51
|
Oei AL, Ahire VR, van Leeuwen CM, Ten Cate R, Stalpers LJA, Crezee J, Kok HP, Franken NAP. Enhancing radiosensitisation of BRCA2-proficient and BRCA2-deficient cell lines with hyperthermia and PARP1-i. Int J Hyperthermia 2017; 34:39-48. [PMID: 28540821 DOI: 10.1080/02656736.2017.1324642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Poly(ADP-ribose)polymerase1 (PARP1) is an important enzyme in regulating DNA replication. Inhibition of PARP1 can lead to collapsed DNA forks which subsequently causes genomic instability, making DNA more susceptible in developing fatal DNA double strand breaks. PARP1-induced DNA damage is generally repaired by homologous recombination (HR), in which BRCA2 proteins are essential. Therefore, BRCA2-deficient tumour cells are susceptible to treatment with PARP1-inhibitors (PARP1-i). Recently, BRCA2 was shown to be down-regulated by hyperthermia (HT) temporarily, and this consequently inactivated HR for several hours. In this study, we investigated whether HT exclusively interferes with HR by analysing thermal radiosensitisation of BRCA2-proficient and deficient cells. After elucidating the equitoxicity of PARP1-i on BRCA2-proficient and deficient cells, we studied the cell survival, apoptosis, DNA damage (γ-H2AX foci and comet assay) and cell cycle distribution after different treatments. PARP1-i sensitivity strongly depends on the BRCA2 status. BRCA2-proficient and deficient cells are radiosensitised by HT, indicating that HT does not exclusively act by inhibition of HR. In all cell lines, the addition of HT to radiotherapy and PARP1-i resulted in the lowest cell survival, the highest levels of DNA damage and apoptotic levels compared to duo-modality treatments. Concluding, HT not only inhibits HR, but also has the capability of radiosensitising BRCA2-deficient cells. Thus, in case of BRCA2-mutation carriers, combining HT with PARP1-i may boost the treatment efficacy. This combination therapy would be effective for all patients with PARP1-i regardless of their BRCA status.
Collapse
Affiliation(s)
- Arlene L Oei
- a Laboratory for Experimental Oncology and Radiobiology (LEXOR) , Center for Experimental and Molecular Medicine , Amsterdam , The Netherlands.,b Department of Radiotherapy , University of Amsterdam , Amsterdam , The Netherlands
| | - Vidhula R Ahire
- a Laboratory for Experimental Oncology and Radiobiology (LEXOR) , Center for Experimental and Molecular Medicine , Amsterdam , The Netherlands.,b Department of Radiotherapy , University of Amsterdam , Amsterdam , The Netherlands
| | - C M van Leeuwen
- c Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Rosemarie Ten Cate
- a Laboratory for Experimental Oncology and Radiobiology (LEXOR) , Center for Experimental and Molecular Medicine , Amsterdam , The Netherlands.,b Department of Radiotherapy , University of Amsterdam , Amsterdam , The Netherlands
| | - Lukas J A Stalpers
- a Laboratory for Experimental Oncology and Radiobiology (LEXOR) , Center for Experimental and Molecular Medicine , Amsterdam , The Netherlands.,b Department of Radiotherapy , University of Amsterdam , Amsterdam , The Netherlands
| | - Johannes Crezee
- c Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - H Petra Kok
- c Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Nicolaas A P Franken
- a Laboratory for Experimental Oncology and Radiobiology (LEXOR) , Center for Experimental and Molecular Medicine , Amsterdam , The Netherlands.,b Department of Radiotherapy , University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
52
|
van Leeuwen CM, Oei AL, Chin KWTK, Crezee J, Bel A, Westermann AM, Buist MR, Franken NAP, Stalpers LJA, Kok HP. A short time interval between radiotherapy and hyperthermia reduces in-field recurrence and mortality in women with advanced cervical cancer. Radiat Oncol 2017; 12:75. [PMID: 28449703 PMCID: PMC5408439 DOI: 10.1186/s13014-017-0813-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/25/2017] [Indexed: 01/04/2023] Open
Abstract
Background Combined radiotherapy and hyperthermia is a well-established alternative to chemoradiotherapy for advanced stage cervical cancer patients with a contraindication for chemotherapy. Pre-clinical evidence suggests that the radiosensitizing effect of hyperthermia decreases substantially for time intervals between radiotherapy and hyperthermia as short as 1–2 h, but clinical evidence is limited. The purpose of this study is to determine the effect of the time interval between external beam radiotherapy (EBRT) and same-day hyperthermia on in-field recurrence rate, overall survival and late toxicity in women with advanced stage cervical cancer. Methods Patients with advanced stage cervical cancer who underwent a full-course of curative daily EBRT and (4–5) weekly hyperthermia sessions between 1999 and 2014 were included for retrospective analysis. The mean time interval between EBRT fractions and same-day hyperthermia was calculated for each patient; the median thereof was used to divide the cohort in a ‘short’ and ‘long’ time-interval group. Kaplan-Meier analysis and stepwise Cox regression were used to compare the in-field recurrence and overall survival. Finally, high-grade (≥3) late toxicity was compared across time-interval groups. DNA repair suppression is an important hyperthermia mechanism, DNA damage repair kinetics were therefore studied in patient biopsies to support clinical findings. Results Included were 58 patients. The 3-year in field recurrence rate was 18% and 53% in the short (≤79.2 min) and long (>79.2 min) time-interval group, respectively (p = 0.021); the 5-year overall survival was 52% and 17% respectively (p = 0.015). Differences between time-interval groups remained significant for both in-field recurrence (HR = 7.7, p = 0.007) and overall survival (HR = 2.3, p = 0.012) in multivariable Cox regression. No difference in toxicity was observed (p = 1.00), with only 6 and 5 events in the short and long group, respectively. The majority of DNA damage was repaired within 2 h, potentially explaining a reduced effectiveness of hyperthermia for long time intervals. Conclusions A short time interval between EBRT and hyperthermia is associated with a lower risk of in-field recurrence and a better overall survival. There was no evidence for difference in late toxicity.
Collapse
Affiliation(s)
- Caspar M van Leeuwen
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Arlene L Oei
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Laboratory for Experimental Oncology and Radiobiology (LEXOR)/Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Kenneth W T K Chin
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Arjan Bel
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Anneke M Westermann
- Department of Medical Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marrije R Buist
- Department of Obstetrics and Gynecology, Center for Gynecologic Oncology Amsterdam, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Laboratory for Experimental Oncology and Radiobiology (LEXOR)/Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
53
|
Kok HP, Kotte ANTJ, Crezee J. Planning, optimisation and evaluation of hyperthermia treatments. Int J Hyperthermia 2017; 33:593-607. [PMID: 28540779 DOI: 10.1080/02656736.2017.1295323] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hyperthermia treatment planning using dedicated simulations of power and temperature distributions is very useful to assist in hyperthermia applications. This paper describes an advanced treatment planning software package for a wide variety of applications. METHODS The in-house developed C++ software package Plan2Heat runs on a Linux operating system. Modules are available to perform electric field and temperature calculations for many heating techniques. The package also contains optimisation routines, post-treatment evaluation tools and a sophisticated thermal model enabling to account for 3D vasculature based on an angiogram or generated artificially using a vessel generation algorithm. The use of the software is illustrated by a simulation of a locoregional hyperthermia treatment for a pancreatic cancer patient and a spherical tumour model heated by interstitial hyperthermia, with detailed 3D vasculature included. RESULTS The module-based set-up makes the software flexible and easy to use. The first example demonstrates that treatment planning can help to focus the heating to the tumour. After optimisation, the simulated absorbed power in the tumour increased with 50%. The second example demonstrates the impact of accurately modelling discrete vasculature. Blood at body core temperature entering the heated volume causes relatively cold tracks in the heated volume, where the temperature remains below 40 °C. CONCLUSIONS A flexible software package for hyperthermia treatment planning has been developed, which can be very useful in many hyperthermia applications. The object-oriented structure of the source code allows relatively easy extension of the software package with additional tools when necessary for future applications.
Collapse
Affiliation(s)
- H P Kok
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - A N T J Kotte
- b Department of Radiotherapy , University Medical Center Utrecht , Utrecht , The Netherlands
| | - J Crezee
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
54
|
Fast and high temperature hyperthermia coupled with radiotherapy as a possible new treatment for glioblastoma. J Ther Ultrasound 2016; 4:32. [PMID: 27980785 PMCID: PMC5143464 DOI: 10.1186/s40349-016-0078-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
Background A new transcranial focused ultrasound device has been developed that can induce hyperthermia in a large tissue volume. The purpose of this work is to investigate theoretically how glioblastoma multiforme (GBM) can be effectively treated by combining the fast hyperthermia generated by this focused ultrasound device with external beam radiotherapy. Methods/Design To investigate the effect of tumor growth, we have developed a mathematical description of GBM proliferation and diffusion in the context of reaction–diffusion theory. In addition, we have formulated equations describing the impact of radiotherapy and heat on GBM in the reaction–diffusion equation, including tumor regrowth by stem cells. This formulation has been used to predict the effectiveness of the combination treatment for a realistic focused ultrasound heating scenario. Our results show that patient survival could be significantly improved by this combined treatment modality. Discussion High priority should be given to experiments to validate the therapeutic benefit predicted by our model. Electronic supplementary material The online version of this article (doi:10.1186/s40349-016-0078-3) contains supplementary material, which is available to authorized users.
Collapse
|
55
|
van Leeuwen CM, Crezee J, Oei AL, Franken NAP, Stalpers LJA, Bel A, Kok HP. 3D radiobiological evaluation of combined radiotherapy and hyperthermia treatments. Int J Hyperthermia 2016; 33:160-169. [PMID: 27744728 DOI: 10.1080/02656736.2016.1241431] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Currently, clinical decisions regarding thermoradiotherapy treatments are based on clinical experience. Quantification of the radiosensitising effect of hyperthermia allows comparison of different treatment strategies, and can support clinical decision-making regarding the optimal treatment. The software presented here enables biological evaluation of thermoradiotherapy plans through calculation of equivalent 3D dose distributions. METHODS Our in-house developed software (X-Term) uses an extended version of the linear-quadratic model to calculate equivalent radiation dose, i.e. the radiation dose yielding the same effect as the thermoradiotherapy treatment. Separate sets of model parameters can be assigned to each delineated structure, allowing tissue specific modelling of hyperthermic radiosensitisation. After calculation, the equivalent radiation dose can be evaluated according to conventional radiotherapy planning criteria. The procedure is illustrated using two realistic examples. First, for a previously irradiated patient, normal tissue dose for a radiotherapy and thermoradiotherapy plan (with equal predicted tumour control) is compared. Second, tumour control probability (TCP) is assessed for two (otherwise identical) thermoradiotherapy schedules with different time intervals between radiotherapy and hyperthermia. RESULTS The examples demonstrate that our software can be used for individualised treatment decisions (first example) and treatment optimisation (second example) in thermoradiotherapy. In the first example, clinically acceptable doses to the bowel were exceeded for the conventional plan, and a substantial reduction of this excess was predicted for the thermoradiotherapy plan. In the second example, the thermoradiotherapy schedule with long time interval was shown to result in a substantially lower TCP. CONCLUSIONS Using biological modelling, our software can facilitate the evaluation of thermoradiotherapy plans and support individualised treatment decisions.
Collapse
Affiliation(s)
- C M van Leeuwen
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - J Crezee
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - A L Oei
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands.,b Laboratory for Experimental Oncology and Radiobiology (LEXOR)/Center for Experimental Molecular Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - N A P Franken
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands.,b Laboratory for Experimental Oncology and Radiobiology (LEXOR)/Center for Experimental Molecular Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - L J A Stalpers
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - A Bel
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - H P Kok
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
56
|
Schooneveldt G, Bakker A, Balidemaj E, Chopra R, Crezee J, Geijsen ED, Hartmann J, Hulshof MC, Kok HP, Paulides MM, Sousa-Escandon A, Stauffer PR, Maccarini PF. Thermal dosimetry for bladder hyperthermia treatment. An overview. Int J Hyperthermia 2016; 32:417-33. [DOI: 10.3109/02656736.2016.1156170] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
57
|
Crezee J, van Leeuwen CM, Oei AL, van Heerden LE, Bel A, Stalpers LJA, Ghadjar P, Franken NAP, Kok HP. Biological modelling of the radiation dose escalation effect of regional hyperthermia in cervical cancer. Radiat Oncol 2016; 11:14. [PMID: 26831185 PMCID: PMC4735973 DOI: 10.1186/s13014-016-0592-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/20/2016] [Indexed: 12/25/2022] Open
Abstract
Background Locoregional hyperthermia combined with radiotherapy significantly improves locoregional control and overall survival for cervical tumors compared to radiotherapy alone. In this study biological modelling is applied to quantify the effect of radiosensitization for three cervical cancer patients to evaluate the improvement in equivalent dose for the combination treatment with radiotherapy and hyperthermia. Methods The Linear-Quadratic (LQ) model extended with temperature-dependent LQ-parameters α and β was used to model radiosensitization by hyperthermia and to calculate the conventional radiation dose that is equivalent in biological effect to the combined radiotherapy and hyperthermia treatment. External beam radiotherapy planning was performed based on a prescription dose of 46Gy in 23 fractions of 2Gy. Hyperthermia treatment using the AMC-4 system was simulated based on the actual optimized system settings used during treatment. Results The simulated hyperthermia treatments for the 3 patients yielded a T50 of 40.1 °C, 40.5 °C, 41.1 °C and a T90 of 39.2 °C, 39.7 °C, 40.4 °C, respectively. The combined radiotherapy and hyperthermia treatment resulted in a D95 of 52.5Gy, 55.5Gy, 56.9Gy in the GTV, a dose escalation of 7.3–11.9Gy compared to radiotherapy alone (D95 = 45.0–45.5Gy). Conclusions This study applied biological modelling to evaluate radiosensitization by hyperthermia as a radiation-dose escalation for cervical cancer patients. This model is very useful to compare the effectiveness of different treatment schedules for combined radiotherapy and hyperthermia treatments and to guide the design of clinical studies on dose escalation using hyperthermia in a multi-modality setting.
Collapse
Affiliation(s)
- J Crezee
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - C M van Leeuwen
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - A L Oei
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Laboratory for Experimental Oncology and Radiobiology (LEXOR)/Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - L E van Heerden
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - A Bel
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - L J A Stalpers
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - P Ghadjar
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany.
| | - N A P Franken
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Laboratory for Experimental Oncology and Radiobiology (LEXOR)/Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - H P Kok
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|