51
|
Noree C, Monfort E, Shotelersuk V. Human asparagine synthetase associates with the mitotic spindle. Biol Open 2018; 7:bio.038307. [PMID: 30464009 PMCID: PMC6310878 DOI: 10.1242/bio.038307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cancer cells are characterized by extensive reprogramming of metabolic pathways in order to promote cell division and survival. However, the growth promotion effects of metabolic reprogramming can be due to moonlighting functions of metabolic enzymes as well as the redirection of flux through particular pathways. To identify metabolic enzymes that might have potential moonlighting functions in oncogenesis, we have examined recent screens of the yeast GFP strain collection for metabolic enzymes that have been implicated in cancer metabolism with an unusual subcellular localization. Asparagine synthetase forms filaments in yeast in response to nutrient limitation and is part of a pathway that is a chemotherapy target in acute lymphoblastic leukemia. Interestingly, while yeast asparagine synthetase forms cytoplasmic filaments in response to nutrient stress, human asparagine synthetase is associated with the centrosomes and mitotic spindles. This localization is disrupted by both nocodazole and asparaginase treatments. This failure to localize occurs even though asparagine synthetase is highly upregulated in response to asparaginase treatment. Together, these results argue that human asparagine synthetase undergoes regulated recruitment to the mitotic spindles and that it may have acquired a second role in mitosis similar to other metabolic enzymes that contribute to metabolic reprogramming in cancer cells. Summary: While yeast Asn1p/ASN2p forms cytoplasmic filaments in response to nutrient limitation, hASNS is associated with centrosomes and mitotic spindles in actively dividing cells, suggesting its additional role in cell division.
Collapse
Affiliation(s)
- Chalongrat Noree
- Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Elena Monfort
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive (MC 0347), La Jolla, CA 92093-0347, USA
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
52
|
Enzymatic complexes across scales. Essays Biochem 2018; 62:501-514. [PMID: 30315098 PMCID: PMC6204551 DOI: 10.1042/ebc20180008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
An unprecedented opportunity to integrate ~100 years of meticulous in vitro biomolecular research is currently provided in the light of recent advances in methods to visualize closer-to-native architectures of biomolecular machines, and metabolic enzymes in particular. Traditional views of enzymes, namely biomolecular machines, only partially explain their role, organization and kinetics in the cellular milieu. Enzymes self- or hetero-associate, form fibers, may bind to membranes or cytoskeletal elements, have regulatory roles, associate into higher order assemblies (metabolons) or even actively participate in phase-separated membraneless organelles, and all the above in a transient, temporal and spatial manner in response to environmental changes or structural/functional changes of their assemblies. Here, we focus on traditional and emerging concepts in cellular biochemistry and discuss new opportunities in bridging structural, molecular and cellular analyses for metabolic pathways, accumulated over the years, highlighting functional aspects of enzymatic complexes discussed across different levels of spatial resolution.
Collapse
|
53
|
McCluskey GD, Bearne SL. Anfractuous assemblies of IMP dehydrogenase and CTP synthase: new twists on regulation? FEBS J 2018; 285:3724-3728. [PMID: 30285320 DOI: 10.1111/febs.14658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022]
Abstract
CTP synthase (CTPS) and IMP dehydrogenase (IMPDH) catalyse the rate-limiting steps of de novo CTP and guanosine nucleotide biosynthesis, respectively, and form filament assemblies in response to inhibitors. A recent study explores the morphology and dynamics of these assemblies using fluorescence and super-resolution confocal microscopy with cell lines expressing CTPS1 and IMPDH2 fusion proteins. The formation and dismantling of mixed assemblies depends on nucleotide levels, suggesting a co-regulation function.
Collapse
Affiliation(s)
- Gregory D McCluskey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada
| | - Stephen L Bearne
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada.,Department of Chemistry, Dalhousie University, Halifax, Canada
| |
Collapse
|
54
|
Atomic insights into the genesis of cellular filaments by globular proteins. Nat Struct Mol Biol 2018; 25:705-714. [PMID: 30076408 PMCID: PMC6185745 DOI: 10.1038/s41594-018-0096-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/21/2018] [Indexed: 02/04/2023]
Abstract
Self-assembly of proteins into filaments, such as actin and tubulin filaments, underlies essential cellular processes in all three domains of life. The early emergence of filaments in evolutionary history suggests that filament genesis might be a robust process. Here we describe the fortuitous construction of GFP fusion proteins that self-assemble as fluorescent polar filaments in Escherichia coli. Filament formation is achieved by appending as few as 12 residues. Crystal structures reveal that the protomers each donate an appendage to fill a groove between two following protomers along the filament. This exchange of appendages resembles runaway domain swapping but is distinguished by higher efficiency because monomers cannot competitively bind their own appendages. Ample evidence of this “runaway domain coupling” mechanism in nature suggests it could facilitate the evolutionary pathway from globular protein to polar filament, requiring a minimal extension of protein sequence and no significant refolding.
Collapse
|
55
|
Schiavon CR, Griffin ME, Pirozzi M, Parashuraman R, Zhou W, Jinnah HA, Reines D, Kahn RA. Compositional complexity of rods and rings. Mol Biol Cell 2018; 29:2303-2316. [PMID: 30024290 PMCID: PMC6249804 DOI: 10.1091/mbc.e18-05-0274] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rods and rings (RRs) are large linear- or circular-shaped structures typically described as polymers of IMPDH (inosine monophosphate dehydrogenase). They have been observed across a wide variety of cell types and species and can be induced to form by inhibitors of IMPDH. RRs are thought to play a role in the regulation of de novo guanine nucleotide synthesis; however, the function and regulation of RRs is poorly understood. Here we show that the regulatory GTPase, ARL2, a subset of its binding partners, and several resident proteins at the endoplasmic reticulum (ER) also localize to RRs. We also have identified two new inducers of RR formation: AICAR and glucose deprivation. We demonstrate that RRs can be disassembled if guanine nucleotides can be generated by salvage synthesis regardless of the inducer. Finally, we show that there is an ordered addition of components as RRs mature, with IMPDH first forming aggregates, followed by ARL2, and only later calnexin, a marker of the ER. These findings suggest that RRs are considerably more complex than previously thought and that the function(s) of RRs may include involvement of a regulatory GTPase, its effectors, and potentially contacts with intracellular membranes.
Collapse
Affiliation(s)
- Cara R Schiavon
- Cancer Biology Graduate Program, Graduate Division of Biomedical and Biological Sciences, Laney Graduate School, Atlanta, GA 30307
| | - Maxwell E Griffin
- Cancer Biology Graduate Program, Graduate Division of Biomedical and Biological Sciences, Laney Graduate School, Atlanta, GA 30307
| | - Marinella Pirozzi
- EuroBioImaging Facility, Institute of Protein Biochemistry, 80131 Naples, Italy
| | - Raman Parashuraman
- EuroBioImaging Facility, Institute of Protein Biochemistry, 80131 Naples, Italy
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322
| | - H A Jinnah
- Department of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Daniel Reines
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
56
|
Abstract
To survive, organisms must orchestrate competing biochemical and regulatory processes in time and space. Recent work has suggested that the underlying chemical properties of some biomolecules allow them to self-organize and that life may have exploited this property to organize biochemistry in space and time. Such phase separation is ubiquitous, particularly among the many regulatory proteins that harbor prion-like intrinsically disordered domains. And yet, despite evident regulation by post-translational modification and myriad other stimuli, the biological significance of many phase-separated compartments remains uncertain. Many potential functions have been proposed, but far fewer have been demonstrated. A burgeoning subfield at the intersection of cell biology and polymer physics has defined the biophysical underpinnings that govern the genesis and stability of these particles. The picture is complex: many assemblies are composed of multiple proteins that each have the capacity to phase separate. Here, we briefly discuss this foundational work and survey recent efforts combining targeted biochemical perturbations and quantitative modeling to specifically address the diverse roles that phase separation processes may play in biology.
Collapse
Affiliation(s)
- Alan K. Itakura
- Department of Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305
| | - Raymond A. Futia
- Department of Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305
| | - Daniel F. Jarosz
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305
- Department of Developmental Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305
| |
Collapse
|
57
|
Biophysical Analysis of Bacterial CTP Synthase Filaments Formed in the Presence of the Chemotherapeutic Metabolite Gemcitabine-5'-triphosphate. J Mol Biol 2018; 430:1201-1217. [PMID: 29501573 DOI: 10.1016/j.jmb.2018.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 11/21/2022]
Abstract
While enzyme activity is often regulated by a combination of substrate/effector availability and quaternary structure, many cytosolic enzymes may be further regulated through oligomerization into filaments. Cytidine-5'-triphosphate (CTP) synthase (CTPS) forms such filaments-a process that is promoted by the product CTP. The CTP analog and active chemotherapeutic metabolite gemcitabine-5'-triphosphate (dF-dCTP) is a potent inhibitor of CTPS; however, its effect on the enzyme's ability to form filaments is unknown. Alongside electron microscopy studies, dynamic light scattering showed that dF-dCTP induces Escherichia coli CTPS (EcCTPS) to form filaments in solution with lengths ≥30 nm in the presence of CTP or dF-dCTP. The substrate UTP blocks formation of filaments and effects their disassembly. EcCTPS variants were constructed to investigate the role of CTP-binding determinants in CTP- and dF-dCTP-dependent filament formation. Substitution of Glu 149 (i.e., E149D), which interacts with the ribose of CTP, caused reduced affinity for both CTP and dF-dCTP, and obviated filament formation. Phe 227 appears to interact with CTP through an edge-on interaction with the cytosine ring, yet the F227A and F227L variants bound CTP and dF-dCTP. F227A EcCTPS did not form filaments, while F227L EcCTPS formed shorter filaments in the presence of CTP or dF-dCTP. Hence, Phe 227 plays a role in filament formation, although replacement by a bulky hydrophobic amino acid is sufficient for limited filament formation. That dF-dCTP can induce filament formation highlights the fact that nucleotide analogs employed as chemotherapeutic agents may affect the filamentous states of enzymes and potentially alter their regulation in vivo.
Collapse
|
58
|
Piazza I, Kochanowski K, Cappelletti V, Fuhrer T, Noor E, Sauer U, Picotti P. A Map of Protein-Metabolite Interactions Reveals Principles of Chemical Communication. Cell 2018; 172:358-372.e23. [DOI: 10.1016/j.cell.2017.12.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/27/2017] [Accepted: 12/01/2017] [Indexed: 10/25/2022]
|
59
|
Alberti S. The wisdom of crowds: regulating cell function through condensed states of living matter. J Cell Sci 2017; 130:2789-2796. [PMID: 28808090 DOI: 10.1242/jcs.200295] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Our understanding of cells has progressed rapidly in recent years, mainly because of technological advances. Modern technology now allows us to observe molecular processes in living cells with high spatial and temporal resolution. At the same time, we are beginning to compile the molecular parts list of cells. However, how all these parts work together to yield complex cellular behavior is still unclear. In addition, the established paradigm of molecular biology, which sees proteins as well-folded enzymes that undergo specific lock-and-key type interactions, is increasingly being challenged. In fact, it is now becoming clear that many proteins do not fold into three-dimensional structures and additionally show highly promiscuous binding behavior. Furthermore, proteins function in collectives and form condensed phases with different material properties, such as liquids, gels, glasses or filaments. Here, I examine emerging evidence that the formation of macromolecular condensates is a fundamental principle in cell biology. I further discuss how different condensed states of living matter regulate cellular functions and decision-making and ensure adaptive behavior and survival in times of cellular crisis.
Collapse
Affiliation(s)
- Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
60
|
Anthony SA, Burrell AL, Johnson MC, Duong-Ly KC, Kuo YM, Simonet JC, Michener P, Andrews A, Kollman JM, Peterson JR. Reconstituted IMPDH polymers accommodate both catalytically active and inactive conformations. Mol Biol Cell 2017; 28:mbc.E17-04-0263. [PMID: 28794265 PMCID: PMC5620369 DOI: 10.1091/mbc.e17-04-0263] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 01/01/2023] Open
Abstract
Several metabolic enzymes undergo reversible polymerization into macromolecular assemblies. The function of these assemblies is often unclear but in some cases they regulate enzyme activity and metabolic homeostasis. The guanine nucleotide biosynthetic enzyme inosine monophosphate dehydrogenase (IMPDH) forms octamers that polymerize into helical chains. In mammalian cells, IMPDH filaments can associate into micron-length assemblies. Polymerization and enzyme activity are regulated in part by binding of purine nucleotides to an allosteric regulatory domain. ATP promotes octamer polymerization, whereas GTP promotes a compact, inactive conformation whose ability to polymerize is unknown. Also unclear is whether polymerization directly alters IMPDH catalytic activity. To address this, we identified point mutants of human IMPDH2 that either prevent or promote polymerization. Unexpectedly, we found that polymerized and non-assembled forms of recombinant IMPDH have comparable catalytic activity, substrate affinity, and GTP sensitivity and validated this finding in cells. Electron microscopy revealed that substrates and allosteric nucleotides shift the equilibrium between active and inactive conformations in both the octamer and the filament. Unlike other metabolic filaments, which selectively stabilize active or inactive conformations, recombinant IMPDH filaments accommodate multiple states. These conformational states are finely tuned by substrate availability and purine balance, while polymerization may allow cooperative transitions between states.
Collapse
Affiliation(s)
- Sajitha A Anthony
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, 1959 NE Pacific Street, Box 357350, Seattle, WA 98195
| | - Matthew C Johnson
- Department of Biochemistry, University of Washington, 1959 NE Pacific Street, Box 357350, Seattle, WA 98195
| | - Krisna C Duong-Ly
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Yin-Ming Kuo
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Jacqueline C Simonet
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Peter Michener
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102
| | - Andrew Andrews
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, 1959 NE Pacific Street, Box 357350, Seattle, WA 98195
| | - Jeffrey R Peterson
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| |
Collapse
|
61
|
Abstract
The organization of metabolic multienzyme complexes has been hypothesized to benefit metabolic processes and provide a coordinated way for the cell to regulate metabolism. Historically, their existence has been supported by various in vitro techniques. However, it is only recently that the existence of metabolic complexes inside living cells has come to light to corroborate this long-standing hypothesis. Indeed, subcellular compartmentalization of metabolic enzymes appears to be widespread and highly regulated. On the other hand, it is still challenging to demonstrate the functional significance of these enzyme complexes in the context of the cellular milieu. In this review, we discuss the current understanding of metabolic enzyme complexes by primarily focusing on central carbon metabolism and closely associated metabolic pathways in a variety of organisms, as well as their regulation and functional contributions to cells.
Collapse
Affiliation(s)
- Danielle L Schmitt
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC) , 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Songon An
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC) , 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
62
|
Lynch EM, Hicks DR, Shepherd M, Endrizzi JA, Maker A, Hansen JM, Barry RM, Gitai Z, Baldwin EP, Kollman JM. Human CTP synthase filament structure reveals the active enzyme conformation. Nat Struct Mol Biol 2017; 24:507-514. [PMID: 28459447 PMCID: PMC5472220 DOI: 10.1038/nsmb.3407] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
Abstract
The universally conserved enzyme CTP synthase (CTPS) forms filaments in bacteria and eukaryotes. In bacteria, polymerization inhibits CTPS activity and is required for nucleotide homeostasis. Here we show that for human CTPS, polymerization increases catalytic activity. The cryo-EM structures of bacterial and human CTPS filaments differ considerably in overall architecture and in the conformation of the CTPS protomer, explaining the divergent consequences of polymerization on activity. The structure of human CTPS filament, the first structure of the full-length human enzyme, reveals a novel active conformation. The filament structures elucidate allosteric mechanisms of assembly and regulation that rely on a conserved conformational equilibrium. The findings may provide a mechanism for increasing human CTPS activity in response to metabolic state and challenge the assumption that metabolic filaments are generally storage forms of inactive enzymes. Allosteric regulation of CTPS polymerization by ligands likely represents a fundamental mechanism underlying assembly of other metabolic filaments.
Collapse
Affiliation(s)
- Eric M Lynch
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Derrick R Hicks
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
| | - Matthew Shepherd
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - James A Endrizzi
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, USA
| | - Allison Maker
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Jesse M Hansen
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, Washington, USA
| | - Rachael M Barry
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Enoch P Baldwin
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
63
|
Huang Y, Wang JJ, Ghosh S, Liu JL. Critical roles of CTP synthase N-terminal in cytoophidium assembly. Exp Cell Res 2017; 354:122-133. [PMID: 28342900 PMCID: PMC5405848 DOI: 10.1016/j.yexcr.2017.03.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 01/27/2023]
Abstract
Several metabolic enzymes assemble into distinct intracellular structures in prokaryotes and eukaryotes suggesting an important functional role in cell physiology. The CTP-generating enzyme CTP synthase forms long filamentous structures termed cytoophidia in bacteria, yeast, fruit flies and human cells independent of its catalytic activity. However, the amino acid determinants for protein-protein interaction necessary for polymerisation remained unknown. In this study, we systematically analysed the role of the conserved N-terminal of Drosophila CTP synthase in cytoophidium assembly. Our mutational analyses identified three key amino acid residues within this region that play an instructive role in organisation of CTP synthase into a filamentous structure. Co-transfection assays demonstrated formation of heteromeric CTP synthase filaments which is disrupted by protein carrying a mutated N-terminal alanine residue thus revealing a dominant-negative activity. Interestingly, the dominant-negative activity is supressed by the CTP synthase inhibitor DON. Furthermore, we found that the amino acids at the corresponding position in the human protein exhibit similar properties suggesting conservation of their function through evolution. Our data suggest that cytoophidium assembly is a multi-step process involving N-terminal-dependent sequential interactions between correctly folded structural units and provide insights into the assembly of these enigmatic structures. CTP synthase mutational analyses reveal N-terminal amino acids that regulate filament self-assembly. Amino acid 20 of CTP synthase plays key role in protein interactions necessary for polymerisation. The dominant-negative activity is supressed by CTP synthase inhibitor DON. The functional properties of the amino acids are conserved in Drosophila and human CTP synthases.
Collapse
Affiliation(s)
- Yong Huang
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom; Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Sanjay Ghosh
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom.
| | - Ji-Long Liu
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|