51
|
p53 in neurodegenerative diseases and brain cancers. Pharmacol Ther 2013; 142:99-113. [PMID: 24287312 DOI: 10.1016/j.pharmthera.2013.11.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 12/21/2022]
Abstract
More than thirty years elapsed since a protein, not yet called p53 at the time, was detected to bind SV40 during viral infection. Thousands of papers later, p53 evolved as the main tumor suppressor involved in growth arrest and apoptosis. A lot has been done but the protein has not yet revealed all its secrets. Particularly important is the observation that in totally distinct pathologies where apoptosis is either exacerbated or impaired, p53 appears to play a central role. This is exemplified for Alzheimer's and Parkinson's diseases that represent the two main causes of age-related neurodegenerative affections, where cell death enhancement appears as one of the main etiological paradigms. Conversely, in cancers, about half of the cases are linked to mutations in p53 leading to the impairment of p53-dependent apoptosis. The involvement of p53 in these pathologies has driven a huge amount of studies aimed at designing chemical tools or biological approaches to rescue p53 defects or over-activity. Here, we describe the data linking p53 to neurodegenerative diseases and brain cancers, and we document the various strategies to interfere with p53 dysfunctions in these disorders.
Collapse
|
52
|
Maarouf CL, Kokjohn TA, Whiteside CM, Macias MP, Kalback WM, Sabbagh MN, Beach TG, Vassar R, Roher AE. Molecular Differences and Similarities Between Alzheimer's Disease and the 5XFAD Transgenic Mouse Model of Amyloidosis. BIOCHEMISTRY INSIGHTS 2013; 6:1-10. [PMID: 25210460 PMCID: PMC4154482 DOI: 10.4137/bci.s13025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transgenic (Tg) mouse models of Alzheimer’s disease (AD) have been extensively used to study the pathophysiology of this dementia and to test the efficacy of drugs to treat AD. The 5XFAD Tg mouse, which contains two presenilin-1 and three amyloid precursor protein (APP) mutations, was designed to rapidly recapitulate a portion of the pathologic alterations present in human AD. APP and its proteolytic peptides, as well as apolipoprotein E and endogenous mouse tau, were investigated in the 5XFAD mice at 3 months, 6 months, and 9 months. AD and nondemented subjects were used as a frame of reference. APP, amyloid-beta (Aβ) peptides, APP C-terminal fragments (CT99, CT83, AICD), β-site APP-cleaving enzyme, and APLP1 substantially increased with age in the brains of 5XFAD mice. Endogenous mouse tau did not show age-related differences. The rapid synthesis of Aβ and its impact on neuronal loss and neuroinflammation make the 5XFAD mice a desirable paradigm to model AD.
Collapse
Affiliation(s)
- Chera L Maarouf
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute Sun City, AZ, USA
| | - Tyler A Kokjohn
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute Sun City, AZ, USA. ; Department of Microbiology, Midwestern University School of Medicine, Glendale, AZ, USA
| | - Charisse M Whiteside
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute Sun City, AZ, USA
| | - MiMi P Macias
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute Sun City, AZ, USA
| | - Walter M Kalback
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute Sun City, AZ, USA
| | - Marwan N Sabbagh
- Roberts Clinical Center, Banner Sun Health Research Institute Sun City, AZ, USA. ; University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Thomas G Beach
- Harold Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Robert Vassar
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alex E Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute Sun City, AZ, USA
| |
Collapse
|
53
|
Lai WB, Wang BJ, Hu MK, Hsu WM, Her GM, Liao YF. Ligand-dependent activation of EphA4 signaling regulates the proteolysis of amyloid precursor protein through a Lyn-mediated pathway. Mol Neurobiol 2013; 49:1055-68. [PMID: 24217950 DOI: 10.1007/s12035-013-8580-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/24/2013] [Indexed: 11/27/2022]
Abstract
Alzheimer's disease is the most common dementia afflicting the elderly in modern society. This disease arises from the neurotoxicity elicited by abnormal aggregates of amyloid-β (Aβ) protein. Such aggregates form through the cleavage of amyloid precursor protein (APP) by β-secretase and the subsequent proteolysis of the APP C-terminal fragment (APP-βCTF or C99) by γ-secretase to yield Aβ and APP intracellular domain (AICD). Recent evidence suggests that C99 and AICD may exert harmful effects on cells, suggesting that the proteolytic products of APP, including Aβ, C99, and AICD, could play a pivotal role in neuronal viability. Here, we demonstrate that ligand-activated EphA4 signaling governs the proteostasis of C99, AICD, and Aβ, without significantly affecting γ-secretase activity. EphA4 induced accumulation of C99 and AICD through a Lyn-dependent pathway; activation of this pathway triggered phosphorylation of EphA4, resulting in positive feedback of C99 and AICD proteostasis. Inhibition of EphA4 by dasatinib, a receptor tyrosine kinase inhibitor, effectively suppressed C99 and AICD accumulation. Furthermore, EphA4 signaling controlled C99 and AICD proteolysis through the ubiquitin-proteasome system. In conclusion, we have identified an EphA4-Lyn pathway that is essential for the metabolism of APP and its proteolytic derivatives, thereby providing novel pharmacological targets for the development of anti-Aβ therapeutics for AD.
Collapse
Affiliation(s)
- Wei-Bin Lai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
54
|
Nalivaeva NN, Turner AJ. The amyloid precursor protein: a biochemical enigma in brain development, function and disease. FEBS Lett 2013; 587:2046-54. [PMID: 23684647 DOI: 10.1016/j.febslet.2013.05.010] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/06/2013] [Accepted: 05/06/2013] [Indexed: 12/11/2022]
Abstract
For 20 years the amyloid cascade hypothesis of Alzheimer disease (AD) has placed the amyloid-β peptide (Aβ), formed from the amyloid precursor protein (APP), centre stage in the process of neurodegeneration. However, no new therapeutic agents have reached the clinic through exploitation of the hypothesis. The APP metabolites, including Aβ, generated by its proteolytic processing, have distinct physiological functions. In particular, the cleaved intracellular domain of APP (AICD) regulates expression of several genes, including APP itself, the β-secretase BACE-1 and the Aβ-degrading enzyme, neprilysin and this transcriptional regulation involves direct promoter binding of AICD. Of the three major splice isoforms of APP (APP695, APP751, APP770), APP695 is the predominant neuronal form, from which Aβ and transcriptionally-active AICD are preferentially generated by selective processing through the amyloidogenic pathway. Despite intensive research, the normal functions of the APP isoforms remain an enigma. APP plays an important role in brain development, memory and synaptic plasticity and secreted forms of APP are neuroprotective. A fuller understanding of the physiological and pathological actions of APP and its metabolic and gene regulatory network could provide new therapeutic opportunities in neurodegeneration, including AD.
Collapse
Affiliation(s)
- Natalia N Nalivaeva
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
55
|
Pinnix I, Ghiso JA, Pappolla MA, Sambamurti K. Major carboxyl terminal fragments generated by γ-secretase processing of the Alzheimer amyloid precursor are 50 and 51 amino acids long. Am J Geriatr Psychiatry 2013; 21:474-83. [PMID: 23570890 PMCID: PMC3740189 DOI: 10.1016/j.jagp.2013.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 02/04/2013] [Accepted: 02/15/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES To understand the cleavage of the amyloid β protein (Aβ) precursor (APP) by γ-secretase and to determine its changes in a representative familial Alzheimer disease (FAD) mutation. METHODS Transfected cells expressing wild-type and FAD mutant APP were analyzed for changes in the levels of the major secreted Aβ species and of the corresponding intracellular C-terminal APP fragments (APP intracellular domain, AICD) generated by γ-secretase, whereas radio-sequencing was used to precisely identify the resulting cleavage site(s). RESULTS The AICD fragment(s) generated by γ-secretase cleavage comigrated in gels with a 50-residue synthetic peptide used as control, which is smaller than the 59 and 57 residues predicted from Aβ ending at positions 40 (Aβ40) and 42 (Aβ42), respectively. In agreement with previous findings, an FAD mutant form of presenilin 1 (PS1-M139V) significantly increased the longer Aβ42 while showing trends toward reducing Aβ40. AICD levels were reduced by the mutation, suggesting that γ-secretase activity may be actually impaired by the mutation. Radiosequence analysis in cells expressing wild-type PS1 detected γ-secretase cleavage sites at the Aβ peptide bond L(49)-V(50) to generate a 50-amino acid (aa) AICD fragment (AICD50) and the Aβ peptide bond T(48)-L(49), generating an AICD of 51 aa (AICD51). No other cleavage sites were reliably detected. CONCLUSIONS Based on findings that the FAD mutation that increases Aβ42 also reduces AICD, we propose that γ-secretase activity is impaired by FAD mutations and predict that physiologic and environmental agents that inhibit γ-secretase will actually induce AD pathogenesis rather that prevent it. Furthermore, we propose that the cleavage site to generate AICD is naturally ragged and occurs predominantly at two sites 48 and 49 aa from the start of the Aβ sequence. Thus, end specific antibodies to these two sites will need to be generated to study the quantitative relationships between these two cleavages in sporadic AD and FAD.
Collapse
Affiliation(s)
| | | | | | - Kumar Sambamurti
- To whom correspondence should be addressed: Kumar Sambamurti, Ph.D., Professor of Neuroscience, 173 Ashley Avenue, BSB 403, Charleston, SC 29425, Tel: 843 792 4315,
| |
Collapse
|
56
|
Peuchmaur M, Lacour MA, Sévalle J, Lisowski V, Touati-Jallabe Y, Rodier F, Martinez J, Checler F, Hernandez JF. Further characterization of a putative serine protease contributing to the γ-secretase cleavage of β-amyloid precursor protein. Bioorg Med Chem 2013; 21:1018-29. [DOI: 10.1016/j.bmc.2012.11.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/05/2012] [Accepted: 11/15/2012] [Indexed: 12/11/2022]
|
57
|
Duplan E, Sevalle J, Viotti J, Goiran T, Bauer C, Renbaum P, Levy-Lahad E, Gautier CA, Corti O, Leroudier N, Checler F, da Costa CA. Parkin differently regulates presenilin-1 and presenilin-2 functions by direct control of their promoter transcription. J Mol Cell Biol 2013; 5:132-42. [PMID: 23359614 DOI: 10.1093/jmcb/mjt003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We previously established that besides its canonical function as E3-ubiquitin ligase, parkin also behaves as a transcriptional repressor of p53. Here we show that parkin differently modulates presenilin-1 and presenilin-2 expression and functions at transcriptional level. Thus, parkin enhances/reduces the protein expression, promoter activity and mRNA levels of presenilin-1 and presenilin-2, respectively, in cells and in vivo. This parkin-associated function is independent of its ubiquitin-ligase activity and remains unrelated to its capacity to repress p53. Accordingly, physical interaction of endogenous or overexpressed parkin with presenilins promoters is demonstrated by chromatin immunoprecipitation assays (ChIP). Furthermore, we identify a consensus sequence, the deletion of which abolishes parkin-dependent modulation of presenilins-1/2 and p53 promoter activities. Interestingly, electrophoretic mobility shift assays (EMSA) revealed a physical interaction between this consensus sequence and wild-type but not mutated parkin. Finally, we demonstrate that the RING1-IBR-RING2 domain of parkin harbors parkin's potential to modulate presenilins promoters. This transcriptional control impacts on presenilins-associated phenotypes, since parkin increases presenilin-1-associated γ-secretase activity and reduces presenilin-2-linked caspase-3 activation. Overall, our data delineate a promoter responsive element targeted by parkin that drives differential regulation of presenilin-1 and presenilin-2 transcription with functional consequences for γ-secretase activity and cell death.
Collapse
Affiliation(s)
- Eric Duplan
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNSA, Sophia-Antipolis, Valbonne 06560, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Song H, Boo JH, Kim KH, Kim C, Kim YE, Ahn JH, Jeon GS, Ryu H, Kang DE, Mook-Jung I. Critical role of presenilin-dependent γ-secretase activity in DNA damage-induced promyelocytic leukemia protein expression and apoptosis. Cell Death Differ 2013; 20:639-48. [PMID: 23306558 DOI: 10.1038/cdd.2012.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Promyelocytic leukemia (PML) is a major component of macromolecular multiprotein complexes called PML nuclear-bodies (PML-NBs). These PML-NBs recruit numerous proteins including CBP, p53 and HIPK2 in response to DNA damage, senescence and apoptosis. In this study, we investigated the effect of presenilin (PS), the main component of the γ-secretase complex, in PML/p53 expression and downstream consequences during DNA damage-induced cell death using camptothecin (CPT). We found that the loss of PS in PS knockout (KO) MEFs (mouse embryonic fibroblasts) results in severely blunted PML expression and attenuated cell death upon CPT exposure, a phenotype that is fully reversed by re-expression of PS1 in PS KO cells and recapitulated by γ-secretase inhibitors in hPS1 MEFs. Interestingly, the γ-secretase cleavage product, APP intracellular domain (AICD), together with Fe65-induced PML expression at the protein and transcriptional levels in PS KO cells. PML and p53 reciprocally positively regulated each other during CPT-induced DNA damage, both of which were dependent on PS. Finally, elevated levels of PML-NB, PML protein and PML mRNA were detected in the brain tissues from Alzheimer's disease (AD) patients, where γ-secretase activity is essential for pathogenesis. Our data provide for the first time, a critical role of the PS/AICD-PML/p53 pathway in DNA damage-induced apoptosis, and implicate this pathway in AD pathogenesis.
Collapse
Affiliation(s)
- H Song
- Department of Biochemistry and Biomedical Sciences, WCU neurocytomics, College of Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Appoptosin is a novel pro-apoptotic protein and mediates cell death in neurodegeneration. J Neurosci 2013; 32:15565-76. [PMID: 23115192 DOI: 10.1523/jneurosci.3668-12.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Apoptosis is an essential cellular process in multiple diseases and a major pathway for neuronal death in neurodegeneration. The detailed signaling events/pathways leading to apoptosis, especially in neurons, require further elucidation. Here we identify a β-amyloid precursor protein (APP)-interacting protein, designated as appoptosin, whose levels are upregulated in brain samples from Alzheimer's disease and infarct patients, and in rodent stroke models, as well as in neurons treated with β-amyloid (Aβ) and glutamate. We further demonstrate that appoptosin induces reactive oxygen species release and intrinsic caspase-dependent apoptosis. The physiological function of appoptosin is to transport/exchange glycine/5-amino-levulinic acid across the mitochondrial membrane for heme synthesis. Downregulation of appoptosin prevents cell death and caspase activation caused by glutamate or Aβ insults. APP modulates appoptosin-mediated apoptosis through interaction with appoptosin. Our study identifies appoptosin as a crucial player in apoptosis and a novel pro-apoptotic protein involved in neuronal cell death, providing a possible new therapeutic target for neurodegenerative disorders.
Collapse
|
60
|
Müller T, Schrötter A, Loosse C, Pfeiffer K, Theiss C, Kauth M, Meyer HE, Marcus K. A ternary complex consisting of AICD, FE65, and TIP60 down-regulates Stathmin1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:387-94. [DOI: 10.1016/j.bbapap.2012.07.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/14/2012] [Accepted: 07/31/2012] [Indexed: 01/08/2023]
|
61
|
Tamayev R, Akpan N, Arancio O, Troy CM, D'Adamio L. Caspase-9 mediates synaptic plasticity and memory deficits of Danish dementia knock-in mice: caspase-9 inhibition provides therapeutic protection. Mol Neurodegener 2012; 7:60. [PMID: 23217200 PMCID: PMC3543220 DOI: 10.1186/1750-1326-7-60] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/05/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutations in either Aβ Precursor protein (APP) or genes that regulate APP processing, such as BRI2/ITM2B and PSEN1/PSEN2, cause familial dementias. Although dementias due to APP/PSEN1/PSEN2 mutations are classified as familial Alzheimer disease (FAD) and those due to mutations in BRI2/ITM2B as British and Danish dementias (FBD, FDD), data suggest that these diseases have a common pathogenesis involving toxic APP metabolites. It was previously shown that FAD mutations in APP and PSENs promote activation of caspases leading to the hypothesis that aberrant caspase activation could participate in AD pathogenesis. RESULTS Here, we tested whether a similar mechanism applies to the Danish BRI2/ITM2B mutation. We have generated a genetically congruous mouse model of FDD, called FDD(KI), which presents memory and synaptic plasticity deficits. We found that caspase-9 is activated in hippocampal synaptic fractions of FDD(KI) mice and inhibition of caspase-9 activity rescues both synaptic plasticity and memory deficits. CONCLUSION These data directly implicate caspase-9 in the pathogenesis of Danish dementia and suggest that reducing caspase-9 activity is a valid therapeutic approach to treating human dementias.
Collapse
Affiliation(s)
- Robert Tamayev
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
62
|
Ryu J, Yu HN, Cho H, Kim HS, Baik TK, Lee SJ, Woo RS. Neuregulin-1 exerts protective effects against neurotoxicities induced by C-terminal fragments of APP via ErbB4 receptor. J Pharmacol Sci 2012; 119:73-81. [PMID: 22739235 DOI: 10.1254/jphs.12057fp] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Neuregulin-1 (NRG1) plays important roles in the development and plasticity of the brain, and it is also reported to have potent neuroprotective properties. We previously reported that NRG1 has neuroprotective actions against Swedish amyloid precursor protein-induced neurotoxicity. In addition to the amyloid beta peptide, other metabolites of amyloid precursor protein (APP) such as the C-terminal fragments of APP (APP-CTs) have been reported to possess cytotoxic effects in neuronal cells. In this study, we investigated whether NRG1 exerts neuroprotective effects against APP-CTs and attempted to determine its neuroprotective mechanisms. NRG1 attenuated the neurotoxicities induced by the expression of APP-CTs in neuronal cells. NRG1 also reduced the accumulation of reactive oxygen species and attenuated mitochondrial membrane potential loss induced by APP-CTs. In addition, NRG1 upregulated the expression of the anti-apoptotic protein Bcl-2. This effect was blocked by the inhibition of ErbB4, a key NRG1 receptor. Taken together, these results demonstrate the neuroprotective potential of NRG1 in Alzheimer's disease.
Collapse
Affiliation(s)
- Junghwa Ryu
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
63
|
Furgerson M, Fechheimer M, Furukawa R. Model Hirano bodies protect against tau-independent and tau-dependent cell death initiated by the amyloid precursor protein intracellular domain. PLoS One 2012; 7:e44996. [PMID: 23028730 PMCID: PMC3445605 DOI: 10.1371/journal.pone.0044996] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 08/14/2012] [Indexed: 11/19/2022] Open
Abstract
The main pathological hallmarks of Alzheimer's disease are amyloid-beta plaques and neurofibrillary tangles, which are primarily composed of amyloid precursor protein (APP) and tau, respectively. These proteins and their role in the mechanism of neurodegeneration have been extensively studied. Hirano bodies are a frequently occurring pathology in Alzheimer's disease as well as other neurodegenerative diseases. However, the physiological role of Hirano bodies in neurodegenerative diseases has yet to be determined. We have established cell culture models to study the role of Hirano bodies in amyloid precursor protein and tau-induced cell death mechanisms. Exogenous expression of APP and either of its c-terminal fragments c31 or Amyloid Precursor Protein Intracellular Domain c58 (AICDc58) enhance cell death. The presence of tau is not required for this enhanced cell death. However, the addition of a hyperphosphorylated tau mimic 352PHPtau significantly increases cell death in the presence of both APP and c31 or AICDc58 alone. The mechanism of cell death induced by APP and its c-terminal fragments and tau was investigated. Fe65, Tip60, p53, and caspases play a role in tau-independent and tau-dependent cell death. In addition, apoptosis was determined to contribute to cell death. The presence of model Hirano bodies protected against cell death, indicating Hirano bodies may play a protective role in neurodegeneration.
Collapse
Affiliation(s)
- Matthew Furgerson
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Marcus Fechheimer
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Ruth Furukawa
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
64
|
Abstract
The conventional view of AD (Alzheimer's disease) is that much of the pathology is driven by an increased load of β-amyloid in the brain of AD patients (the 'Amyloid Hypothesis'). Yet, many therapeutic strategies based on lowering β-amyloid have so far failed in clinical trials. This failure of β-amyloid-lowering agents has caused many to question the Amyloid Hypothesis itself. However, AD is likely to be a complex disease driven by multiple factors. In addition, it is increasingly clear that β-amyloid processing involves many enzymes and signalling pathways that play a role in a diverse array of cellular processes. Thus the clinical failure of β-amyloid-lowering agents does not mean that the hypothesis itself is incorrect; it may simply mean that manipulating β-amyloid directly is an unrealistic strategy for therapeutic intervention, given the complex role of β-amyloid in neuronal physiology. Another possible problem may be that toxic β-amyloid levels have already caused irreversible damage to downstream cellular pathways by the time dementia sets in. We argue in the present review that a more direct (and possibly simpler) approach to AD therapeutics is to rescue synaptic dysfunction directly, by focusing on the mechanisms by which elevated levels of β-amyloid disrupt synaptic physiology.
Collapse
Affiliation(s)
- Andrew F Teich
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 West 168th Street, PH15-124, New York, NY 10032, USA.
| | | |
Collapse
|
65
|
Matsuda S, Tamayev R, D'Adamio L. Increased AβPP processing in familial Danish dementia patients. J Alzheimers Dis 2012; 27:385-91. [PMID: 21841249 DOI: 10.3233/jad-2011-110785] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An autosomal dominant mutation in the BRI2/ITM2B gene causes Familial Danish Dementia (FDD). We have generated a mouse model of FDD, called FDDKI, genetically congruous to the human disease. These mice carry one mutant and one wild type Bri2/Itm2b allele, like FDD patients. Analysis of FDDKI mice and samples from human patients has shown that the Danish mutation causes loss of Bri2 protein. FDDKI mice show synaptic plasticity and memory impairments. BRI2 is a physiological interactor of amyloid-β protein precursor (AβPP), a gene associated with Alzheimer's disease, which inhibits processing of AβPP. AβPP/Bri2 complexes are reduced in synaptic membranes of FDDKI mice. Consequently, AβPP metabolites derived from processing of AβPP by β-, α-, and γ-secretases are increased in Danish dementia mice. AβPP haplodeficiency prevents memory and synaptic dysfunctions, consistent with a role for AβPP-metabolites in the pathogenesis of memory and synaptic deficits. This genetic suppression provides compelling evidence that AβPP and BRI2 functionally interact. Here, we have investigated whether AβPP processing is altered in FDD patients' brain samples. We find that the levels of several AβPP metabolites, including Aβ, are significantly increased in the brain sample derived from an FDD patient. Our data are consistent with the findings in FDDKI mice, and support the hypothesis that the neurological effects of the Danish form of BRI2 are caused by toxic AβPP metabolites, suggesting that Familial Danish and Alzheimer's dementias share common pathogenic mechanisms.
Collapse
Affiliation(s)
- Shuji Matsuda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
66
|
Viana RJS, Nunes AF, Rodrigues CMP. Endoplasmic reticulum enrollment in Alzheimer's disease. Mol Neurobiol 2012; 46:522-34. [PMID: 22815194 DOI: 10.1007/s12035-012-8301-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/05/2012] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) poses a huge challenge for society and health care worldwide as molecular pathogenesis of the disease is poorly understood and curative treatment does not exist. The mechanisms leading to accelerated neuronal cell death in AD are still largely unknown, but accumulation of misfolded disease-specific proteins has been identified as potentially involved. In the present review, we describe the essential role of endoplasmic reticulum (ER) in AD. Despite the function that mitochondria may play as the central major player in the apoptotic process, accumulating evidence highlights ER as a critical organelle in AD. Stress that impairs ER physiology leads to accumulation of unfolded or misfolded proteins, such as amyloid β (Aβ) peptide, the major component of amyloid plaques. In an attempt to ameliorate the accumulation of unfolded proteins, ER stress triggers a protective cellular mechanism, which includes the unfolded protein response (UPR). However, when activation of the UPR is severe or prolonged enough, the final cellular outcome is pathologic apoptotic cell death. Distinct pathways can be activated in this process, involving stress sensors such as the JNK pathway or ER chaperones such as Bip/GRP94, stress modulators such as Bcl-2 family proteins, or even stress effectors such as caspase-12. Here, we detail the involvement of the ER and associated stress pathways in AD and discuss potential therapeutic strategies targeting ER stress.
Collapse
Affiliation(s)
- Ricardo J S Viana
- Research Institute for Medicines and Pharmaceutical Sciences, University of Lisbon, Lisbon 1649-003, Portugal
| | | | | |
Collapse
|
67
|
Pardossi-Piquard R, Checler F. The physiology of the β-amyloid precursor protein intracellular domain AICD. J Neurochem 2011; 120 Suppl 1:109-124. [PMID: 22122663 DOI: 10.1111/j.1471-4159.2011.07475.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The amyloid-β precursor protein (βAPP) undergoes several cleavages by enzymatic activities called secretases. Numerous studies aimed at studying the biogenesis and catabolic fate of Aβ peptides, the proteinaceous component of the senile plaques that accumulate in Alzheimer's disease-affected brains. Relatively recently, another secretase-mediated β-APP-derived catabolite called APP IntraCellular Domain (AICD) entered the game. Whether AICD corresponded to a biologically inert by-pass product of βAPP processing or whether it could harbor its own function remained questionable. In this study, we review the mechanisms by which AICD is generated and how its production is regulated. Furthermore, we discuss the degradation mechanism underlying its rapid catabolic fate. Finally, we review putative AICD-related functions and more particularly, the numerous studies indicating that AICD could translocate to the nucleus and control at a transcriptional level, the expression of a series of proteins involved in various functions including the control of cell death and Aβ degradation.
Collapse
Affiliation(s)
- Raphaëlle Pardossi-Piquard
- Université de Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire UMR6097 CNRS, Equipe labellisée Fondation pour la Recherche Médicale, Sophia-Antipolis, Valbonne, France
| | - Frédéric Checler
- Université de Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire UMR6097 CNRS, Equipe labellisée Fondation pour la Recherche Médicale, Sophia-Antipolis, Valbonne, France
| |
Collapse
|
68
|
Zhang H, Ma Q, Zhang YW, Xu H. Proteolytic processing of Alzheimer's β-amyloid precursor protein. J Neurochem 2011; 120 Suppl 1:9-21. [PMID: 22122372 DOI: 10.1111/j.1471-4159.2011.07519.x] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
β-Amyloid precursor protein (APP) is a critical factor in the pathogenesis of Alzheimer's disease (AD). APP undergoes post-translational proteolysis/processing to generate the hydrophobic β-amyloid (Aβ) peptides. Deposition of Aβ in the brain, forming oligomeric Aβ and plaques, is identified as one of the key pathological hallmarks of AD. The processing of APP to generate Aβ is executed by β- and γ-secretase and is highly regulated. Aβ toxicity can lead to synaptic dysfunction, neuronal cell death, impaired learning/memory and abnormal behaviors in AD models in vitro and in vivo. Aside from Aβ, proteolytic cleavages of APP can also give rise to the APP intracellular domain, reportedly involved in multiple types of cellular events such as gene transcription and apoptotic cell death. In addition to amyloidogenic processing, APP can also be cleaved by α-secretase to form a soluble or secreted APP ectodomain (sAPP-α) that has been shown to be mostly neuro-protective. In this review, we describe the mechanisms involved in APP metabolism and the likely functions of its various proteolytic products to give a better understanding of the patho/physiological functions of APP.
Collapse
Affiliation(s)
- Han Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, College of Medicine, Xiamen University, Xiamen, Fujian, China.,Neurodegenerative Disease Research Program, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Qilin Ma
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, College of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, College of Medicine, Xiamen University, Xiamen, Fujian, China.,Neurodegenerative Disease Research Program, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| |
Collapse
|
69
|
Nuclear signalling by membrane protein intracellular domains: the AICD enigma. Cell Signal 2011; 24:402-409. [PMID: 22024280 DOI: 10.1016/j.cellsig.2011.10.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/10/2011] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative illness and the leading cause of dementia in the elderly. The accumulation of amyloid-β peptide (Aβ) is a well-known pathological hallmark associated with the disease. However, Aβ is only one of several metabolites produced by β- and γ-secretase actions on the transmembrane protein, the amyloid precursor protein (APP). A proteolytic fragment termed the APP intracellular domain (AICD) is also produced. By analogy with the Notch signalling pathway, AICD has been proposed as a transcriptional regulator although its mechanism of action and the complement of genes regulated remain controversial. This review will focus on the contributions that studies of APP processing have brought to the understanding of a novel nuclear signalling pathway that may contribute to the pathology of AD and may provide new therapeutic opportunities.
Collapse
|
70
|
Amyloid-β Production: Major Link Between Oxidative Stress and BACE1. Neurotox Res 2011; 22:208-19. [DOI: 10.1007/s12640-011-9283-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/28/2011] [Accepted: 09/30/2011] [Indexed: 12/20/2022]
|
71
|
Abstract
The pathogenic model of Alzheimer's disease (AD) posits that aggregates of amyloid β, a product of amyloid precursor protein (APP) processing, cause dementia. However, alterations of normal APP functions could contribute to AD pathogenesis, and it is therefore important to understand the role of APP. APP is a member of a gene family that shows functional redundancy as documented by the evidence that single knock-out mice are viable, whereas mice with combined deletions of APP family genes die shortly after birth. A residue in the APP intracellular region, Y(682), is indispensable for these essential functions of APP. It is therefore important to identify pathways that regulate phosphorylation of Y(682) as well as the role of Y(682) in vivo. TrkA is associated with both phosphorylation of APP-Y(682) and alteration of APP processing, suggesting that tyrosine phosphorylation of APP links APP processing and neurotrophic signaling to intracellular pathways associated with cellular differentiation and survival. Here we have tested whether the NGF/TrkA signaling pathway is a physiological regulator of APP phosphorylation. We find that NGF induces tyrosine phosphorylation of APP, and that APP interacts with TrkA and this interaction requires Y(682). Unpredictably, we also uncover that APP, and specifically Y(682), regulates activation of the NGF/TrkA signaling pathway in vivo, the subcellular distribution of TrkA and the sensitivity of neurons to the trophic action of NGF. This evidence suggests that these two membrane protein's functions are strictly interconnected and that the NGF/TrkA signaling pathway is involved in AD pathogenesis and can be used as a therapeutic target.
Collapse
|
72
|
Kögel D, Concannon CG, Müller T, König H, Bonner C, Poeschel S, Chang S, Egensperger R, Prehn JHM. The APP intracellular domain (AICD) potentiates ER stress-induced apoptosis. Neurobiol Aging 2011; 33:2200-9. [PMID: 21803450 DOI: 10.1016/j.neurobiolaging.2011.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/03/2011] [Accepted: 06/17/2011] [Indexed: 11/17/2022]
Abstract
Here we employed human SHEP neuroblastoma cells either stably or inducibly expressing the amyloid precursor protein (APP) intracellular domain (AICD) to investigate its ability to modulate stress-induced cell death. Analysis of effector caspase activation revealed that AICD overexpression was specifically associated with an increased sensitivity to apoptosis induced by the 2 endoplasmic reticulum (ER) stressors thapsigargin and tunicamycin, but not by staurosporine (STS). Basal and ER stress-induced expression of Bip/Grp78 and C/EBP-homologous protein/GADD153 were not altered by AICD implying that AICD potentiated cell death downstream or independent of the conserved unfolded protein response (UPR). Interestingly, quantitative polymerase chain reaction analysis and reporter gene assays revealed that AICD significantly downregulated messenger RNA levels of the Alzheimer's disease susceptibility gene ApoJ/clusterin, indicating transcriptional repression. Knockdown of ApoJ/clusterin mimicked the effect of AICD on ER stress-induced apoptosis, but had no discernible effect on staurosporine-induced cell death. Our data suggest that altered levels of AICD may abolish the prosurvival function of ApoJ/clusterin and increase the susceptibility of neurons to ER stress-mediated cell death, a pathway that may contribute to the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Donat Kögel
- Experimental Neurosurgery, Center for Neurology and Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Tamayev R, Matsuda S, Giliberto L, Arancio O, D'Adamio L. APP heterozygosity averts memory deficit in knockin mice expressing the Danish dementia BRI2 mutant. EMBO J 2011; 30:2501-9. [PMID: 21587206 PMCID: PMC3116289 DOI: 10.1038/emboj.2011.161] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/27/2011] [Indexed: 11/09/2022] Open
Abstract
An autosomal dominant mutation in the BRI2/ITM2B gene causes familial Danish dementia (FDD). Analysis of FDD(KI) mice, a mouse model of FDD genetically congruous to the human disease since they carry one mutant and one wild-type Bri2/Itm2b allele, has shown that the Danish mutation causes loss of Bri2 protein, synaptic plasticity and memory impairments. BRI2 is a physiological interactor of Aβ-precursor protein (APP), a gene associated with Alzheimer disease, which inhibits processing of APP. Here, we show that APP/Bri2 complexes are reduced in synaptic membranes of FDD(KI) mice. Consequently, APP metabolites derived from processing of APP by β-, α- and γ-secretases are increased in Danish dementia mice. APP haplodeficiency prevents memory and synaptic dysfunctions, consistent with a role for APP metabolites in the pathogenesis of memory and synaptic deficits. This genetic suppression provides compelling evidence that APP and BRI2 functionally interact, and that the neurological effects of the Danish form of BRI2 only occur when sufficient levels of APP are supplied by two alleles. This evidence establishes a pathogenic sameness between familial Danish and Alzheimer's dementias.
Collapse
Affiliation(s)
- Robert Tamayev
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shuji Matsuda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Luca Giliberto
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Luciano D'Adamio
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- National Research Council of Italy—Cellular Biology and Neurobiology Institute Via del Fosso del Fiorano, Roma, Italy
| |
Collapse
|
74
|
Zheng H, Koo EH. Biology and pathophysiology of the amyloid precursor protein. Mol Neurodegener 2011; 6:27. [PMID: 21527012 PMCID: PMC3098799 DOI: 10.1186/1750-1326-6-27] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 04/28/2011] [Indexed: 01/22/2023] Open
Abstract
The amyloid precursor protein (APP) plays a central role in the pathophysiology of Alzheimer's disease in large part due to the sequential proteolytic cleavages that result in the generation of β-amyloid peptides (Aβ). Not surprisingly, the biological properties of APP have also been the subject of great interest and intense investigations. Since our 2006 review, the body of literature on APP continues to expand, thereby offering further insights into the biochemical, cellular and functional properties of this interesting molecule. Sophisticated mouse models have been created to allow in vivo examination of cell type-specific functions of APP together with the many functional domains. This review provides an overview and update on our current understanding of the pathobiology of APP.
Collapse
Affiliation(s)
- Hui Zheng
- Huffington Center on Aging and Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
75
|
Barbagallo APM, Wang Z, Zheng H, D'Adamio L. A single tyrosine residue in the amyloid precursor protein intracellular domain is essential for developmental function. J Biol Chem 2011; 286:8717-21. [PMID: 21266574 PMCID: PMC3059018 DOI: 10.1074/jbc.c111.219873] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 01/22/2011] [Indexed: 01/24/2023] Open
Abstract
The Aβ-precursor protein (APP) intracellular domain is highly conserved and contains many potentially important residues, in particular the (682)YENPTY(687) motif. To dissect the functions of this sequence in vivo, we created an APP knock-in allele mutating Tyr(682) to Gly (Y682G). Crossing this allele to APP-like protein 2 (APLP2) knock-out background showed that mutation of Tyr(682) results in postnatal lethality and neuromuscular synapse defects similar to doubly deficient APP/APLP2 mice. Our results demonstrate that a single residue in the APP intracellular region, Tyr(682), is indispensable for the essential function of APP in developmental regulation.
Collapse
Affiliation(s)
- Alessia P. M. Barbagallo
- From the Department of Microbiology and Immunology, Einstein College of Medicine, Bronx, New York 10461
| | - Zilai Wang
- the Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, and
| | - Hui Zheng
- the Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, and
| | - Luciano D'Adamio
- From the Department of Microbiology and Immunology, Einstein College of Medicine, Bronx, New York 10461
- the Institute of Cellular Biology and Neurobiology, National Research Council of Italy, via del Fosso del Fiorano, 64, 00143 Roma, Italy
| |
Collapse
|
76
|
Bate C, Gentleman S, Williams A. α-synuclein induced synapse damage is enhanced by amyloid-β1-42. Mol Neurodegener 2010; 5:55. [PMID: 21138585 PMCID: PMC3017026 DOI: 10.1186/1750-1326-5-55] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 12/07/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The pathogenesis of Parkinson's disease (PD) and dementia with Lewy bodies (DLB) is associated with the accumulation of aggregated forms of the α-synuclein (αSN) protein. An early event in the neuropathology of PD and DLB is the loss of synapses and a corresponding reduction in the level of synaptic proteins. However, the molecular mechanisms involved in synapse damage in these diseases are poorly understood. In this study the process of synapse damage was investigated by measuring the amount of synaptophysin, a pre-synaptic membrane protein essential for neurotransmission, in cultured neurons incubated with αSN, or with amyloid-β (Aβ) peptides that are thought to trigger synapse degeneration in Alzheimer's disease. RESULTS We report that the addition of recombinant human αSN reduced the amount of synaptophysin in cultured cortical and hippocampal neurons indicative of synapse damage. αSN also reduced synaptic vesicle recycling, as measured by the uptake of the fluorescent dye FM1-43. These effects of αSN on synapses were modified by interactions with other proteins. Thus, the addition of βSN reduced the effects of αSN on synapses. In contrast, the addition of amyloid-β (Aβ)1-42 exacerbated the effects of αSN on synaptic vesicle recycling and synapse damage. Similarly, the addition of αSN increased synapse damage induced by Aβ1-42. However, this effect of αSN was selective as it did not affect synapse damage induced by the prion-derived peptide PrP82-146. CONCLUSIONS These results are consistent with the hypothesis that oligomers of αSN trigger synapse damage in the brains of Parkinson's disease patients. Moreover, they suggest that the effect of αSN on synapses may be influenced by interactions with other peptides produced within the brain.
Collapse
Affiliation(s)
- Clive Bate
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts., AL9 7TA, UK
| | - Steve Gentleman
- Neuropathology Unit, Department of Medicine, Imperial College London, Charing Cross Campus, St Dunstan's Road, London, W6 8RP, UK
| | - Alun Williams
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts., AL9 7TA, UK
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK
| |
Collapse
|
77
|
Barbagallo APM, Weldon R, Tamayev R, Zhou D, Giliberto L, Foreman O, D'Adamio L. Tyr(682) in the intracellular domain of APP regulates amyloidogenic APP processing in vivo. PLoS One 2010; 5:e15503. [PMID: 21103325 PMCID: PMC2982846 DOI: 10.1371/journal.pone.0015503] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 10/08/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The pathogenesis of Alzheimer's disease is attributed to misfolding of Amyloid-β (Aβ) peptides. Aβ is generated during amyloidogenic processing of Aβ-precursor protein (APP). Another characteristic of the AD brain is increased phosphorylation of APP amino acid Tyr(682). Tyr(682) is part of the Y(682)ENPTY(687) motif, a docking site for interaction with cytosolic proteins that regulate APP metabolism and signaling. For example, normal Aβ generation and secretion are dependent upon Tyr(682) in vitro. However, physiological functions of Tyr(682) are unknown. METHODOLOGY/PRINCIPAL FINDINGS To this end, we have generated an APP Y682G knock-in (KI) mouse to help dissect the role of APP Tyr(682) in vivo. We have analyzed proteolytic products from both the amyloidogenic and non-amyloidogenic processing of APP and measure a profound shift towards non-amyloidogenic processing in APP KI mice. In addition, we demonstrate the essential nature of amino acid Tyr(682) for the APP/Fe65 interaction in vivo. CONCLUSIONS/SIGNIFICANCE Together, these observations point to an essential role of APP intracellular domain for normal APP processing and function in vivo, and provide rationale for further studies into physiological functions associated with this important phosphorylation site.
Collapse
Affiliation(s)
- Alessia P. M. Barbagallo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Richard Weldon
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Robert Tamayev
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Dawang Zhou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Luca Giliberto
- The Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, North Shore – LIJ, Manhasset, New York, United States of America
| | - Oded Foreman
- Department of Laboratory Animal Health, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Luciano D'Adamio
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
78
|
Ghosal K, Stathopoulos A, Pimplikar SW. APP intracellular domain impairs adult neurogenesis in transgenic mice by inducing neuroinflammation. PLoS One 2010; 5:e11866. [PMID: 20689579 PMCID: PMC2912762 DOI: 10.1371/journal.pone.0011866] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 07/04/2010] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND A devastating aspect of Alzheimer's disease (AD) is the progressive deterioration of memory due to neuronal loss. Amyloid precursor protein (APP) occupies a central position in AD and APP-derived amyloid-beta (Abeta) peptides are thought to play a pivotal role in disease pathogenesis. Nonetheless, it is becoming clear that AD etiology is highly complex and that factors other than Abeta also contribute to AD pathogenesis. APP intracellular domain (AICD) is generated together with Abeta and we recently showed that AICD transgenic mice recapitulate pathological features of AD such as tau hyperphosphorylation, memory deficits and neurodegeneration without increasing the Abeta levels. Since impaired adult neurogenesis is shown to augment memory deficits in AD mouse models, here we examined the status of adult neurogenesis in AICD transgenic mice. METHODOLOGY/PRINCIPAL FINDING We previously generated transgenic mice co-expressing 59-residue long AICD fragment and its binding partner Fe65. Hippocampal progenitor cell proliferation was determined by BrdU incorporation at 1.5, 3 and 12 months of age. Only male transgenic and their respective wilt type littermate control mice were used. We find age-dependent decrease in BrdU incorporation and doublecortin-positive cells in the dentate gyrus of AICD transgenic mice suggesting impaired adult neurogenesis. This deficit resulted from decreased proliferation and survival, whereas neuronal differentiation remained unaffected. Importantly, this impairment was independent of Abeta since APP-KO mice expressing AICD also exhibit reduced neurogenesis. The defects in adult neurogenesis are prevented by long-term treatment with the non-steroidal anti-inflammatory agents ibuprofen or naproxen suggesting that neuroinflammation is critically involved in impaired adult neurogenesis in AICD transgenic mice. CONCLUSION/SIGNIFICANCE Since adult neurogenesis is crucial for spatial memory, which is particularly vulnerable in AD, these findings suggest that AICD can exacerbate memory defects in AD by impairing adult neurogenesis. Our findings further establish that AICD, in addition to Abeta, contributes to AD pathology and that neuroinflammation plays a much broader role in AD pathogenesis than previously thought.
Collapse
Affiliation(s)
- Kaushik Ghosal
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Andrea Stathopoulos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Sanjay W. Pimplikar
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
79
|
Transgenic expression of the amyloid-beta precursor protein-intracellular domain does not induce Alzheimer's Disease-like traits in vivo. PLoS One 2010; 5:e11609. [PMID: 20661273 PMCID: PMC2905372 DOI: 10.1371/journal.pone.0011609] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 06/18/2010] [Indexed: 11/19/2022] Open
Abstract
Background Regulated intramembranous proteolysis of the amyloid-β precursor protein by the γ-secretase yields amyloid-β, which is the major component of the amyloid plaques found in Alzheimer's disease (AD), and the APP intracellular domain (AID). In vitro studies have involved AID in apoptosis and gene transcription. In vivo studies, which utilize transgenic mice expressing AID in the forebrain, only support a role for AID in apoptosis but not gene transcription. Methodology/Principal Findings Here, we have further characterized several lines of AID transgenic mice by crossing them with human Tau-bearing mice, to determine whether over-expression of AID in the forebrain provokes AD-like pathologic features in this background. We have found no evidence that AID overexpression induces AD-like characteristics, such as activation of GSK-3β, hyperphosphorylation of Tau and formation of neurofibrillary pathology. Conclusions/Significance Overall, these data suggest that AID transgenic mice do not represent a model that reproduces the overt biochemical and anatomo-pathologic lesions observed in AD patients. They can still be a valuable tool to understand the role of AID in enhancing the cell sensitivity to apoptotic stimuli, whose pathways still need to be characterized.
Collapse
|
80
|
Dunys J, Sevalle J, Giaime E, Pardossi-Piquard R, Vitek MP, Renbaum P, Levy-Lahad E, Zhang YW, Xu H, Checler F, da Costa CA. p53-dependent control of transactivation of the Pen2 promoter by presenilins. J Cell Sci 2010; 122:4003-8. [PMID: 19889971 DOI: 10.1242/jcs.051169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The senile plaques found in the brains of patients with Alzheimer's disease are mainly due to the accumulation of amyloid beta-peptides (A beta) that are liberated by gamma-secretase, a high molecular weight complex including presenilins, PEN-2, APH-1 and nicastrin. The depletion of each of these proteins disrupts the complex assembly into a functional protease. Here, we describe another level of regulation of this multimeric protease. The depletion of both presenilins drastically reduces Pen2 mRNA levels and its promoter transactivation. Furthermore, overexpression of presenilin-1 lowers Pen2 promoter transactivation, a phenotype abolished by a double mutation known to prevent presenilin-dependent gamma-secretase activity. PEN-2 expression is decreased by depletion of beta-amyloid precursor protein (APP) and increased by the APP intracellular domain (AICD). We show that AICD and APP complement for Pen2 mRNA levels in APP/APLP1-2 knockout fibroblasts. Interestingly, overexpression of presenilin-2 greatly increases Pen2 promoter transactivation. The opposite effect triggered by both presenilins was reminiscent of our previous study, which showed that these two proteins elicit antagonistic effects on p53. Therefore, we examined the contribution of p53 on Pen2 transcription. Pen2 promoter transactivation, and Pen2 mRNA and protein levels were drastically reduced in p53(-/-) fibroblasts. Furthermore, PEN-2 expression could be rescued by p53 complementation in p53- and APP-deficient cells. Interestingly, PEN-2 expression was also reduced in p53-deficient mouse brain. Overall, our study describes a p53-dependent regulation of PEN-2 expression by other members of the gamma-secretase complex, namely presenilins.
Collapse
Affiliation(s)
- Julie Dunys
- Institut de Pharmacologie Moléculaire et Cellulaire of Centre National de la Recherche Scientifique and Institut de NeuroMédecine Moléculaire, Equipe labellisée Fondation pour la Recherche Médicale, Valbonne, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
The cleavage of amyloid precursor protein (APP) by γ-secretase produces Aβ peptides, which are prominent features in Alzheimer's disease and have been extensively studied. By contrast, APP intracellular domain (AICD), also a product of this cleavage event, has received little or no investigative attention. A major reason for this is that AICD is generally not detected in tissue lysates and, therefore, is neglected as a non-relevant product of APP metabolism. However, recent studies have shown that AICD regulates a number of important cellular events. Furthermore, we found that contrary to previous assertions, AICD can be detected in brain lysates using Western blotting if an antigen retrieval protocol is employed. Here we describe the protocol for AICD detection and note the biological relevance of AICD in physiological and pathological conditions.
Collapse
Affiliation(s)
- Sanjay W Pimplikar
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
82
|
Konietzko U, Goodger ZV, Meyer M, Kohli BM, Bosset J, Lahiri DK, Nitsch RM. Co-localization of the amyloid precursor protein and Notch intracellular domains in nuclear transcription factories. Neurobiol Aging 2010; 31:58-73. [PMID: 18403052 PMCID: PMC2868363 DOI: 10.1016/j.neurobiolaging.2008.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 02/28/2008] [Accepted: 03/01/2008] [Indexed: 11/21/2022]
Abstract
The beta-amyloid precursor protein (APP) plays a major role in Alzheimer's disease. The APP intracellular domain (AICD), together with Fe65 and Tip60, localizes to spherical nuclear AFT complexes, which may represent sites of transcription. Despite a lack of co-localization with several described nuclear compartments, we have identified a close apposition between AFT complexes and splicing speckles, Cajal bodies and PML bodies. Live imaging revealed that AFT complexes were highly mobile within nuclei and following pharmacological inhibition of transcription fused into larger assemblies. We have previously shown that AICD regulates the expression of its own precursor APP. In support of our earlier findings, transfection of APP promoter plasmids as substrates resulted in cytosolic AFT complex formation at labeled APP promoter plasmids. In addition, identification of chromosomal APP or KAI1 gene loci by fluorescence in situ hybridization showed their close association with nuclear AFT complexes. The transcriptional activator Notch intracellular domain (NICD) localized to the same nuclear spots as occupied by AFT complexes suggesting that these nuclear compartments correspond to transcription factories. Fe65 and Tip60 also co-localized with APP in the neurites of primary neurons. Pre-assembled AFT complexes may serve to assist fast nuclear signaling upon endoproteolytic APP cleavage.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Amyloid beta-Protein Precursor/chemistry
- Amyloid beta-Protein Precursor/metabolism
- Animals
- Brain/metabolism
- Brain/physiopathology
- Cell Line
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cell Nucleus/ultrastructure
- Cells, Cultured
- Histone Acetyltransferases/genetics
- Histone Acetyltransferases/metabolism
- Humans
- In Situ Hybridization, Fluorescence
- Lysine Acetyltransferase 5
- Macromolecular Substances/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Plasmids
- Promoter Regions, Genetic/genetics
- Protein Structure, Tertiary/physiology
- Receptors, Notch/chemistry
- Receptors, Notch/metabolism
- Signal Transduction/physiology
- Trans-Activators
- Transcriptional Activation/physiology
Collapse
Affiliation(s)
- Uwe Konietzko
- Division of Psychiatry Research, University of Zürich, August Forel Street 1, 8008 Zürich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
83
|
Matsuda S, Matsuda Y, D'Adamio L. CD74 interacts with APP and suppresses the production of Abeta. Mol Neurodegener 2009; 4:41. [PMID: 19849849 PMCID: PMC2770512 DOI: 10.1186/1750-1326-4-41] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 10/22/2009] [Indexed: 11/10/2022] Open
Abstract
Background Alzheimer disease (AD) is characterized by senile plaques, which are mainly composed of β amyloid (Aβ) peptides. Aβ is cleaved off from amyloid precursor protein (APP) with consecutive proteolytic processing by β-secretase and γ-secretase. Results Here, we show that CD74, the invariant chain of class II major histocompatibility complex, interacts with APP and serves as a negative regulator of Aβ. CD74 resembles other APP interacters such as BRI2 and BRI3, since all of them reduce the level of Aβ. However, unlike BRIs, CD74 does not reduce the secretion of sAPPα or sAPPβ. Interestingly, in HeLa cells, over expression of CD74 steers APP, but not Notch, to large vacuoles created by CD74. Conclusion Taken together, we propose that CD74 inhibits Aβ production by interacting with and derailing normal trafficking of APP.
Collapse
Affiliation(s)
- Shuji Matsuda
- Albert Einstein College of Medicine, Department of Microbiology & Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
84
|
Matsuda S, Matsuda Y, Snapp EL, D'Adamio L. Maturation of BRI2 generates a specific inhibitor that reduces APP processing at the plasma membrane and in endocytic vesicles. Neurobiol Aging 2009; 32:1400-8. [PMID: 19748705 DOI: 10.1016/j.neurobiolaging.2009.08.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/28/2009] [Accepted: 08/17/2009] [Indexed: 11/18/2022]
Abstract
Processing of the amyloid-β (Aβ) precursor protein (APP) has been extensively studied since it leads to production of Aβ peptides. Toxic forms of Aβ aggregates are considered the cause of Alzheimer's disease (AD). On the other end, BRI2 is implicated in APP processing and Aβ production. We have investigated the precise mechanism by which BRI2 modulates APP cleavages and have found that BRI2 forms a mature BRI2 polypeptide that is transported to the plasma membrane and endosomes where it interacts with mature APP. Notably, immature forms of APP and BRI2 fail to interact. Mature BRI2 inhibits APP processing by α-, β- and γ-secretases on the plasma membrane and in endocytic compartments. Thus, BRI2 is a specific inhibitor that reduces secretases' access to APP in the intracellular compartments where APP is normally processed.
Collapse
Affiliation(s)
- Shuji Matsuda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
85
|
Laky K, Annaert W, Fowlkes BJ. Amyloid precursor family proteins are expressed by thymic and lymph node stromal cells but are not required for lymphocyte development. Int Immunol 2009; 21:1163-74. [PMID: 19710207 PMCID: PMC2750246 DOI: 10.1093/intimm/dxp083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pharmacological inhibitors that block amyloid precursor protein (APP) cleavage and the formation of senile plaques are under development for the treatment of familial Alzheimer's disease. Unfortunately, many inhibitors that block γ-secretase-mediated cleavage of APP also have immunosuppressive side effects. In addition to APP, numerous other proteins undergo γ-secretase-mediated cleavage. In order to develop safer inhibitors, it is necessary to determine which of the γ-secretase substrates contribute to the immunosuppressive effects. Because APP family members are widely expressed and are reported to influence calcium flux, transcription and apoptosis, they could be important for normal lymphocyte maturation. We find that APP and amyloid precursor-like protein 2 are expressed by stromal cells of thymus and lymph nodes, but not by lymphocytes. Although signals provided by thymic stromal cells are critical for normal T cell differentiation, lymphocyte development proceeds unperturbed in mice deficient for these APP family members.
Collapse
Affiliation(s)
- Karen Laky
- Laboratory of Cellular and Molecular Immunology, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892-0420, USA
| | | | | |
Collapse
|
86
|
Tamayev R, Zhou D, D'Adamio L. The interactome of the amyloid beta precursor protein family members is shaped by phosphorylation of their intracellular domains. Mol Neurodegener 2009; 4:28. [PMID: 19602287 PMCID: PMC2723102 DOI: 10.1186/1750-1326-4-28] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 07/14/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brain tissue from patients with Alzheimer's disease has shown an increase of phosphorylation of Tyr-682, located on the conserved Y682ENPTY motif, and Thr-668 residues, both in the intracellular domain (AID) of amyloid beta precursor protein (APP), although the role of these two residues is not yet known. RESULTS Here, we report that the phosphorylation status of Tyr-682, and in some cases Thr-668, shapes the APP interactome. It creates a docking site for SH2-domain containing proteins, such as ShcA, ShcB, ShcC, Grb7, Grb2, as well as adapter proteins, such as Crk and Nck, that regulate important biological processes, cytosolic tyrosine kinases, such as Abl, Lyn and Src, which regulate signal transduction pathways, and enzymes that control phosphatidylinositols levels and signaling, such as PLC-gamma. At the same time, it either reduces (like for JIP1, NUMB, NUMBL and ARH) or abolishes (like for Fe65, Fe65L1 and Fe65L2) binding of other APP interactors. Phosphorylation of Thr-668, unlike Tyr-682, does not seem to affect APP's ability to interact with the various proteins, with Pin1 and X11 being the exclusions. We also found that there are some differences between the interactions to AID and to ALID1 and ALID2, its two homologues. CONCLUSION Our data indicates that APP can regulate diverse cellular processes and that, vice versa, a network of signaling events can impact APP processing. Our results also suggest that phosphorylation of the APP Intracellular Domain will dramatically shape the APP interactome and, consequently, will regulate APP processing, APP transport and APP/AID-mediated functions.
Collapse
Affiliation(s)
- Robert Tamayev
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
87
|
Vázquez MC, Vargas LM, Inestrosa NC, Alvarez AR. c-Abl modulates AICD dependent cellular responses: transcriptional induction and apoptosis. J Cell Physiol 2009; 220:136-43. [PMID: 19306298 DOI: 10.1002/jcp.21743] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
APP intracellular domain (AICD) has been proposed as a transcriptional inductor that moves to the nucleus with the adaptor protein Fe65 and regulates transcription. The two proteins, APP and Fe65, can be phosphorylated by c-Abl kinase. Neprilysin has been proposed as a target gene for AICD. We found that AICD expression is decreased by treatment with STI-571, a c-Abl inhibitor, suggesting a modulation of AICD transcription by c-Abl kinase. We observed interaction between c-Abl kinase, the AICD fragment and the Fe65 adaptor protein. In addition, STI-571 reduces apoptosis in APPSw, and the apoptotic response induced by Fe65 over-expression was inhibited by with the expression of a kinase dead (KD) c-Abl and enhanced by over-expression of WT-c-Abl. However, in the APPSw cells, the ability of the KD-c-Abl to protect against Fe65 was reduced. Finally, in APPSw clone, we detected higher trans-activation of the pro-apoptotic p73 isoform, TAp73 promoter. Our results show that c-Abl modulates AICD dependent cellular responses, transcriptional induction as well as the apoptotic response, which could participate in the onset and progression of the neurodegenerative pathology, observed in Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Mary C Vázquez
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontifical Catholic University of Chile, Santiago, Chile
| | | | | | | |
Collapse
|
88
|
Matsuda S, Matsuda Y, D'Adamio L. BRI3 inhibits amyloid precursor protein processing in a mechanistically distinct manner from its homologue dementia gene BRI2. J Biol Chem 2009; 284:15815-25. [PMID: 19366692 DOI: 10.1074/jbc.m109.006403] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer disease (AD) is characterized by senile plaques, which are mainly composed of beta amyloid (Abeta) peptides. Abeta is cleaved off from amyloid precursor protein (APP) with consecutive proteolytic processing: beta-secretase, followed by gamma-secretase. Here, we show that BRI3, a member of the BRI gene family that includes the familial British and Danish dementia gene BRI2, interacts with APP and serves as an endogenous negative regulator of Abeta production. BRI3 colocalizes with APP along neuritis in differentiated N2a cells; endogenous BRI3-APP complexes are readily detectable in mouse brain extract; reducing endogenous BRI3 levels by RNA interference results in increased Abeta secretion. BRI3 resembles BRI2, because BRI3 overexpression reduces both alpha- and beta-APP cleavage. We propose that BRI3 inhibits the various processing of APP by blocking the access of alpha- and beta-secretases to APP. However, unlike BRI2, the binding of BRI3 to the beta-secretase cleaved APP C-terminal fragment is negligible and BRI3 does not cause the massive accumulation of this APP fragment, suggesting that, unlike BRI2, BRI3 is a poor gamma-cleavage inhibitor. Competitive inhibition of APP processing by BRI3 may provide a new approach to AD therapy and prevention.
Collapse
Affiliation(s)
- Shuji Matsuda
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York 1046, USA
| | | | | |
Collapse
|
89
|
Giliberto L, Borghi R, Piccini A, Mangerini R, Sorbi S, Cirmena G, Garuti A, Ghetti B, Tagliavini F, Mughal MR, Mattson MP, Zhu X, Wang X, Guglielmotto M, Tamagno E, Tabaton M. Mutant presenilin 1 increases the expression and activity of BACE1. J Biol Chem 2009; 284:9027-38. [PMID: 19196715 PMCID: PMC2666551 DOI: 10.1074/jbc.m805685200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 12/30/2008] [Indexed: 12/23/2022] Open
Abstract
Mutations of the presenilin 1 (PS1) gene are the most common cause of early onset familial Alzheimer disease (FAD). PS1 mutations alter the activity of the gamma-secretase on the beta-amyloid precursor protein (APP), leading to selective overproduction of beta-amyloid (Abeta) 42 peptides, the species that forms oligomers that may exert toxic effects on neurons. Here we show that PS1 mutations, expressed both transiently and stably, in non-neuronal and neuronal cell lines increase the expression and the activity of the beta-secretase (BACE1), the rate-limiting step of Abeta production. Also, BACE1 expression and activity are elevated in brains of PS1 mutant knock-in mice compared with wild type littermates as well as in cerebral cortex of FAD cases bearing various PS1 mutations compared with in sporadic AD cases and controls. The up-regulation of BACE1 by PS1 mutations requires the gamma-secretase cleavage of APP and is proportional to the amount of secreted Abeta42. Abeta42, and not AICD (APP intracellular domain), is indeed the APP derivative that mediates the overexpression of BACE1. The effect of PS1 mutations on BACE1 may contribute to determine the wide clinical and pathological phenotype of early onset FAD.
Collapse
Affiliation(s)
- Luca Giliberto
- Department of Neuroscience, Ophthalmology, and Genetics and Internal Medicine and Medical Specialties, University of Genova, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Takahashi K, Niidome T, Akaike A, Kihara T, Sugimoto H. Amyloid precursor protein promotes endoplasmic reticulum stress-induced cell death via C/EBP homologous protein-mediated pathway. J Neurochem 2009; 109:1324-37. [PMID: 19476545 DOI: 10.1111/j.1471-4159.2009.06067.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) is known to activate the ER, which is termed ER stress. Here, we demonstrated that amyloid precursor protein (APP) is a novel mediator of ER stress-induced apoptosis through the C/EBP homologous protein (CHOP) pathway. Expression of APP mRNA was elevated by tunicamycin- or dithiothreitol-induced ER stress. The levels of C83 and APP intracellular domain (AICD) fragments, which are cleaved from APP, were significantly increased under ER stress, although the protein level of full-length APP was decreased. Cellular viability was reduced in APP-over-expressing cells, which was attenuated by treatment with a gamma-secretase inhibitor, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT). Cellular viability was also reduced in AICD-FLAG-over-expressing cells. The mRNA and protein levels of CHOP, an ER stress-responsive gene, were remarkably increased by APP over-expression, which was attenuated by treatment with DAPT. CHOP mRNA induction was also found in AICD-FLAG-over-expressing cells. Cell death and CHOP up-regulation by ER stress were attenuated by APP knockdown. Data obtained with a luciferase assay and chromatin immunoprecipitation assay indicated that AICD associates with the promoter region of the CHOP gene. In conclusion, ER stress-induced APP undergoes alpha- and gamma-secretase cleavage and subsequently induces CHOP-mediated cell death.
Collapse
Affiliation(s)
- Keita Takahashi
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
91
|
Checler F, Buée L. Données fondamentales sur les pathologies amyloïde et Tau dans la maladie d’Alzheimer : quelles perspectives thérapeutiques ? ANNALES PHARMACEUTIQUES FRANÇAISES 2009; 67:136-53. [DOI: 10.1016/j.pharma.2009.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 01/18/2009] [Accepted: 01/18/2009] [Indexed: 01/24/2023]
|
92
|
Sevalle J, Amoyel A, Robert P, Fournié-Zaluski MC, Roques B, Checler F. Aminopeptidase A contributes to the N-terminal truncation of amyloid beta-peptide. J Neurochem 2009; 109:248-56. [PMID: 19187443 DOI: 10.1111/j.1471-4159.2009.05950.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several lines of data previously indicated that N-terminally truncated forms of amyloid-beta (Abeta) peptides are likely the earliest and more abundant species immunohistochemically detectable in Alzheimer's disease-affected brains. It is noteworthy that the free N-terminal residue of full-length Abeta (fl-Abeta) is an aspartyl residue, suggesting that Abeta could be susceptible to exopeptidasic attack by aminopeptidase A (APA)-like proteases. In this context, we have examined whether APA could target Abeta peptides in both cell-free and cellular models. We first show that the general aminopeptidase inhibitor amastatin as well as two distinct aminopeptidase A inhibitors EC33 and pl302 both significantly increase the recovery of genuine fl-Abeta peptides generated by cells over-expressing Swedish-mutated beta amyloid precursor protein (APP) while the aminopeptidase N blocker pl250 did not modify fl-Abeta recovery. In agreement with this observation, we establish that over-expressed APA drastically reduces, in a calcium dependent manner, fl-Abeta but not APP IntraCellular Domain in a cell-free model of Abeta production. In agreement with the above data, we show that recombinant APA degrades fl-Abeta in a pl302-sensitive manner. Interestingly, we also show that EC33 and pl302 lower staurosporine-stimulated activation of caspase-3 in wild-type fibroblasts but not in betaAPP/beta-amyloid precursor protein-like protein 2 (APLP2) double knockout fibroblasts, suggesting that protecting endogenous fl-Abeta physiological production triggers neuroprotective phenotype. By contrast, EC33 does not modify staurosporine-induced caspase-3 activation in wild-type and Swedish-mutated betaAPP-HEK293 expressing cells that display exacerbated production of Abeta. Overall, our data establish that APA contributes to the N-terminal truncation of Abeta and suggest that this cleavage is likely abrogating a protective function associated with physiological but not supraphysiological levels of genuine fl-Abeta peptides.
Collapse
Affiliation(s)
- Jean Sevalle
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de NeuroMédecine Moléculaire, UMR6097 CNRS/UNSA, Equipe labellisée Fondation pour la Recherche Médicale, Sophia-Antipolis, Valbonne, France
| | | | | | | | | | | |
Collapse
|
93
|
Abstract
Neuronal models for Alzheimer's disease research frequently have limitations as a result of their nonhuman origin and/or transformed state. Here we examined the potential of readily accessible neural crest-derived human epidermal melanocytes isolated from elderly individuals as a model system for Alzheimer's disease research. The amyloidogenic isoforms of amyloid precursor protein (APP; isoforms APP751/770) and amyloid beta (Abeta)1-40 were detected in epidermal melanocytes using immunocytochemistry and western blotting. Incubation of epidermal melanocytes with aggregated Abeta1-40 peptide caused a concentration-dependent reduction in cell viability, whereas age-matched dermal fibroblasts remained unaffected. These findings suggest that epidermal melanocytes from elderly donors are capable of amyloidogenesis and are sensitive to Abeta1-40 cytotoxicity. Thus, these cells may provide a readily accessible human cell model for Alzheimer's disease research.
Collapse
|
94
|
Simón AM, Schiapparelli L, Salazar-Colocho P, Cuadrado-Tejedor M, Escribano L, López de Maturana R, Del Río J, Pérez-Mediavilla A, Frechilla D. Overexpression of wild-type human APP in mice causes cognitive deficits and pathological features unrelated to Abeta levels. Neurobiol Dis 2008; 33:369-78. [PMID: 19101630 DOI: 10.1016/j.nbd.2008.11.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 10/30/2008] [Accepted: 11/07/2008] [Indexed: 01/07/2023] Open
Abstract
Transgenic mice expressing mutant human amyloid precursor protein (APP) develop an age-dependent amyloid pathology and memory deficits, but no overt neuronal loss. Here, in mice overexpressing wild-type human APP (hAPP(wt)) we found an early memory impairment, particularly in the water maze and to a lesser extent in the object recognition task, but beta-amyloid peptide (Abeta(42)) was barely detectable in the hippocampus. In these mice, hAPP processing was basically non-amyloidogenic, with high levels of APP carboxy-terminal fragments, C83 and APP intracellular domain. A tau pathology with an early increase in the levels of phosphorylated tau in the hippocampus, a likely consequence of enhanced ERK1/2 activation, was also observed. Furthermore, these mice presented a loss of synapse-associated proteins: PSD95, AMPA and NMDA receptor subunits and phosphorylated CaMKII. Importantly, signs of neurodegeneration were found in the hippocampal CA1 subfield and in the entorhinal cortex that were associated to a marked loss of MAP2 immunoreactivity. Conversely, in mice expressing mutant hAPP, high levels of Abeta(42) were found in the hippocampus, but no signs of neurodegeneration were apparent. The results support the notion of Abeta-independent pathogenic pathways in Alzheimer's disease.
Collapse
Affiliation(s)
- Ana-María Simón
- Division of Neurosciences, CIMA, University of Navarra, Av. Pio XII 55, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Phosphorylation of amyloid precursor protein (APP) at Tyr687 regulates APP processing by alpha- and gamma-secretase. Biochem Biophys Res Commun 2008; 377:544-549. [PMID: 18854169 DOI: 10.1016/j.bbrc.2008.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/03/2008] [Indexed: 11/21/2022]
Abstract
Abnormal proteolytic processing of amyloid precursor protein (APP) is a pathologic feature of Alzheimer's disease. Recent studies have demonstrated that serine/threonine phosphorylation specifically at amino-acid residue Thr668 (APP695 numbering) regulates APP processing. In this study, we investigated the possibility that tyrosine phosphorylation of APP regulates APP processing. A tyrosine kinase inhibitor decreased expression of the C83 fragment which is a cleaved product of APP by alpha-secretase. By overexpressing APP mutant proteins, Tyr687 was found to be the major tyrosine kinase phosphorylation site. Expression of the C83 fragment was decreased in APPY687A-expressing cells relative to APP wild-type (APPWT)-expressing cells, which likely reflects the different cellular localization patterns of these two proteins. Expression of APP intracellular domain (AICD) which is a cleaved product of the C83 fragment by gamma-secretase was decreased in C83Y687A-expressing cells. These results suggest that phosphorylation of APP at Tyr687 regulates APP processing by alpha- and gamma-secretases, determining the expression level of AICD.
Collapse
|
96
|
BRI2 inhibits amyloid beta-peptide precursor protein processing by interfering with the docking of secretases to the substrate. J Neurosci 2008; 28:8668-76. [PMID: 18753367 DOI: 10.1523/jneurosci.2094-08.2008] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genetic alterations of amyloid beta-peptide (Abeta) production caused by mutations in the Abeta precursor protein (APP) cause familial Alzheimer's disease (AD). Mutations in BRI2, a gene of undefined function, are linked to familial British and Danish dementias, which are pathologically and clinically similar to Alzheimer's disease. We report that BRI2 is a physiological suppressor of Abeta production. BRI2 restrict docking of gamma-secretase to APP and access of alpha- and beta-secretases to their cleavage APP sequences. Alterations of BRI2 by gene targeting or transgenic expression regulate Abeta levels and AD pathology in mouse models of AD. Competitive inhibition of APP processing by BRI2 may provide a new approach to AD therapy and prevention.
Collapse
|
97
|
Giliberto L, Zhou D, Weldon R, Tamagno E, De Luca P, Tabaton M, D'Adamio L. Evidence that the Amyloid beta Precursor Protein-intracellular domain lowers the stress threshold of neurons and has a "regulated" transcriptional role. Mol Neurodegener 2008; 3:12. [PMID: 18764939 PMCID: PMC2538519 DOI: 10.1186/1750-1326-3-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Accepted: 09/02/2008] [Indexed: 11/16/2022] Open
Abstract
Background Regulated intramembrane proteolysis of the β-amyloid precursor protein by the γ-secretase yields two peptides. One, amyloid-β, is the major component of the amyloid plaques found in Alzheimer's disease patients. The other, APP IntraCellular Domain, has been involved in regulation of apoptosis, calcium flux and gene transcription. To date, a few potential target genes transcriptionally controlled by AID, alone or complexed with Fe65/Tip60, have been described. Although the reports are controversial: these include KAI1, Neprilysin, p53, EGFR, LRP and APP itself. Furthermore, p53 has been implicated in AID mediated susceptibility to apoptosis. To extend these findings, and assess their in vivo relevance, we have analyzed the expression of the putative target genes and of the total brain basal transriptoma in transgenic mice expressing AID in the forebrain. Also, we have studied the susceptibility of primary neurons from such mice to stress and pro-apoptotic agents. Results We found that AID-target genes and the mouse brain basal transcriptoma are not influenced by transgenic expression of AID alone, in the absence of Fe65 over-expression. Also, experiments conducted on primary neurons from AID transgenic mice, suggest a role for AID in sensitizing these cells to toxic stimuli. Overall, these findings hint that a role for AID, in regulating gene transcription, could be induced by yet undefined, and possibly stressful, stimuli in vivo. Conclusion Overall, these data suggest that the release of the APP intracellular domain may modulate the sensitivity of neuronal cells to toxic stimuli, and that a transcriptional role of AID could be inscribed in signaling pathways thatare not activated in basal conditions.
Collapse
Affiliation(s)
- Luca Giliberto
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
98
|
Nakayama K, Ohkawara T, Hiratochi M, Koh CS, Nagase H. The intracellular domain of amyloid precursor protein induces neuron-specific apoptosis. Neurosci Lett 2008; 444:127-31. [PMID: 18722509 DOI: 10.1016/j.neulet.2008.08.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/23/2008] [Accepted: 08/08/2008] [Indexed: 12/24/2022]
Abstract
Although amyloid precursor protein (APP) has central roles in Alzheimer's disease, the physiological functions of this protein have yet to be fully elucidated. APP homologues show significant sequence conservation in the intracellular domain through evolution, which may reflect the functional importance of the intracellular domain of APP (AICD). To examine this possibility, we established embryonic carcinoma P19 cell lines overexpressing AICD. Although neurons could be differentiated from these cell lines with retinoic acid treatment, overexpression of AICD gave rise to neuron-specific cell death. Furthermore, DNA fragmentation was detected and TUNEL-positive cells were also Tuj1-positive neurons. Taken together, we concluded that AICD can induce neuron-specific apoptosis.
Collapse
Affiliation(s)
- Kohzo Nakayama
- Department of Anatomy, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan.
| | | | | | | | | |
Collapse
|
99
|
Müller T, Meyer HE, Egensperger R, Marcus K. The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-relevance for Alzheimer's disease. Prog Neurobiol 2008; 85:393-406. [PMID: 18603345 DOI: 10.1016/j.pneurobio.2008.05.002] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/31/2008] [Accepted: 05/15/2008] [Indexed: 11/30/2022]
Abstract
Since the discovery of the amyloid precursor protein (APP) in 1987, extensive research has been conducted analyzing the APP-derived beta-amyloid (Abeta) which is found in massive quantities in senile plaques of Alzheimer disease (AD) patients. Numerous studies over the last two decades have demonstrated the neurotoxic properties of Abeta. However, it is still unclear whether Abeta neurotoxicity is an initial cause or rather a late event in the pathophysiology of AD. The understanding of preclinical AD-related pathophysiological mechanisms is of significant interest in the identification of potential pharmacological targets. In this context another APP-derived cleavage product, the amyloid precursor protein intracellular domain (AICD), has sparked considerable research interest over the last 7 years. Different AICD levels as a result of gamma-secretase activity may contribute to early pathophysiological mechanisms in AD. However, the relevance of AICD is being discussed highly controversially amongst AD researchers. This review summarizes recent findings in terms of the origin of AICD by regulated intramembrane proteolysis; its structure, binding factors, and post-translational modifications; and its putative role in gene transcription, apoptosis, and cytoskeletal dynamics.
Collapse
Affiliation(s)
- Thorsten Müller
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany.
| | | | | | | |
Collapse
|
100
|
Venugopal C, Demos CM, Rao KSJ, Pappolla MA, Sambamurti K. Beta-secretase: structure, function, and evolution. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2008; 7:278-94. [PMID: 18673212 PMCID: PMC2921875 DOI: 10.2174/187152708784936626] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The most popular current hypothesis is that Alzheimer's disease (AD) is caused by aggregates of the amyloid peptide (Abeta), which is generated by cleavage of the Abeta protein precursor (APP) by beta-secretase (BACE-1) followed by gamma-secretase. BACE-1 cleavage is limiting for the production of Abeta, making it a particularly good drug target for the generation of inhibitors that lower Abeta. A landmark discovery in AD was the identification of BACE-1 (a.k.a. Memapsin-2) as a novel class of type I transmembrane aspartic protease. Although BACE-2, a homologue of BACE-1, was quickly identified, follow up studies using knockout mice demonstrated that BACE-1 was necessary and sufficient for most neuronal Abeta generation. Despite the importance of BACE-1 as a drug target, development has been slow due to the incomplete understanding of its function and regulation and the difficulties in developing a brain penetrant drug that can specifically block its large catalytic pocket. This review summarizes the biological properties of BACE-1 and attempts to use phylogenetic perspectives to understand its function. The article also addresses the challenges in discovering a selective drug-like molecule targeting novel mechanisms of BACE-1 regulation.
Collapse
Affiliation(s)
| | | | | | | | - Kumar Sambamurti
- Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|