51
|
Stenfeldt C, Arzt J, Smoliga G, LaRocco M, Gutkoska J, Lawrence P. Proof-of-concept study: profile of circulating microRNAs in Bovine serum harvested during acute and persistent FMDV infection. Virol J 2017; 14:71. [PMID: 28388926 PMCID: PMC5384155 DOI: 10.1186/s12985-017-0743-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
Abstract
Background Changes in the levels of circulating microRNAs (miRNAs) in the serum of humans and animals have been detected as a result of infection with a variety of viruses. However, to date, such a miRNA profiling study has not been conducted for foot-and-mouth disease virus (FMDV) infection. Methods The relative abundance of 169 miRNAs was measured in bovine serum collected at three different phases of FMDV infection in a proof-of-concept study using miRNA PCR array plates. Results Alterations in specific miRNA levels were detected in serum during acute, persistent, and convalescent phases of FMDV infection. Subclinical FMDV persistence produced a circulating miRNA profile distinct from cattle that had cleared infection. bta-miR-17-5p was highest expressed during acute infection, whereas bta-miR-31 was the highest during FMDV persistence. Interestingly, miR-1281was significantly down-regulated during both acute and persistent infection. Cattle that cleared infection resembled the baseline profile, adding support to applying serum miRNA profiling for identification of sub-clinically infected FMDV carriers. Significantly regulated miRNAs during acute or persistent infection were associated with cellular proliferation, apoptosis, modulation of the immune response, and lipid metabolism. Conclusions These findings suggest a role for non-coding regulatory RNAs in FMDV infection of cattle. Future studies will delineate the individual contributions of the reported miRNAs to FMDV replication, determine if this miRNA signature is applicable across all FMDV serotypes, and may facilitate development of novel diagnostic applications. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0743-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolina Stenfeldt
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA
| | - Jonathan Arzt
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA
| | - George Smoliga
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA
| | - Michael LaRocco
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA
| | - Joseph Gutkoska
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA
| | - Paul Lawrence
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA.
| |
Collapse
|
52
|
Fang L, Hou Y, An J, Li B, Song M, Wang X, Sørensen P, Dong Y, Liu C, Wang Y, Zhu H, Zhang S, Yu Y. Genome-Wide Transcriptional and Post-transcriptional Regulation of Innate Immune and Defense Responses of Bovine Mammary Gland to Staphylococcus aureus. Front Cell Infect Microbiol 2016; 6:193. [PMID: 28083515 PMCID: PMC5183581 DOI: 10.3389/fcimb.2016.00193] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/09/2016] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is problematic for lactating mammals and public health. Understanding of mechanisms by which the hosts respond to severe invasion of S. aureus remains elusive. In this study, the genome-wide expression of mRNAs and miRNAs in bovine mammary gland cells were interrogated at 24 h after intra-mammary infection (IMI) with high or low concentrations of S. aureus. Compared to the negative control quarters, 194 highly-confident responsive genes were identified in the quarters with high concentration (109 cfu/mL) of S. aureus, which were predominantly implicated in pathways and biological processes pertaining to innate immune system, such as cytokine-cytokine receptor interaction and inflammatory response. In contrast, only 21 highly-confident genes were significantly differentially expressed in face of low concentration (106 cfu/mL) of S. aureus, which slightly perturbed the cell signaling and invoked corresponding responses like vasoconstriction, indicating limited perturbations and immunological evading. Additionally, the significant up-regulations of bta-mir-223 and bta-mir-21-3p were observed in the quarters infected by high concentration of S. aureus. Network analysis suggested that the two miRNAs' pivotal roles in defending hosts against bacterial infection probably through inhibiting CXCL14 and KIT. The significant down-regulation of CXCL14 was also observed in bovine mammary epithelial cells at 24 h post-infection of S. aureus (108 cfu/mL) in vitro. Integrated analysis with QTL database further suggested 28 genes (e.g., CXCL14, KIT, and SLC4A11) as candidates of bovine mastitis. This study first systematically revealed transcriptional and post-transcriptional responses of bovine mammary gland cells to invading S. aureus in a dosage-dependent pattern, and highlighted a complicated responsive mechanism in a network of miRNA-gene-pathway interplay.
Collapse
Affiliation(s)
- Lingzhao Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural UniversityBeijing, China; Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus UniversityTjele, Denmark
| | - Yali Hou
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China
| | - Jing An
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Bingjie Li
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University Tjele, Denmark
| | - Minyan Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Xiao Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural UniversityBeijing, China; Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus UniversityTjele, Denmark
| | - Peter Sørensen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University Tjele, Denmark
| | - Yichun Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Chao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Huabin Zhu
- Department of Animal Biotechnology and Reproduction, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences Beijing, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University Beijing, China
| |
Collapse
|
53
|
Wang XP, Luoreng ZM, Zan LS, Raza SHA, Li F, Li N, Liu S. Expression patterns of miR-146a and miR-146b in mastitis infected dairy cattle. Mol Cell Probes 2016; 30:342-344. [PMID: 27531280 DOI: 10.1016/j.mcp.2016.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 01/06/2023]
Abstract
This study reports a significant up-regulation of bta-miR-146a and bta-miR-146b expression levels in bovine mammary tissues infected with subclinical, clinical and experimental mastitis. Potential target genes are involved in multiple immunological pathways. These results suggest a regulatory function of both miRNAs for the bovine inflammatory response in mammary tissue.
Collapse
Affiliation(s)
- Xing Ping Wang
- College of Animal Science and Technology, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Zoology in Hunan Higher Education, College of Life Science, Hunan University of Arts and Science, Changde, Hunan, China.
| | - Zhuo Ma Luoreng
- College of Animal Science and Technology, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Zoology in Hunan Higher Education, College of Life Science, Hunan University of Arts and Science, Changde, Hunan, China
| | - Lin Sen Zan
- College of Animal Science and Technology, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China.
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Feng Li
- Key Laboratory of Zoology in Hunan Higher Education, College of Life Science, Hunan University of Arts and Science, Changde, Hunan, China
| | - Na Li
- Key Laboratory of Zoology in Hunan Higher Education, College of Life Science, Hunan University of Arts and Science, Changde, Hunan, China
| | - Shuan Liu
- Key Laboratory of Zoology in Hunan Higher Education, College of Life Science, Hunan University of Arts and Science, Changde, Hunan, China
| |
Collapse
|
54
|
Muroya S, Hagi T, Kimura A, Aso H, Matsuzaki M, Nomura M. Lactogenic hormones alter cellular and extracellular microRNA expression in bovine mammary epithelial cell culture. J Anim Sci Biotechnol 2016; 7:8. [PMID: 26889380 PMCID: PMC4756532 DOI: 10.1186/s40104-016-0068-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 02/04/2016] [Indexed: 01/08/2023] Open
Abstract
Background Bovine milk contains not only a variety of nutritional ingredients but also microRNAs (miRNAs) that are thought to be secreted by the bovine mammary epithelial cells (BMECs). The objective of this study was to elucidate the production of milk-related miRNAs in BMECs under the influence of lactogenic hormones. Results According to a microarray result of milk exosomal miRNAs prior to cellular analyses, a total of 257 miRNAs were detected in a Holstein cow milk. Of these, 18 major miRNAs of interest in the milk were selected for an expression analysis in BMEC culture that was treated with or without dexamethasone, insulin, and prolactin (DIP) to induce a lactogenic differentiation. Quantitative polymerase chain reaction (qPCR) results showed that the expressions of miR-21–5p (P = 0.005), miR-26a (P = 0.016), and miR-320a (P = 0.011) were lower in the DIP-treated cells than in the untreated cells. In contrast, the expression of miR-339a (P = 0.017) in the cell culture medium were lower in the DIP-treated culture than in the untreated culture. Intriguingly, the miR-148a expression in cell culture medium was elevated by DIP treatment of BMEC culture (P = 0.018). The medium-to-cell expression ratios of miR-103 (P = 0.025), miR-148a (P < 0.001), and miR-223 (P = 0.013) were elevated in the DIP-treated BMECs, suggesting that the lactogenic differentiation-induced secretion of these three miRNAs in BMECs. A bioinformatic analysis showed that the miRNAs down-regulated in the BMECs were associated with the suppression of genes related to transcriptional regulation, protein phosphorylation, and tube development. Conclusion The results suggest that the miRNAs changed by lactogenic hormones are associated with milk protein synthesis, and mammary gland development and maturation. The elevated miR-148a level in DIP-treated BMECs may be associated with its increase in milk during the lactation period of cows.
Collapse
Affiliation(s)
- Susumu Muroya
- Animal Products Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki 305-0901 Japan
| | - Tatsuro Hagi
- Animal Products Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki 305-0901 Japan
| | - Ataru Kimura
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori Japan
| | - Hisashi Aso
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Aoba Sendai, Japan
| | - Masatoshi Matsuzaki
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori Japan
| | - Masaru Nomura
- Animal Products Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki 305-0901 Japan
| |
Collapse
|
55
|
MicroRNAs in Breastmilk and the Lactating Breast: Potential Immunoprotectors and Developmental Regulators for the Infant and the Mother. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:13981-4020. [PMID: 26529003 PMCID: PMC4661628 DOI: 10.3390/ijerph121113981] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/21/2015] [Accepted: 10/27/2015] [Indexed: 12/12/2022]
Abstract
Human milk (HM) is the optimal source of nutrition, protection and developmental programming for infants. It is species-specific and consists of various bioactive components, including microRNAs, small non-coding RNAs regulating gene expression at the post-transcriptional level. microRNAs are both intra- and extra-cellular and are present in body fluids of humans and animals. Of these body fluids, HM appears to be one of the richest sources of microRNA, which are highly conserved in its different fractions, with milk cells containing more microRNAs than milk lipids, followed by skim milk. Potential effects of exogenous food-derived microRNAs on gene expression have been demonstrated, together with the stability of milk-derived microRNAs in the gastrointestinal tract. Taken together, these strongly support the notion that milk microRNAs enter the systemic circulation of the HM fed infant and exert tissue-specific immunoprotective and developmental functions. This has initiated intensive research on the origin, fate and functional significance of milk microRNAs. Importantly, recent studies have provided evidence of endogenous synthesis of HM microRNA within the human lactating mammary epithelium. These findings will now form the basis for investigations of the role of microRNA in the epigenetic control of normal and aberrant mammary development, and particularly lactation performance.
Collapse
|
56
|
Sun J, Aswath K, Schroeder SG, Lippolis JD, Reinhardt TA, Sonstegard TS. MicroRNA expression profiles of bovine milk exosomes in response to Staphylococcus aureus infection. BMC Genomics 2015; 16:806. [PMID: 26475455 PMCID: PMC4609085 DOI: 10.1186/s12864-015-2044-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Milk exosomes are a rich source of microRNAs (miRNAs) that are protected from degradation. Ingestion of milk and subsequent absorption of miRNAs into recipient cells by endocytosis may play a role in the regulation of neonatal innate and adaptive immunity. In contrast, the miRNA content of milk exosomes may also be indicative of a lactating animal's health; whereby, the presence or absence of specific miRNAs could serve as biomarkers for early detection of bacterial infection that can lead to mastitis. In the present study, we therefore analyzed and compared miRNA expression profiles of milk exosomes from four Holstein cows obtained during mid-lactation prior to and after infection (48 h) of the mammary gland with Staphylococcus aureus. METHODS Milk exosomes, purified from control and S. aureus infected cows, were extracted for RNA. Following preparation indexed libraries from both groups the samples were subjected to next generation sequencing. RESULTS Next generation sequencing of eight, unpooled small RNA libraries derived from milk exosomes produced about 60.5 million high-quality, bovine-specific sequence reads for comparison of miRNA expression between treatments. Sequence identity analysis showed the miRNAs make up about 13 % of the average RNA content of these exosomes. Although 417 known bovine miRNAs were identified, miRNAs represented the least diverse class of RNA accounting for only 1 % of all unique sequences. The 20 most prevalent unique sequences within this class accounted for about 90 % of the total miRNA-associated reads across samples. Non-annotated, unique reads provided evidence for another 303 previously unknown bovine miRNAs. Expression analyses found 14 known bovine microRNAs significantly differed in frequency between exosomes from infected and control animals. CONCLUSIONS Our survey of miRNA expression from uninfected milk exosomes and those produced in response to infection provides new and comprehensive information supporting a role for delivery into milk of specific miRNAs involved in immune response. In particular, bta-miR-142-5p, and -223 are potential biomarkers for early detection of bacterial infection of the mammary gland. Additionally, 22 mammary-expressed genes involved in regulation of host immune processes and response to inflammation were identified as potential binding targets of the differentially expressed miRNAs.
Collapse
Affiliation(s)
- Jiajie Sun
- Animal Genomics and Improvement Laboratory, USDA-ARS, BARC-East, Beltsville, MD, 20705, USA.
| | - Kshama Aswath
- School of Systems Biology, George Mason University, 10900 University Boulevard, Manassas, VA, 20110, USA.
| | - Steven G Schroeder
- Animal Genomics and Improvement Laboratory, USDA-ARS, BARC-East, Beltsville, MD, 20705, USA.
| | - John D Lippolis
- Ruminant Diseases and Immunology Unit, National Animal Disease Center, USDA/ARS, Ames, IA, 50010, USA.
| | - Timothy A Reinhardt
- Ruminant Diseases and Immunology Unit, National Animal Disease Center, USDA/ARS, Ames, IA, 50010, USA.
| | - Tad S Sonstegard
- Animal Genomics and Improvement Laboratory, USDA-ARS, BARC-East, Beltsville, MD, 20705, USA. .,Acceligen Inc., 1246 University Avenue W, St. Paul, MN, 55104, USA.
| |
Collapse
|
57
|
Dai Y, Condorelli G, Mehta JL. Scavenger receptors and non-coding RNAs: relevance in atherogenesis. Cardiovasc Res 2015; 109:24-33. [PMID: 26472132 DOI: 10.1093/cvr/cvv236] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/28/2015] [Indexed: 12/12/2022] Open
Abstract
Scavenger receptors (SRs), which recognize modified low-density lipoprotein (LDL) by oxidation or acetylation, are a group of receptors on plasma membrane of macrophages and other cell types. These receptors by facilitating modified LDL uptake are a primary step in the intracellular accumulation of modified LDL and formation of fatty streak. Non-coding RNAs (ncRNAs) are a group of functional RNA nucleotides that are not translated into protein, and include microRNAs (miRs), snoRNAs, siRNAs, snRNAs, exRNAs, piRNAs, and the long ncRNAs (lncRNAs). Recently, ncRNAs have received much attention due to their effects in a variety of disease states such as atherosclerotic cardiovascular disease and cancers. A host of ncRNAs, such as miRs and lncRNAs, have been found to be involved in the regulation of SRs and the inflammatory cascade and subsequently atherosclerosis. Here, we review this important area to create interest in this growing field among researchers and clinicians alike.
Collapse
Affiliation(s)
- Yao Dai
- Department of Internal Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, People's Republic of China Department of Medicine, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | - Jawahar L Mehta
- Department of Medicine, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
58
|
Ibeagha-Awemu EM, Zhao X. Epigenetic marks: regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs. Front Genet 2015; 6:302. [PMID: 26442116 PMCID: PMC4585011 DOI: 10.3389/fgene.2015.00302] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/11/2015] [Indexed: 12/30/2022] Open
Abstract
Improvement in animal productivity has been achieved over the years through careful breeding and selection programs. Today, variations in the genome are gaining increasing importance in livestock improvement strategies. Genomic information alone, however, explains only a part of the phenotypic variance in traits. It is likely that a portion of the unaccounted variance is embedded in the epigenome. The epigenome encompasses epigenetic marks such as DNA methylation, histone tail modifications, chromatin remodeling, and other molecules that can transmit epigenetic information such as non-coding RNA species. Epigenetic factors respond to external or internal environmental cues such as nutrition, pathogens, and climate, and have the ability to change gene expression leading to emergence of specific phenotypes. Accumulating evidence shows that epigenetic marks influence gene expression and phenotypic outcome in livestock species. This review examines available evidence of the influence of epigenetic marks on livestock (cattle, sheep, goat, and pig) traits and discusses the potential for consideration of epigenetic markers in livestock improvement programs. However, epigenetic research activities on farm animal species are currently limited partly due to lack of recognition, funding and a global network of researchers. Therefore, considerable less attention has been given to epigenetic research in livestock species in comparison to extensive work in humans and model organisms. Elucidating therefore the epigenetic determinants of animal diseases and complex traits may represent one of the principal challenges to use epigenetic markers for further improvement of animal productivity.
Collapse
Affiliation(s)
- Eveline M. Ibeagha-Awemu
- Dairy and Swine Research and Development Centre, Agriculture and Agri-Food CanadaSherbrooke, QC, Canada
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste-Anne-De-BellevueQC, Canada
| |
Collapse
|
59
|
Gong G, Sha Z, Chen S, Li C, Yan H, Chen Y, Wang T. Expression profiling analysis of the microRNA response of Cynoglossus semilaevis to Vibrio anguillarum and other stimuli. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:338-352. [PMID: 25715708 DOI: 10.1007/s10126-015-9623-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
To investigate the roles of microRNAs (miRNA) of Cynoglossus semilaevis in response to Vibrio anguillarum that were previously identified using high-throughput sequencing, microarray analyses was performed on three small RNA libraries (CG, NOSG, and HOSG) prepared from C. semilaevis immune tissues. In total, of 1279 designed probes, 739 (57.78 %) were detectable. The expression levels of these miRNAs were analyzed using pairwise comparisons among the three libraries, and a total of 99 miRNAs were observed to be significantly differentially expressed. The expression patterns of 10 differentially expressed miRNAs were validated by real-time quantitative PCR (RT-qPCR). In addition, expression of miR-142-5p, miR-223, and miR-181a in response to V. anguillarum at numerous time-points in four tissues, as well as the responses to lipopolysaccharide (LPS), polyinosinic:polycytidylic acid (poly I:C), peptidoglycan (PGN), and red-spotted grouper nervous necrosis virus (RGNNV) in head kidney cells, were studied by qRT-PCR. Taken together, all of the expression profiles showed significant differences compared to the control group; both similarities and differences in the expression responses to the same pathogen were observed. Collectively, these findings highlighted the putative roles for miRNAs in the context of the innate immune response of C. semilaevis exposing to pathogens and that further studies are needed to understand the molecular mechanisms of miRNA regulation in C. semilaevis host-pathogen interactions.
Collapse
Affiliation(s)
- Guangye Gong
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
60
|
Circulating Toll-like receptor 4-responsive microRNA panel in patients with coronary artery disease: results from prospective and randomized study of treatment with renin-angiotensin system blockade. Clin Sci (Lond) 2015; 128:483-91. [PMID: 25385173 DOI: 10.1042/cs20140417] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The extracellular miRNAs circulate in the bloodstream and may serve as novel diagnostic and therapeutic biomarkers. The aim of the present study was to investigate circulating Toll-like receptor 4 (TLR4)-responsive miRNA expression in patients with coronary artery disease (CAD) and to examine the effects of renin-angiotensin system (RAS) blockade and statins on miRNA levels. This study included 41 patients with CAD and 20 subjects without CAD (non-CAD). Plasma TLR4-responsive miRNA samples were analysed using a microarray assay for 1700 human miRNA. The candidate miRNAs were verified with real-time reverse transcription (RT)-PCR. Patients with CAD were randomized to 12 months of combined treatment with either telmisartan and atorvastatin [angiotensin II receptor blocker (ARB)] or enalapril and atorvastatin [angiotensin-converting enzyme inhibitor (ACEI)]. Plasma samples were obtained from peripheral blood at baseline and after 12 months. The microarray assay showed significant differences in seven TLR4-responsive miRNAs between the CAD and non-CAD groups (P<0.05). Real-time PCR verified that miR-31, miR-181a, miR-16 and miR-145 were significantly lower in the CAD group than in the non-CAD group (P<0.01). Levels of TLR4 protein were higher in the CAD group than in the non-CAD group (P<0.01) and were negatively correlated with levels of TLR4-responsive miRNAs. Receiver operating characteristic (ROC) curve analysis revealed that a panel of these four miRNAs was sensitive and specific enough to distinguish CAD from non-CAD [area under the curve (AUC)=0.93, 95% CI (confidence interval)=0.99-0.87]. Both ARB and ACEI groups showed increased TLR4-responsive miRNAs and diminished levels of TLR4 protein (P<0.05). Changes in miRNAs and TLR4 levels were greater in the ARB group than in the ACEI group (P<0.05). Circulating TLR4-responsive miRNAs including miR-31, miR-181a, miR-16 and miR-145 were significantly lower in patients with CAD compared with controls and these miRNAs may be involved in the pathogenesis of CAD.
Collapse
|
61
|
Li R, Zhang CL, Liao XX, Chen D, Wang WQ, Zhu YH, Geng XH, Ji DJ, Mao YJ, Gong YC, Yang ZP. Transcriptome microRNA profiling of bovine mammary glands infected with Staphylococcus aureus. Int J Mol Sci 2015; 16:4997-5013. [PMID: 25749476 PMCID: PMC4394461 DOI: 10.3390/ijms16034997] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are small non-coding RNA molecules that are important regulators of gene expression at the post-transcriptional level. miRNAs impact the processes of cell proliferation, differentiation and apoptosis. Thus, the regulation of miRNA expression profiles associated with mastitis will be conducive for its control. In this study, Staphylococcus aureus (S. aureus) was administered to the mammary gland of Chinese Holstein cows to construct a bacteria-type mastitis model. Total RNA was isolated from bovine mammary gland tissue samples from the S. aureus-induced mastitis group and controls. miRNAs were analyzed using Solexa sequencing and bioinformatics processing for the experimental group and control group. Two miRNA libraries were constructed respectively. A total of 370 known bovine miRNAs and 341 novel mi RNAs were detected for the S. aureus and 358 known bovine miRNAs and 232 novel miRNAs for control groups. A total of 77 miRNAs in the S. aureus group showed significant differences compared to the control group. GO (Gene Ontology) analysis showed these target genes were involved in the regulation of cells, binding, etc., while KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that these genes were enriched in endocytosis, and olfactory transduction pathways involved in cancer. These results provide an experimental basis to reveal the cause and regulatory mechanism of mastitis and also suggest the potential of miRNAs to serve as biomarkers for the diagnosis of mastitis in dairy cows.
Collapse
Affiliation(s)
- Rui Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Cheng-Long Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Xiang-Xiang Liao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Dan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Wen-Qiang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Yi-Hui Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Xiao-Han Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - De-Jun Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Yong-Jiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Yun-Chen Gong
- The Centre for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, Toronto, ON M5S 2J7, Canada.
| | - Zhang-Ping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
62
|
Bu D, Nan X, Wang F, Loor J, Wang J. Identification and characterization of microRNA sequences from bovine mammary epithelial cells. J Dairy Sci 2015; 98:1696-705. [DOI: 10.3168/jds.2014-8217] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 11/22/2014] [Indexed: 11/19/2022]
|
63
|
Tiezzi F, Parker-Gaddis KL, Cole JB, Clay JS, Maltecca C. A genome-wide association study for clinical mastitis in first parity US Holstein cows using single-step approach and genomic matrix re-weighting procedure. PLoS One 2015; 10:e0114919. [PMID: 25658712 PMCID: PMC4319771 DOI: 10.1371/journal.pone.0114919] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/01/2014] [Indexed: 11/18/2022] Open
Abstract
Clinical mastitis (CM) is one of the health disorders with large impacts on dairy farming profitability and animal welfare. The objective of this study was to perform a genome-wide association study (GWAS) for CM in first-lactation Holstein. Producer-recorded mastitis event information for 103,585 first-lactation cows were used, together with genotype information on 1,361 bulls from the Illumina BovineSNP50 BeadChip. Single-step genomic-BLUP methodology was used to incorporate genomic data into a threshold-liability model. Association analysis confirmed that CM follows a highly polygenic mode of inheritance. However, 10-adjacent-SNP windows showed that regions on chromosomes 2, 14 and 20 have impacts on genetic variation for CM. Some of the genes located on chromosome 14 (LY6K, LY6D, LYNX1, LYPD2, SLURP1, PSCA) are part of the lymphocyte-antigen-6 complex (LY6) known for its neutrophil regulation function linked to the major histocompatibility complex. Other genes on chromosome 2 were also involved in regulating immune response (IFIH1, LY75, and DPP4), or are themselves regulated in the presence of specific pathogens (ITGB6, NR4A2). Other genes annotated on chromosome 20 are involved in mammary gland metabolism (GHR, OXCT1), antibody production and phagocytosis of bacterial cells (C6, C7, C9, C1QTNF3), tumor suppression (DAB2), involution of mammary epithelium (OSMR) and cytokine regulation (PRLR). DAVID enrichment analysis revealed 5 KEGG pathways. The JAK-STAT signaling pathway (cell proliferation and apoptosis) and the 'Cytokine-cytokine receptor interaction' (cytokine and interleukines response to infectious agents) are co-regulated and linked to the 'ABC transporters' pathway also found here. Gene network analysis performed using GeneMania revealed a co-expression network where 665 interactions existed among 145 of the genes reported above. Clinical mastitis is a complex trait and the different genes regulating immune response are known to be pathogen-specific. Despite the lack of information in this study, candidate QTL for CM were identified in the US Holstein population.
Collapse
Affiliation(s)
- Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, United States of America
- * E-mail:
| | - Kristen L. Parker-Gaddis
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, United States of America
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, 20705–2350, United States of America
| | - John B. Cole
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, 20705–2350, United States of America
| | - John S. Clay
- Dairy Records Management Systems, Raleigh, NC, 27603, United States of America
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, United States of America
| |
Collapse
|
64
|
Lawless N, Vegh P, O'Farrelly C, Lynn DJ. The Role of microRNAs in Bovine Infection and Immunity. Front Immunol 2014; 5:611. [PMID: 25505900 PMCID: PMC4245999 DOI: 10.3389/fimmu.2014.00611] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/13/2014] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNAs that are recognized as critical regulators of immune gene expression during infection. Many immunologically significant human miRNAs have been found to be conserved in agriculturally important species, including cattle. Discovering how bovine miRNAs mediate the immune defense during infection is critical to understanding the etiology of the most prevalent bovine diseases. Here, we review current knowledge of miRNAs in the bovine genome, and discuss the advances in understanding of miRNAs as regulators of immune cell function, and bovine immune response activation, regulation, and resolution. Finally, we consider the future perspectives on miRNAs in bovine viral disease, their role as potential biomarkers and in therapy.
Collapse
Affiliation(s)
- Nathan Lawless
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Dunsany , Meath , Ireland ; School of Biochemistry and Immunology, Trinity College Dublin , Dublin , Ireland
| | - Peter Vegh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Dunsany , Meath , Ireland ; School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin , Dublin , Ireland
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity College Dublin , Dublin , Ireland
| | - David J Lynn
- South Australian Health and Medical Research Institute, North Terrace , Adelaide, SA , Australia ; School of Medicine, Flinders University , Bedford Park, SA , Australia
| |
Collapse
|
65
|
Martín-Gómez L, Villalba A, Kerkhoven RH, Abollo E. Role of microRNAs in the immunity process of the flat oyster Ostrea edulis against bonamiosis. INFECTION GENETICS AND EVOLUTION 2014; 27:40-50. [PMID: 25008434 DOI: 10.1016/j.meegid.2014.06.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/20/2014] [Accepted: 06/30/2014] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small (∼22nt) non-coding regulatory single strand RNA molecules that reduce stability and/or translation of sequence-complementary target. miRNAs are a key component of gene regulatory networks and have been involved in a wide variety of biological processes, such as signal transduction, cell proliferation and apoptosis. Many miRNAs are broadly conserved among the animal lineages and even between invertebrates and vertebrates. The European flat oyster Ostrea edulis is highly susceptible to infection with Bonamia ostreae, an intracellular parasite able to survive and proliferate within oyster haemocytes. Mollusc haemocytes play a key role in the immune response of molluscs as main cellular effectors. The roles of miRNAs in the immune response of O. edulis to bonamiosis were analysed using a commercial microarray platform (miRCURY LNA™ v2, Exiqon) for miRNAs. Expression of miRNAs in haemocytes from oysters with different bonamiosis intensity was compared. Differential expression was detected in 63 and 76 miRNAs when comparing heavily-affected with non-affected oysters and with lightly-affected ones, respectively. Among them, 19 miRNAs are known to be linked to immune response, being responsible of proliferation and activation of macrophages, inflammation, apoptosis and/or oxidative damage, which is consistent with the modulation of their expression in oyster haemocytes due to bonamiosis.
Collapse
Affiliation(s)
- Laura Martín-Gómez
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, Aptdo 13, 36620 Vilanova de Arousa, Spain.
| | - Antonio Villalba
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, Aptdo 13, 36620 Vilanova de Arousa, Spain
| | - Ron H Kerkhoven
- Central Microarray Facility, NKI (The Netherlands Cancer Institute), Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Elvira Abollo
- Fundación CETMAR - Centro Tecnológico del Mar, Eduardo Cabello s/n., 36208 Vigo, Spain
| |
Collapse
|
66
|
Jin W, Ibeagha-Awemu EM, Liang G, Beaudoin F, Zhao X, Guan LL. Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles. BMC Genomics 2014. [PMID: 24606609 DOI: 10.1186/1471‐2164‐15‐181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) can post-transcriptionally regulate gene expression and have been shown to be critical regulators to the fine-tuning of epithelial immune responses. However, the role of miRNAs in bovine responses to E. coli and S. aureus, two mastitis causing pathogens, is not well understood. RESULTS The global expression of miRNAs in bovine mammary epithelial cells (MAC-T cells) challenged with and without heat-inactivated Staphylococcus aureus (S. aureus) or Escherichia coli (E. coli) bacteria at 0, 6, 12, 24, and 48 hr was profiled using RNA-Seq. A total of 231 known bovine miRNAs were identified with more than 10 counts per million in at least one of 13 libraries and 5 miRNAs including bta-miR-21-5p, miR-27b, miR-22-3p, miR-184 and let-7f represented more than 50% of the abundance. One hundred and thirteen novel miRNAs were also identified and more than one third of them belong to the bta-miR-2284 family. Seventeen miRNAs were significantly (P < 0.05) differentially regulated by the presence of pathogens. E. coli initiated an earlier regulation of miRNAs (6 miRNAs differentially regulated within the first 6 hrs post challenge as compared to 1 miRNA for S. aureus) while S. aureus presented a delayed response. Five differentially expressed miRNAs (bta-miR-184, miR-24-3p, miR-148, miR-486 and let-7a-5p) were unique to E. coli while four (bta-miR-2339, miR-499, miR-23a and miR-99b) were unique to S. aureus. In addition, our study revealed a temporal differential regulation of five miRNAs (bta-miR-193a-3p, miR-423-5p, miR-30b-5p, miR-29c and miR-un116) in unchallenged cells. Target gene predictions of pathogen differentially expressed miRNAs indicate a significant enrichment in gene ontology functional categories in development/cellular processes, biological regulation as well as cell growth and death. Furthermore, target genes were significantly enriched in several KEGG pathways including immune system, signal transduction, cellular process, nervous system, development and human diseases. CONCLUSION Using next-generation sequencing, our study identified a pathogen directed differential regulation of miRNAs in MAC-T cells with roles in immunity and development. Our study provides a further confirmation of the involvement of mammary epithelia cells in contributing to the immune response to infecting pathogens and suggests the potential of miRNAs to serve as biomarkers for diagnosis and development of control measures.
Collapse
Affiliation(s)
| | | | | | | | - Xin Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada.
| | | |
Collapse
|
67
|
Jin W, Ibeagha-Awemu EM, Liang G, Beaudoin F, Zhao X, Guan LL. Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles. BMC Genomics 2014; 15:181. [PMID: 24606609 PMCID: PMC4029070 DOI: 10.1186/1471-2164-15-181] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/25/2014] [Indexed: 01/23/2023] Open
Abstract
Background MicroRNAs (miRNAs) can post-transcriptionally regulate gene expression and have been shown to be critical regulators to the fine-tuning of epithelial immune responses. However, the role of miRNAs in bovine responses to E. coli and S. aureus, two mastitis causing pathogens, is not well understood. Results The global expression of miRNAs in bovine mammary epithelial cells (MAC-T cells) challenged with and without heat-inactivated Staphylococcus aureus (S. aureus) or Escherichia coli (E. coli) bacteria at 0, 6, 12, 24, and 48 hr was profiled using RNA-Seq. A total of 231 known bovine miRNAs were identified with more than 10 counts per million in at least one of 13 libraries and 5 miRNAs including bta-miR-21-5p, miR-27b, miR-22-3p, miR-184 and let-7f represented more than 50% of the abundance. One hundred and thirteen novel miRNAs were also identified and more than one third of them belong to the bta-miR-2284 family. Seventeen miRNAs were significantly (P < 0.05) differentially regulated by the presence of pathogens. E. coli initiated an earlier regulation of miRNAs (6 miRNAs differentially regulated within the first 6 hrs post challenge as compared to 1 miRNA for S. aureus) while S. aureus presented a delayed response. Five differentially expressed miRNAs (bta-miR-184, miR-24-3p, miR-148, miR-486 and let-7a-5p) were unique to E. coli while four (bta-miR-2339, miR-499, miR-23a and miR-99b) were unique to S. aureus. In addition, our study revealed a temporal differential regulation of five miRNAs (bta-miR-193a-3p, miR-423-5p, miR-30b-5p, miR-29c and miR-un116) in unchallenged cells. Target gene predictions of pathogen differentially expressed miRNAs indicate a significant enrichment in gene ontology functional categories in development/cellular processes, biological regulation as well as cell growth and death. Furthermore, target genes were significantly enriched in several KEGG pathways including immune system, signal transduction, cellular process, nervous system, development and human diseases. Conclusion Using next-generation sequencing, our study identified a pathogen directed differential regulation of miRNAs in MAC-T cells with roles in immunity and development. Our study provides a further confirmation of the involvement of mammary epithelia cells in contributing to the immune response to infecting pathogens and suggests the potential of miRNAs to serve as biomarkers for diagnosis and development of control measures.
Collapse
Affiliation(s)
| | | | | | | | - Xin Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada.
| | | |
Collapse
|
68
|
Gigli I, Maizon DO. microRNAs and the mammary gland: A new understanding of gene expression. Genet Mol Biol 2013; 36:465-74. [PMID: 24385846 PMCID: PMC3873174 DOI: 10.1590/s1415-47572013005000040] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/28/2013] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) have been identified in cells as well as in exosomes in biological fluids such as milk. In mammary gland, most of the miRNAs studied have functions related to immunity and show alterations in their pattern of expression during lactation. In mastitis, the inflammatory response caused by Streptococcus uberis alters the expression of miRNAs that may regulate the innate immune system. These small RNAs are stable at room temperature and are resistant to repeated freeze/thaw cycles, acidic conditions and degradation by RNAse, making them resistant to industrial procedures. These properties mean that miRNAs could have multiple applications in veterinary medicine and biotechnology. Indeed, lactoglobulin-free milk has been produced in transgenic cows expressing specific miRNAs. Although plant and animal miRNAs have undergone independent evolutionary adaptation recent studies have demonstrated a cross-kingdom passage in which rice miRNA was isolated from human serum. This finding raises questions about the possible effect that miRNAs present in foods consumed by humans could have on human gene regulation. Further studies are needed before applying miRNA biotechnology to the milk industry. New discoveries and a greater knowledge of gene expression will lead to a better understanding of the role of miRNAs in physiology, nutrition and evolution.
Collapse
Affiliation(s)
- Isabel Gigli
- Facultad de Agronomía, Universidad de La Pampa, Santa Rosa, La Pampa, Argentina
| | - Daniel Omar Maizon
- INTA, EEA Anguil "Ing. Agr. Guillermo Covas", Anguil, La Pampa, Argentina
| |
Collapse
|
69
|
MicroRNAs: new insights into the pathogenesis of endodontic periapical disease. J Endod 2013; 39:1498-503. [PMID: 24238436 DOI: 10.1016/j.joen.2013.08.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Apical periodontitis is an inflammatory disease of the periradicular tissues caused by the host's immune response to infection of the root canal system. MicroRNAs (miRNAs) have been shown to play an important role in the regulation of inflammation and the immune response; however, their role in the pathogenesis of endodontic periapical disease has not been explored. The purpose of this study was to examine the differential expression of miRNAs in diseased periapical tissues as compared with healthy controls. METHODS We first compared miRNA profiles in diseased periapical tissues collected from patients undergoing endodontic surgery with those of healthy pulps by using microarray analyses. The target genes of the differentially expressed miRNAs were identified by using miRWalk and PubMed. Selected miRNAs linked to inflammation and the immune response were then confirmed in a separate cohort of diseased and healthy tissues by using quantitative reverse transcription-polymerase chain reaction. Healthy pulps and periodontal ligaments were used as controls. Data were normalized to the level of SNORD 44, which served as an endogenous control. RESULTS Of the 381 miRNAs identified by using microarray, 24 miRNAs were down-regulated in diseased periapical tissues compared with controls (n = 13) (P < .003). The down-regulation of 7 miRNAs was confirmed from 9 selected miRNAs by using quantitative real-time polymerase chain reaction (n = 19) (P < .05). Target genes of these miRNAs include key mediators in the immune and inflammatory response such as interleukin-6, matrix metalloproteinase-9, and transforming growth factor-β. CONCLUSIONS These findings offer new insight into the pathogenesis of endodontic disease and have the potential to impact the development of new methods for prevention, diagnosis, and treatment of apical periodontitis.
Collapse
|
70
|
Abstract
microRNAs (miRNAs) are a class of small noncoding RNA that bind to complementary sequences in the untranslated regions of multiple target mRNAs resulting in posttranscriptional regulation of gene expression. The recent discovery and expression-profiling studies of miRNAs in domestic livestock have revealed both their tissue-specific and temporal expression pattern. In addition, breed-dependent expression patterns as well as single nucleotide polymorphisms in either the miRNA or in the target mRNA binding site have revealed associations with traits of economic importance and highlight the potential use of miRNAs in future genomic selection programs.
Collapse
Affiliation(s)
- Attia Fatima
- Department of Bioinformatics, National University of Ireland Galway, Galway, Ireland; and
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland
| | - Dermot G. Morris
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland
| |
Collapse
|
71
|
Next generation sequencing reveals the expression of a unique miRNA profile in response to a gram-positive bacterial infection. PLoS One 2013; 8:e57543. [PMID: 23472090 PMCID: PMC3589390 DOI: 10.1371/journal.pone.0057543] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/25/2013] [Indexed: 12/03/2022] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs, which post-transcriptionally regulate gene expression and are proposed to play a key role in the regulation of innate and adaptive immunity. Here, we report a next generation sequencing (NGS) approach profiling the expression of miRNAs in primary bovine mammary epithelial cells (BMEs) at 1, 2, 4 and 6 hours post-infection with Streptococcus uberis, a causative agent of bovine mastitis. Analysing over 450 million sequencing reads, we found that 20% of the approximately 1,300 currently known bovine miRNAs are expressed in unchallenged BMEs. We also identified the expression of more than 20 potentially novel bovine miRNAs. There is, however, a significant dynamic range in the expression of known miRNAs. The top 10 highly expressed miRNAs account for >80% of all aligned reads, with the remaining miRNAs showing much lower expression. Twenty-one miRNAs were identified as significantly differentially expressed post-infection with S. uberis. Several of these miRNAs have characterised roles in the immune systems of other species. This miRNA response to the Gram-positive S. uberis is markedly different, however, to lipopolysaccharide (LPS) induced miRNA expression. Of 145 miRNAs identified in the literature as being LPS responsive, only 9 were also differentially expressed in response to S. uberis. Computational analysis has also revealed that the predicted target genes of miRNAs, which are down-regulated in BMEs following S. uberis infection, are statistically enriched for roles in innate immunity. This suggests that miRNAs, which potentially act as central regulators of gene expression responses to a Gram-positive bacterial infection, may significantly regulate the sentinel capacity of mammary epithelial cells to mobilise the innate immune system.
Collapse
|