51
|
Bilmez Y, Talibova G, Ozturk S. Expression of the histone lysine methyltransferases SETD1B, SETDB1, SETD2, and CFP1 exhibits significant changes in the oocytes and granulosa cells of aged mouse ovaries. Histochem Cell Biol 2022; 158:79-95. [PMID: 35445296 DOI: 10.1007/s00418-022-02102-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Histone methylation is one of the main epigenetic mechanisms by which methyl groups are dynamically added to the lysine and arginine residues of histone tails in nucleosomes. This process is catalyzed by specific histone methyltransferase enzymes. Methylation of these residues promotes gene expression regulation through chromatin remodeling. Functional analysis and knockout studies have revealed that the histone lysine methyltransferases SETD1B, SETDB1, SETD2, and CFP1 play key roles in establishing the methylation marks required for proper oocyte maturation and follicle development. As oocyte quality and follicle numbers progressively decrease with advancing maternal age, investigating their expression patterns in the ovaries at different reproductive periods may elucidate the fertility loss occurring during ovarian aging. The aim of our study was to determine the spatiotemporal distributions and relative expression levels of the Setd1b, Setdb1, Setd2, and Cxxc1 (encoding the CFP1 protein) genes in the postnatal mouse ovaries from prepuberty to late aged periods. For this purpose, five groups based on their reproductive periods and histological structures were created: prepuberty (3 weeks old; n = 6), puberty (7 weeks old; n = 7), postpuberty (18 weeks old; n = 7), early aged (52 weeks old; n = 7), and late aged (60 weeks old; n = 7). We found that Setd1b, Setdb1, Setd2, and Cxxc1 mRNA levels showed significant changes among postnatal ovary groups (P < 0.05). Furthermore, SETD1B, SETDB1, SETD2, and CFP1 proteins exhibited different subcellular localizations in the ovarian cells, including oocytes, granulosa cells, stromal and germinal epithelial cells. In general, their levels in the follicles, oocytes, and granulosa cells as well as in the germinal epithelial and stromal cells significantly decreased in the aged groups when compared the other groups (P < 0.05). These decreases were concordant with the reduced numbers of the follicles at different stages and the luteal structures in the aged groups (P < 0.05). In conclusion, these findings suggest that altered expression of the histone methyltransferase genes in the ovarian cells may be associated with female fertility loss in advancing maternal age.
Collapse
Affiliation(s)
- Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
52
|
Luo X, Chen X, Lv Y, Han Y, Qu X, Zhang Y, Li X, Yu Y, Jin Y. MicroRNA-101 regulates oocyte maturation in vitro via targeting HAS2 in porcine cumulus cells. Theriogenology 2022; 187:119-126. [DOI: 10.1016/j.theriogenology.2022.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|
53
|
Artificial Oocyte: Development and Potential Application. Cells 2022; 11:cells11071135. [PMID: 35406698 PMCID: PMC8998074 DOI: 10.3390/cells11071135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Millions of people around the world suffer from infertility, with the number of infertile couples and individuals increasing every year. Assisted reproductive technologies (ART) have been widely developed in recent years; however, some patients are unable to benefit from these technologies due to their lack of functional germ cells. Therefore, the development of alternative methods seems necessary. One of these methods is to create artificial oocytes. Oocytes can be generated in vitro from the ovary, fetal gonad, germline stem cells (GSCs), ovarian stem cells, or pluripotent stem cells (PSCs). This approach has raised new hopes in both basic research and medical applications. In this article, we looked at the principle of oocyte development, the landmark studies that enhanced our understanding of the cellular and molecular mechanisms that govern oogenesis in vivo, as well as the mechanisms underlying in vitro generation of functional oocytes from different sources of mouse and human stem cells. In addition, we introduced next-generation ART using somatic cells with artificial oocytes. Finally, we provided an overview of the reproductive application of in vitro oogenesis and its use in human fertility.
Collapse
|
54
|
Khan HL, Bhatti S, Sehole Z, Younas H, Nathaniel S, Abbas S, Kaloglu C, Ziders R, Yildiz A, Isa AM. Putative Role of the Kisspeptin/Kiss1R System in Promoting Hypothalamic GnRH Release, Pubertal Maturation, and Regulation of Ovulation Considering the Central Reproductive Axis. FERTILITY & REPRODUCTION 2022. [DOI: 10.1142/s2661318222500062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kisspeptin is a class of neuropeptides that are the product of the Kiss1 gene. These neuropeptides play an important role in maintaining gonadotropin-releasing hormone (GnRH) levels and their release through hypothalamic neurons. Subsequently, they also play an important role in maintaining gonadotropin levels, as GnRH levels stimulate the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which allow induction of gametogenesis of pubertal maturation. The importance of the Kiss1 gene in reproduction became evident when natural mutations in this gene were discovered, which were associated with hypothalamic hypogonadism (HH) and delayed puberty. Kisspeptin and its KISS1R receptors are expressed in the mammalian ovary. The putative role of the Kisspeptin system in the ovary directly controls oocyte maturation, follicular development, and ovulation in an autocrine and paracrine fashion. These essential facts of kisspeptin and its receptor are necessary to maintain the central reproductive axis.
Collapse
Affiliation(s)
- Haroon Latif Khan
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, Lahore, Pakistan
| | - Shahzad Bhatti
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, Lahore, Pakistan
| | - Zirva Sehole
- Department of Biochemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Hooria Younas
- Department of Biochemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Sammar Nathaniel
- Department of Biochemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Sana Abbas
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, Lahore, Pakistan
| | - Celal Kaloglu
- Department of Histology and Embryology, Cumhuriyet University Faculty of Medicine, Sivas, Turkey
| | - Rachel Ziders
- You Family Fertility Buffalo-Niagara Falls Area, University at Buffalo, Buffalo, NY, USA
| | - Aysegul Yildiz
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Kotekli, Mugla, Turkey
| | - Ahmed M. Isa
- Assisted Conception Unit, Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
55
|
Ozturk S. Molecular determinants of the meiotic arrests in mammalian oocytes at different stages of maturation. Cell Cycle 2022; 21:547-571. [PMID: 35072590 PMCID: PMC8942507 DOI: 10.1080/15384101.2022.2026704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 01/26/2023] Open
Abstract
Mammalian oocytes undergo two rounds of developmental arrest during maturation: at the diplotene of the first meiotic prophase and metaphase of the second meiosis. These arrests are strictly regulated by follicular cells temporally producing the secondary messengers, cAMP and cGMP, and other factors to regulate maturation promoting factor (composed of cyclin B1 and cyclin-dependent kinase 1) levels in the oocytes. Out of these normally appearing developmental arrests, permanent arrests may occur in the oocytes at germinal vesicle (GV), metaphase I (MI), or metaphase II (MII) stage. This issue may arise from absence or altered expression of the oocyte-related genes playing key roles in nuclear and cytoplasmic maturation. Additionally, the assisted reproductive technology (ART) applications such as ovarian stimulation and in vitro culture conditions both of which harbor various types of chemical agents may contribute to forming the permanent arrests. In this review, the molecular determinants of developmental and permanent arrests occurring in the mammalian oocytes are comprehensively evaluated in the light of current knowledge. As number of permanently arrested oocytes at different stages is increasing in ART centers, potential approaches for inducing permanent arrests to obtain competent oocytes are discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
56
|
Sciorio R, Miranian D, Smith GD. Non-invasive oocyte quality assessment. Biol Reprod 2022; 106:274-290. [PMID: 35136962 DOI: 10.1093/biolre/ioac009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
Oocyte quality is perhaps the most important limiting factor in female fertility; however, the current methods of determining oocyte competence are only marginally capable of predicting a successful pregnancy. We aim to review the predictive value of non-invasive techniques for the assessment of human oocytes and their related cells and biofluids that pertain to their developmental competence. Investigation of the proteome, transcriptome, and hormonal makeup of follicular fluid, as well as cumulus-oocyte complexes are currently underway; however, prospective randomized non-selection-controlled trials of the future are needed before determining their prognostic value. The biological significance of polar body morphology and genetics are still unknown and the subject of debate. The predictive utility of zygotic viscoelasticity for embryo development has been demonstrated, but similar studies performed on oocytes have yet to be conducted. Metabolic profiling of culture media using human oocytes are also limited and may require integration of automated, high-throughput targeted metabolomic assessments in real time with microfluidic platforms. Light exposure to oocytes can be detrimental to subsequent development and utilization of time-lapse imaging and morphometrics of oocytes is wanting. Polarized light, Raman microspectroscopy, and coherent anti-Stokes Raman scattering are a few novel imaging tools that may play a more important role in future oocyte assessment. Ultimately, the integration of chemistry, genomics, microfluidics, microscopy, physics, and other biomedical engineering technologies into the basic studies of oocyte biology, and in testing and perfecting practical solutions of oocyte evaluation, are the future for non-invasive assessment of oocytes.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Edinburgh Assisted Conception Programme, EFREC, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Daniel Miranian
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Gary D Smith
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Physiology, Urology, and Reproductive Sciences Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
57
|
Mu H, Li H, Liu Y, Wang X, Mei Q, Xiang W. N6-Methyladenosine Modifications in the Female Reproductive System: Roles in Gonad Development and Diseases. Int J Biol Sci 2022; 18:771-782. [PMID: 35002524 PMCID: PMC8741838 DOI: 10.7150/ijbs.66218] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent chemical modification in eukaryotic messenger RNAs. By participating in various RNA-related bioprocesses including RNA decay, splicing, transport and translation, m6A serves as a pivotal regulator of RNA fate and plays an irreplaceable role in cellular activities. The m6A modifications of transcripts are coordinately regulated by methyltransferase “writers” and demethylase “erasers”, and produce variable effects via different m6A reading protein “readers”. There is emerging evidence that m6A modifications play a critical role in a variety of physiological and pathological processes in the female reproductive system, subsequently affecting female fertility. Here, we introduce recent advances in research on m6A regulators and their functions, then highlight the role of m6A in gonad development and female reproductive diseases, as well as the underlying mechanisms driving these processes.
Collapse
Affiliation(s)
- Hongbei Mu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiying Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiaojuan Mei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
58
|
Lin J, Xiang Y, Huang J, Zeng H, Zeng Y, Liu J, Wu T, Liang Q, Liang X, Li J, Zhou C. NAT10 Maintains OGA mRNA Stability Through ac4C Modification in Regulating Oocyte Maturation. Front Endocrinol (Lausanne) 2022; 13:907286. [PMID: 35937804 PMCID: PMC9352860 DOI: 10.3389/fendo.2022.907286] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
In vitro maturation (IVM) refers to the process of developing immature oocytes into the mature in vitro under the microenvironment analogous to follicle fluid. It is an important technique for patients with polycystic ovary syndrome and, especially, those young patients with the need of fertility preservation. However, as the mechanisms of oocyte maturation have not been fully understood yet, the cultivation efficiency of IVM is not satisfactory. It was confirmed in our previous study that oocyte maturation was impaired after N-acetyltransferase 10 (NAT10) knockdown (KD). In the present study, we further explored the transcriptome alteration of NAT10-depleted oocytes and found that O-GlcNAcase(OGA) was an important target gene for NAT10-mediated ac4C modification in oocyte maturation. NAT10 might regulate OGA stability and expression by suppressing its degradation. To find out whether the influence of NAT10-mediated ac4C on oocyte maturation was mediated by OGA, we further explored the role of OGA in IVM. After knocking down OGA of oocytes, oocyte maturation was inhibited. In addition, as oocytes matured, OGA expression increased and, conversely, O-linked N-acetylglucosamine (O-GlcNAc) level decreased. On the basis of NAT10 KD transcriptome and OGA KD transcriptome data, NAT10-mediated ac4C modification of OGA might play a role through G protein-coupled receptors, molecular transduction, nucleosome DNA binding, and other mechanisms in oocyte maturation. Rsph6a, Gm7788, Gm41780, Trpc7, Gm29036, and Gm47144 were potential downstream genes. In conclusion, NAT10 maintained the stability of OGA transcript by ac4C modification on it, thus positively regulating IVM. Moreover, our study revealed the regulation mechanisms of oocytes maturation and provided reference for improving IVM outcomes. At the same time, the interaction between mRNA ac4C modification and protein O-GlcNAc modification was found for the first time, which enriched the regulation network of oocyte maturation.
Collapse
Affiliation(s)
- Jiayu Lin
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuting Xiang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Affiliated Dongguan People’s Hospital, Southern Medical University, Dongguan, China
| | - Jiana Huang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haitao Zeng
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanyan Zeng
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiawen Liu
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Taibao Wu
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiqi Liang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Liang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Chuanchuan Zhou, ; Jingjie Li, ; Xiaoyan Liang,
| | - Jingjie Li
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Chuanchuan Zhou, ; Jingjie Li, ; Xiaoyan Liang,
| | - Chuanchuan Zhou
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Chuanchuan Zhou, ; Jingjie Li, ; Xiaoyan Liang,
| |
Collapse
|
59
|
He Y, Chen Q, Zhang J, Yu J, Xia M, Wang X. Pervasive 3'-UTR Isoform Switches During Mouse Oocyte Maturation. Front Mol Biosci 2021; 8:727614. [PMID: 34733887 PMCID: PMC8558312 DOI: 10.3389/fmolb.2021.727614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Oocyte maturation is the foundation for developing healthy individuals of mammals. Upon germinal vesicle breakdown, oocyte meiosis resumes and the synthesis of new transcripts ceases. To quantitatively profile the transcriptomic dynamics after meiotic resumption throughout the oocyte maturation, we generated transcriptome sequencing data with individual mouse oocytes at three main developmental stages: germinal vesicle (GV), metaphase I (MI), and metaphase II (MII). When clustering the sequenced oocytes, results showed that isoform-level expression analysis outperformed gene-level analysis, indicating isoform expression provided extra information that was useful in distinguishing oocyte stages. Comparing transcriptomes of the oocytes at the GV stage and the MII stage, in addition to identification of differentially expressed genes (DEGs), we detected many differentially expressed transcripts (DETs), some of which came from genes that were not identified as DEGs. When breaking down the isoform-level changes into alternative RNA processing events, we found the main source of isoform composition changes was the alternative usage of polyadenylation sites. With detailed analysis focusing on the alternative usage of 3′-UTR isoforms, we identified, out of 3,810 tested genes, 512 (13.7%) exhibiting significant switches of 3′-UTR isoforms during the process of moues oocyte maturation. Altogether, our data and analyses suggest the importance of examining isoform abundance changes during oocyte maturation, and further investigation of the pervasive 3′-UTR isoform switches in the transition may deepen our understanding on the molecular mechanisms underlying mammalian early development.
Collapse
Affiliation(s)
- Yuanlin He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuzhen Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jing Yu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Xia
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xi Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
60
|
What defines the maternal transcriptome? Biochem Soc Trans 2021; 49:2051-2062. [PMID: 34415300 PMCID: PMC8589422 DOI: 10.1042/bst20201125] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023]
Abstract
In somatic cells, RNA polymerase II (Pol II) transcription initiation starts by the binding of the general transcription factor TFIID, containing the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs), to core promoters. However, in growing oocytes active Pol II transcription is TFIID/TBP-independent, as during oocyte growth TBP is replaced by its vertebrate-specific paralog TBPL2. TBPL2 does not interact with TAFs, but stably associates with TFIIA. The maternal transcriptome is the population of mRNAs produced and stored in the cytoplasm of growing oocytes. After fertilization, maternal mRNAs are inherited by the zygote from the oocyte. As transcription becomes silent after oocyte growth, these mRNAs are the sole source for active protein translation. They will participate to complete the protein pool required for oocyte terminal differentiation, fertilization and initiation of early development, until reactivation of transcription in the embryo, called zygotic genome activation (ZGA). All these events are controlled by an important reshaping of the maternal transcriptome. This procedure combines cytoplasmic readenylation of stored transcripts, allowing their translation, and different waves of mRNA degradation by deadenylation coupled to decapping, to eliminate transcripts coding for proteins that are no longer required. The reshaping ends after ZGA with an almost total clearance of the maternal transcripts. In the past, the murine maternal transcriptome has received little attention but recent progresses have brought new insights into the regulation of maternal mRNA dynamics in the mouse. This review will address past and recent data on the mechanisms associated with maternal transcriptome dynamic in the mouse.
Collapse
|
61
|
Varghese J, Peter M, Kamath MS. Oogenesis Arrest Prior to Birth: A Trade-off between Possible Evolutionary Advantages and Age-Related Oocyte Dysfunction? FERTILITY & REPRODUCTION 2021. [DOI: 10.1142/s2661318221500079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oogenesis in mammalian females, including humans, is arrested prior to birth. Females, therefore, are born with a limited number of primary oocytes. This is in direct contrast to males in whom spermatogenesis continues during the entire lifespan following puberty. Here, we discuss possible evolutionary advantages that this confers and contrast this with age-related decline in oocyte quality that results in diminished fertility with advancing maternal age. We believe that a better understanding of these processes would be helpful in developing strategies to preserve fertility as maternal age increases, especially in the context of the current demographic shift with more and more women seeking fertility treatment at advanced age.
Collapse
Affiliation(s)
- Joe Varghese
- Department of Biochemistry, Christian Medical College, Vellore, Tamil Nadu, India
| | - Monica Peter
- Department of Biochemistry, Christian Medical College, Vellore, Tamil Nadu, India
| | - Mohan S. Kamath
- Reproductive Medicine and Surgery, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
62
|
Grześk G, Nowaczyk A. Current Modulation of Guanylate Cyclase Pathway Activity-Mechanism and Clinical Implications. Molecules 2021; 26:molecules26113418. [PMID: 34200064 PMCID: PMC8200204 DOI: 10.3390/molecules26113418] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
For years, guanylate cyclase seemed to be homogenic and tissue nonspecific enzyme; however, in the last few years, in light of preclinical and clinical trials, it became an interesting target for pharmacological intervention. There are several possible options leading to an increase in cyclic guanosine monophosphate concentrations. The first one is related to the uses of analogues of natriuretic peptides. The second is related to increasing levels of natriuretic peptides by the inhibition of degradation. The third leads to an increase in cyclic guanosine monophosphate concentration by the inhibition of its degradation by the inhibition of phosphodiesterase type 5. The last option involves increasing the concentration of cyclic guanosine monophosphate by the additional direct activation of soluble guanylate cyclase. Treatment based on the modulation of guanylate cyclase function is one of the most promising technologies in pharmacology. Pharmacological intervention is stable, effective and safe. Especially interesting is the role of stimulators and activators of soluble guanylate cyclase, which are able to increase the enzymatic activity to generate cyclic guanosine monophosphate independently of nitric oxide. Moreover, most of these agents are effective in chronic treatment in heart failure patients and pulmonary hypertension, and have potential to be a first line option.
Collapse
Affiliation(s)
- Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 75 Ujejskiego St., 85-168 Bydgoszcz, Poland;
| | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
- Correspondence: ; Tel.: +48-52-585-3904
| |
Collapse
|
63
|
Kordowitzki P, Sokołowska G, Wasielak-Politowska M, Skowronska A, Skowronski MT. Pannexins and Connexins: Their Relevance for Oocyte Developmental Competence. Int J Mol Sci 2021; 22:ijms22115918. [PMID: 34072911 PMCID: PMC8199496 DOI: 10.3390/ijms22115918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022] Open
Abstract
The oocyte is the major determinant of embryo developmental competence in all mammalian species. Although fundamental advances have been generated in the field of reproductive medicine and assisted reproductive technologies in the past three decades, researchers and clinicians are still trying to elucidate molecular factors and pathways, which could be pivotal for the oocyte’s developmental competence. The cell-to-cell and cell-to-matrix communications are crucial not only for oocytes but also for multicellular organisms in general. This latter mentioned communication is among others possibly due to the Connexin and Pannexin families of large-pore forming channels. Pannexins belong to a protein group of ATP-release channels, therefore of high importance for the oocyte due to its requirements of high energy supply. An increasing body of studies on Pannexins provided evidence that these channels not only play a role during physiological processes of an oocyte but also during pathological circumstances which could lead to the development of diseases or infertility. Connexins are proteins that form membrane channels and gap-junctions, and more precisely, these proteins enable the exchange of some ions and molecules, and therefore they do play a fundamental role in the communication between the oocyte and accompanying cells. Herein, the role of Pannexins and Connexins for the processes of oogenesis, folliculogenesis, oocyte maturation and fertilization will be discussed and, at the end of this review, Pannexin and Connexin related pathologies and their impact on the developmental competence of oocytes will be provided.
Collapse
Affiliation(s)
- Paweł Kordowitzki
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Bydgoska Street 7, 10-243 Olsztyn, Poland;
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Gagarina Street 7, 87-100 Torun, Poland
| | - Gabriela Sokołowska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Jana Kilińskiego Street 1, 15-089 Białystok, Poland;
| | - Marta Wasielak-Politowska
- Center of Gynecology, Endocrinology and Reproductive Medicine—Artemida, Jagiellońska Street 78, 10-357 Olsztyn, Poland;
| | - Agnieszka Skowronska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Warszawska Street 30, 10-357 Olsztyn, Poland;
| | - Mariusz T. Skowronski
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Gagarina Street 7, 87-100 Torun, Poland
- Correspondence: ; Tel.: +48-566-112-231
| |
Collapse
|