID: 12414954 PMCID: PMC136868 DOI: 10.1128/jvi.76.23.12135-12148.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary human embryo lung fibroblasts and adult diploid fibroblasts infected by the human cytomegalovirus (HCMV) display beta-galactosidase (beta-Gal) activity at neutral pH (senescence-associated beta-Gal [SA-beta-Gal] activity) and overexpression of the plasminogen activator inhibitor type 1 (PAI-1) gene, two widely recognized markers of the process designated premature cell senescence. This activity is higher when cells are serum starved for 48 h before infection, a process that speeds and facilitates HCMV infection but that is insufficient by itself to induce senescence. Fibroblasts infected by HCMV do not incorporate bromodeoxyuridine, a prerequisite for the formal definition of senescence. At the molecular level, cells infected by HCMV, beside the accumulation of large amounts of the cell cycle regulators p53 and pRb, the latter in its hyperphosphorylated form, display a strong induction of the cyclin-dependent kinase inhibitor (cdki) p16(INK4a), a direct effector of the senescence phenotype in fibroblasts, and a decrease of the cdki p21(CIP1/WAF). Finally, a replicative senescence state in the early phases of infection significantly increased the number of cells permissive to virus infection and enhanced HCMV replication. HCMV infection assays carried out in the presence of phosphonoformic acid, which inhibits the virus DNA polymerase and the expression of downstream genes, indicated that immediate-early and/or early (alpha) genes are sufficient for the induction of SA-beta-Gal activity. When baculovirus vectors expressing HCMV IE1-72 or IE2-86 proteins were inoculated into fibroblasts, the increase of p16(INK4a) (observed predominantly with IE2-86) was similar to that observed with the whole virus, as was the induction of SA-beta-Gal activity, suggesting that the viral IE2 gene leads infected cells into senescence. Altogether our results demonstrate for the first time that HCMV, after arresting the cell cycle and inhibiting apoptosis, triggers the cellular senescence program, probably through the p16(INK4a) and p53 pathways.
Collapse
Affiliation(s)
- Emanuela Noris
- Department of Public Health and Microbiology, University of Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
Human cytomegalovirus (CMV) remains the major infectious cause of birth defects as well as an important opportunistic pathogen. Individuals infected with CMV mount a strong immune response that suppresses persistent viral replication and maintains life-long latency. Loss of immune control opens the way to virus reactivation and disease. The large number of immunomodulatory functions encoded by CMV increases the efficiency of infection, dissemination, reactivation and persistent infection in hosts with intact immune systems and could contribute to virulence in immunocompromised hosts. These functions modulate both the innate and adaptive arms of the immune response and appear to target cellular rather than humoral responses preferentially. CMV encodes a diverse arsenal of proteins focused on altering and/or mimicking: (1) classical and non-classical major histocompatibility complex (MHC) protein function; (2) leukocyte migration, activation and cytokine responses; and (3) host cell susceptibility to apoptosis. Evidence that the host evolves mechanisms to counteract virus immune modulation is also accumulating. Although immune evasion is certainly one clear goal of the virus, the pro-inflammatory impact of certain viral functions suggests that increased inflammation benefits viral dissemination. The ability of such viral functions to successfully 'face off' against the host immune system ensures the success of this pathogen in the human population and could provide key insights into disease mechanisms.
Collapse
Affiliation(s)
- Edward S Mocarski
- Department of Microbiology and Immunology, D347 Fairchild Science Building, 299 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305-5124, USA.
| |
Collapse
|
62
|
Jarskaja OO, Medzhidova AA, Fedorova NE, Kusch AA, Zatsepina OV. Immunocytochemical reorganization of the nucleolus in human embryo fibroblasts infected with cytomegalovirus in vitro. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2002; 387:589-92. [PMID: 12577646 PMCID: PMC7087792 DOI: 10.1023/a:1021770314862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- O O Jarskaja
- Belozerskii Institute of Physicochemical Biology, Moscow State University, Vorob'evy gory, Moscow, 119899 Russia
| | | | | | | | | |
Collapse
|
63
|
Abstract
Background A possible association between human cytomegalovirus (HCMV) infection and colorectal cancer progression has been inferred by the identification in tumour tissues of HCMV antigens and specific viral DNA or RNA sequences. To further investigate the relationship between HCMV and colorectal cancers we developed qualitative and quantitative PCR assay to detect HCMV DNA in 56 formalin-fixed paraffin-embedded (FFPE) tissue samples from patients belonging to 4 different histological phenotypes: adenoma; poorly, moderately and well differentiated adenocarcinomas. Results Of the 56 FFPE tested tissue samples, 6 (11%) were positive for HCMV nested PCR amplification, and more precisely 1 (5%) of 20 cases of adenoma and 5 (21%) of 24 cases of moderately differentiated adenocarcinoma. No PCR positivity was obtained in samples from well and poorly differentiated adenocarcinomas. Conclusion Our observations suggest that there is no evidence of a direct association between HCMV and colorectal cancer. Moreover, the results obtained are not supportive of a causal role of HCMV in the processes of carcinogenesis and/or progression of colorectal cancer. However, the fact that the virus may present a "hit and run" like-mechanism and HCMV can thus only be detectable at a particular stage of a processing adenocarcinoma, suggests that a significant number of colorectal cancers might have been the subject of HCMV infection that could contribute to trigger the oncogenic differentiation. Our analysis does not exclude the possibility of HCMV infection subsequent viral clearance.
Collapse
|