51
|
Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 2017; 264:306-332. [PMID: 28844756 PMCID: PMC6701993 DOI: 10.1016/j.jconrel.2017.08.033] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) comprise a category of versatile drug delivery systems that have been used in the biomedical field for >25years. SLNs and NLCs have been used for the treatment of various diseases including cardiovascular and cerebrovascular, and are considered a standard treatment for the latter, due to their inherent ability to cross the blood brain barrier (BBB). In this review, a presentation of the most important brain diseases (brain cancer, ischemic stroke, Alzheimer's disease, Parkinson's disease and multiple sclerosis) is approached, followed by the basic fabrication techniques of SLNs and NLCs. A detailed description of the reported studies of the last seven years, of active and passive targeting SLNs and NLCs for the treatment of glioblastoma multiforme and of other brain cancers, as well as for the treatment of neurodegenerative diseases is also carried out. Finally, a brief description of the advantages, the disadvantages, and the future perspectives in the use of these nanocarriers is reported, aiming at giving an insight of the limitations that have to be overcome in order to result in a delivery system with high therapeutic efficacy and without the limitations of the existing nano-systems.
Collapse
Affiliation(s)
- Christos Tapeinos
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy.
| | - Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy; Scuola Superiore Sant'Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy; Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
52
|
Miranda A, Blanco-Prieto MJ, Sousa J, Pais A, Vitorino C. Breaching barriers in glioblastoma. Part II: Targeted drug delivery and lipid nanoparticles. Int J Pharm 2017; 531:389-410. [DOI: 10.1016/j.ijpharm.2017.07.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 02/07/2023]
|
53
|
Chen Z, Jin Z, Xia Y, Zhao S, Xu X, Papadimos TJ, Wang Q. The protective effect of lipid emulsion in preventing bupivacaine-induced mitochondrial injury and apoptosis of H9C2 cardiomyocytes. Drug Deliv 2017; 24:430-436. [PMID: 28165812 PMCID: PMC8241039 DOI: 10.1080/10717544.2016.1261379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lipid emulsion (LE) has been shown to be effective in the resuscitation of bupivacaine-induced cardiac arrest, but the precise mechanism of this action has not been fully elucidated. Pursuant to this lack of information on the mechanism in which LE protects the myocardium during bupivacaine-induced toxicity, we explored mitochondrial function and cell apoptosis. H9C2 cardiomyocytes were used in study. Cells were randomly divided in different groups and were cultivated 6 h, 12 h, and 24 h. The mitochondria were extracted and mitochondrial ATP content was measured, as was mitochondrial membrane potential, the concentration of calcium ion (Ca2+), and the activity of Ca2+-ATP enzyme (Ca2+-ATPase). Cells from groups Bup1000, LE group, and Bup1000LE were collected to determine cell viability, cell apoptosis, and electron microscopy scanning of mitochondrial ultrastructure (after 24 h). We found that LE can reverse the inhibition of the mitochondrial function induced by bupivacaine, regulate the concentration of calcium ion in mitochondria, resulting in the protection of myocardial cells from toxicity induced by bupivacaine.
Collapse
Affiliation(s)
- Zhe Chen
- a Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University , Wenzhou , China
| | - Zhousheng Jin
- a Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University , Wenzhou , China
| | - Yun Xia
- b Department of Anesthesiology, The Ohio State University Medical Center , Columbus , OH , USA , and
| | - Shishi Zhao
- a Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University , Wenzhou , China
| | - Xuzhong Xu
- a Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University , Wenzhou , China
| | - Thomas J Papadimos
- c Department of Anesthesiology, University of Toledo College of Medicine and Life Sciences , Toledo , OH , USA
| | - Quanguang Wang
- a Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
54
|
Mouhid L, Corzo-Martínez M, Torres C, Vázquez L, Reglero G, Fornari T, Ramírez de Molina A. Improving In Vivo Efficacy of Bioactive Molecules: An Overview of Potentially Antitumor Phytochemicals and Currently Available Lipid-Based Delivery Systems. JOURNAL OF ONCOLOGY 2017; 2017:7351976. [PMID: 28555156 PMCID: PMC5438845 DOI: 10.1155/2017/7351976] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Abstract
Cancer is among the leading causes of morbidity and mortality worldwide. Many of the chemotherapeutic agents used in cancer treatment exhibit cell toxicity and display teratogenic effect on nontumor cells. Therefore, the search for alternative compounds which are effective against tumor cells but reduce toxicity against nontumor ones is of great importance in the progress or development of cancer treatments. In this sense, scientific knowledge about relevant aspects of nutrition intimately involved in the development and progression of cancer progresses rapidly. Phytochemicals, considered as bioactive ingredients present in plant products, have shown promising effects as potential therapeutic/preventive agents on cancer in several in vitro and in vivo assays. However, despite their bioactive properties, phytochemicals are still not commonly used in clinical practice due to several reasons, mainly attributed to their poor bioavailability. In this sense, new formulation strategies are proposed as carriers to improve their bioefficacy, highlighting the use of lipid-based delivery systems. Here, we review the potential antitumoral activity of the bioactive compounds derived from plants and the current studies carried out in animal and human models. Furthermore, their association with lipids as a formulation strategy to enhance their efficacy in vivo is also reported. The development of high effective bioactive supplements for cancer treatment based on the improvement of their bioavailability goes through this association.
Collapse
Affiliation(s)
- Lamia Mouhid
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Marta Corzo-Martínez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Carlos Torres
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Luis Vázquez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Guillermo Reglero
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Tiziana Fornari
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
55
|
Bondì ML, Emma MR, Botto C, Augello G, Azzolina A, Di Gaudio F, Craparo EF, Cavallaro G, Bachvarov D, Cervello M. Biocompatible Lipid Nanoparticles as Carriers To Improve Curcumin Efficacy in Ovarian Cancer Treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1342-1352. [PMID: 28111949 DOI: 10.1021/acs.jafc.6b04409] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Curcumin is a natural molecule with proved anticancer efficacy on several human cancer cell lines. However, its clinical application has been limited due to its poor bioavailability. Nanocarrier-based drug delivery approaches could make curcumin dispersible in aqueous media, thus overtaking the limits of its low solubility. The aim of this study was to increase the bioavailability and the antitumoral activity of curcumin, by entrapping it into nanostructured lipid carriers (NLCs). For this purpose here we describe the preparation and characterization of three kinds of curcumin-loaded NLCs. The nanosystems allowed the achievement of a controlled release of curcumin, the amounts of curcumin released after 24 h from Compritol-Captex, Compritol-Miglyol, and Compritol NLCs being, respectively, equal to 33, 28, and 18% w/w on the total entrapped curcumin. Considering the slower curcumin release profile, Compritol NLCs were chosen to perform successive in vitro studies on ovarian cancer cell lines. The results show that curcumin-loaded NLCs maintain anticancer activity, and reduce cell colony survival more effectively than free curcumin. As an example, the ability of A2780S cells to form colonies was decreased after treatment with 5 μM free curcumin by 50% ± 6, whereas, at the same concentration, the delivery of curcumin with NLC significantly (p < 0.05) inhibited colony formation to approximately 88% ± 1, therefore potentiating the activity of curcumin to inhibit A2780S cell growth. The obtained results clearly suggest that the entrapment of curcumin into NLCs increases curcumin efficacy in vitro, indicating the potential use of NLCs as curcumin delivery systems.
Collapse
Affiliation(s)
- Maria Luisa Bondì
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), CNR, U.O.S. Palermo , via Ugo La Malfa, 153, 90146 Palermo, Italy
| | - Maria Rita Emma
- Istituto di Biomedicina ed Immunologia Molecolare (IBIM) "Alberto Monroy", CNR , via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Chiara Botto
- Laboratorio di Polimeri Biocompatibili, Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) , Via Archirafi 32, 90123 Palermo, Italy
| | - Giuseppa Augello
- Istituto di Biomedicina ed Immunologia Molecolare (IBIM) "Alberto Monroy", CNR , via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Antonina Azzolina
- Istituto di Biomedicina ed Immunologia Molecolare (IBIM) "Alberto Monroy", CNR , via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Francesca Di Gaudio
- Dipartimento di Biopatologia e Biotecnologie Mediche (DIBIMED), Scuola di Medicina e Chirurgia , via Del Vespro 129, 90127 Palermo, Italy
| | - Emanuela Fabiola Craparo
- Laboratorio di Polimeri Biocompatibili, Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) , Via Archirafi 32, 90123 Palermo, Italy
| | - Gennara Cavallaro
- Laboratorio di Polimeri Biocompatibili, Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) , Via Archirafi 32, 90123 Palermo, Italy
| | - Dimcho Bachvarov
- Cancer Research Centre, Hôpital L'Hotel-Dieu de Québec, Centre Hospitalier Universitaire de Québec , Quebec City, Quebec, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University , Quebec City, Quebec, Canada
| | - Melchiorre Cervello
- Istituto di Biomedicina ed Immunologia Molecolare (IBIM) "Alberto Monroy", CNR , via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
56
|
Klinger NV, Mittal S. Therapeutic Potential of Curcumin for the Treatment of Brain Tumors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9324085. [PMID: 27807473 PMCID: PMC5078657 DOI: 10.1155/2016/9324085] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
Abstract
Brain malignancies currently carry a poor prognosis despite the current multimodal standard of care that includes surgical resection and adjuvant chemotherapy and radiation. As new therapies are desperately needed, naturally occurring chemical compounds have been studied for their potential chemotherapeutic benefits and low toxicity profile. Curcumin, found in the rhizome of turmeric, has extensive therapeutic promise via its antioxidant, anti-inflammatory, and antiproliferative properties. Preclinical in vitro and in vivo data have shown it to be an effective treatment for brain tumors including glioblastoma multiforme. These effects are potentiated by curcumin's ability to induce G2/M cell cycle arrest, activation of apoptotic pathways, induction of autophagy, disruption of molecular signaling, inhibition of invasion, and metastasis and by increasing the efficacy of existing chemotherapeutics. Further, clinical data suggest that it has low toxicity in humans even at large doses. Curcumin is a promising nutraceutical compound that should be evaluated in clinical trials for the treatment of human brain tumors.
Collapse
Affiliation(s)
- Neil V. Klinger
- Department of Neurosurgery, Wayne State University, Detroit, MI, USA
| | - Sandeep Mittal
- Department of Neurosurgery, Wayne State University, Detroit, MI, USA
- Department of Oncology, Wayne State University, Detroit, MI, USA
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
57
|
Li X, Yuan H, Zhang C, Chen W, Cheng W, Chen X, Ye X. Preparation and in-vitro/in-vivo evaluation of curcumin nanosuspension with solubility enhancement. ACTA ACUST UNITED AC 2016; 68:980-8. [PMID: 27283220 DOI: 10.1111/jphp.12575] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/30/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVES We developed Cur nanosuspension (Cur-NS) with PVPK30 and SDS as stabilizers to improve poor water solubility and short biological half-time of Cur. METHODS Physicochemical characterization of Cur-NS was characterized systematically. The in-vitro dissolution, cytotoxicity and in-vivo pharmacokinetic experiments of Cur-NS were also evaluated. KEY FINDINGS Scanning electron microscope indicated that the morphologies of Cur-NS were spherical or ellipsoidal in shape. X-ray diffraction verified that Cur was successfully developed as nanoparticles with an amorphous phase in Cur-NS. Fourier transform infrared spectroscopy suggested there was no degradation about Cur in the Cur-NS. Furthermore, the in-vitro study showed that the cumulative release of the Cur-NS was 82.16 ± 2.62% within 34 h and the cytotoxicity of the Cur-NS against HepG2 cells was much better than raw Cur. Besides, in-vivo pharmacokinetics in rats by intravenous injection displayed that the in-vivo process of Cur-NS pertained to two-compartment model. Meanwhile, the t1/2 and AUC0-t of Cur-NS were enhanced by 11.0-fold and 4.2-fold comparing to Cur solution. CONCLUSIONS The Cur-NS significantly increased the water solubility and half-time of Cur, suggesting its potential as a nanocarrier in the delivery of Cur for future clinical application.
Collapse
Affiliation(s)
- Xin Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Huiling Yuan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Caiyun Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Weidong Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Weiye Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xin Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xi Ye
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|