51
|
Neubert E, Bach KM, Busse J, Bogeski I, Schön MP, Kruss S, Erpenbeck L. Blue and Long-Wave Ultraviolet Light Induce in vitro Neutrophil Extracellular Trap (NET) Formation. Front Immunol 2019; 10:2428. [PMID: 31708915 PMCID: PMC6823194 DOI: 10.3389/fimmu.2019.02428] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/27/2019] [Indexed: 12/31/2022] Open
Abstract
Neutrophil Extracellular Traps (NETs) are produced by neutrophilic granulocytes and consist of decondensed chromatin decorated with antimicrobial peptides. They defend the organism against intruders and are released upon various stimuli including pathogens, mediators of inflammation, or chemical triggers. NET formation is also involved in inflammatory, cardiovascular, malignant diseases, and autoimmune disorders like rheumatoid arthritis, psoriasis, or systemic lupus erythematosus (SLE). In many autoimmune diseases like SLE or dermatomyositis, light of the ultraviolet-visible (UV-VIS) spectrum is well-known to trigger and aggravate disease severity. However, the underlying connection between NET formation, light exposure, and disease exacerbation remains elusive. We studied the effect of UVA (375 nm), blue (470 nm) and green (565 nm) light on NETosis in human neutrophils ex vivo. Our results show a dose- and wavelength-dependent induction of NETosis. Light-induced NETosis depended on the generation of extracellular reactive oxygen species (ROS) induced by riboflavin excitation and its subsequent reaction with tryptophan. The light-induced NETosis required both neutrophil elastase (NE) as well as myeloperoxidase (MPO) activation and induced histone citrullination. These findings suggest that NET formation as a response to light could be the hitherto missing link between elevated susceptibility to NET formation in autoimmune patients and photosensitivity for example in SLE and dermatomyositis patients. This novel connection could provide a clue for a deeper understanding of light-sensitive diseases in general and for the development of new pharmacological strategies to avoid disease exacerbation upon light exposure.
Collapse
Affiliation(s)
- Elsa Neubert
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany.,Institute of Physical Chemistry, Göttingen University, Göttingen, Germany
| | - Katharina Marie Bach
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Busse
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Ivan Bogeski
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany.,Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Kruss
- Institute of Physical Chemistry, Göttingen University, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
52
|
Agarwal S, Loder SJ, Cholok D, Li J, Bian G, Yalavarthi S, Li S, Carson WF, Hwang C, Marini S, Pagani C, Edwards N, Delano MJ, Standiford TJ, Knight JS, Kunkel SL, Mishina Y, Ward PA, Levi B. Disruption of Neutrophil Extracellular Traps (NETs) Links Mechanical Strain to Post-traumatic Inflammation. Front Immunol 2019; 10:2148. [PMID: 31708911 PMCID: PMC6821718 DOI: 10.3389/fimmu.2019.02148] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammation after trauma is both critical to normal wound healing and may be highly detrimental when prolonged or unchecked with the potential to impair physiologic healing and promote de novo pathology. Mechanical strain after trauma is associated with impaired wound healing and increased inflammation. The exact mechanisms behind this are not fully elucidated. Neutrophil extracellular traps (NETs), a component of the neutrophil response to trauma, are implicated in a range of pro-inflammatory conditions. In the current study, we evaluated their role in linking movement and inflammation. We found that a link exists between the disruption and amplification of NETs which harbors the potential to regulate the wound's response to mechanical strain, while leaving the initial inflammatory signal necessary for physiologic wound healing intact.
Collapse
Affiliation(s)
- Shailesh Agarwal
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Shawn J Loder
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - David Cholok
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - John Li
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Guowu Bian
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Srilakshmi Yalavarthi
- Department of Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Shuli Li
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - William F Carson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Charles Hwang
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Simone Marini
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Chase Pagani
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Nicole Edwards
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Matthew J Delano
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Theodore J Standiford
- Department of Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jason S Knight
- Department of Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Steven L Kunkel
- Department of Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Benjamin Levi
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
53
|
Erpenbeck L, Gruhn AL, Kudryasheva G, Günay G, Meyer D, Busse J, Neubert E, Schön MP, Rehfeldt F, Kruss S. Effect of Adhesion and Substrate Elasticity on Neutrophil Extracellular Trap Formation. Front Immunol 2019; 10:2320. [PMID: 31632402 PMCID: PMC6781793 DOI: 10.3389/fimmu.2019.02320] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/13/2019] [Indexed: 12/29/2022] Open
Abstract
Neutrophils are the most abundant type of white blood cells. Upon stimulation, they are able to decondense and release their chromatin as neutrophil extracellular traps (NETs). This process (NETosis) is part of immune defense mechanisms but also plays an important role in many chronic and inflammatory diseases such as atherosclerosis, rheumatoid arthritis, diabetes, and cancer. For this reason, much effort has been invested into understanding biochemical signaling pathways in NETosis. However, the impact of the mechanical micro-environment and adhesion on NETosis is not well-understood. Here, we studied how adhesion and especially substrate elasticity affect NETosis. We employed polyacrylamide (PAA) gels with distinctly defined elasticities (Young's modulus E) within the physiologically relevant range from 1 to 128 kPa and coated the gels with integrin ligands (collagen I, fibrinogen). Neutrophils were cultured on these substrates and stimulated with potent inducers of NETosis: phorbol 12-myristate 13-acetate (PMA) and lipopolysaccharide (LPS). Interestingly, PMA-induced NETosis was neither affected by substrate elasticity nor by different integrin ligands. In contrast, for LPS stimulation, NETosis rates increased with increasing substrate elasticity (E > 20 kPa). LPS-induced NETosis increased with increasing cell contact area, while PMA-induced NETosis did not require adhesion at all. Furthermore, inhibition of phosphatidylinositide 3 kinase (PI3K), which is involved in adhesion signaling, completely abolished LPS-induced NETosis but only slightly decreased PMA-induced NETosis. In summary, we show that LPS-induced NETosis depends on adhesion and substrate elasticity while PMA-induced NETosis is completely independent of adhesion.
Collapse
Affiliation(s)
- Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen University, Göttingen, Germany
| | - Antonia Luise Gruhn
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen University, Göttingen, Germany
| | - Galina Kudryasheva
- Third Institute of Physics–Biophysics, Göttingen University, Göttingen, Germany
| | - Gökhan Günay
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen University, Göttingen, Germany
- Department of Chemistry, Institute of Physical Chemistry, Göttingen University, Göttingen, Germany
| | - Daniel Meyer
- Department of Chemistry, Institute of Physical Chemistry, Göttingen University, Göttingen, Germany
| | - Julia Busse
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen University, Göttingen, Germany
| | - Elsa Neubert
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen University, Göttingen, Germany
- Department of Chemistry, Institute of Physical Chemistry, Göttingen University, Göttingen, Germany
| | - Michael P. Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen University, Göttingen, Germany
- Lower Saxony Institute of Occupational Dermatology, Göttingen, Germany
| | - Florian Rehfeldt
- Third Institute of Physics–Biophysics, Göttingen University, Göttingen, Germany
| | - Sebastian Kruss
- Department of Chemistry, Institute of Physical Chemistry, Göttingen University, Göttingen, Germany
| |
Collapse
|
54
|
Fetz AE, Fantaziu CA, Smith RA, Radic MZ, Bowlin GL. Surface Area to Volume Ratio of Electrospun Polydioxanone Templates Regulates the Adsorption of Soluble Proteins from Human Serum. Bioengineering (Basel) 2019; 6:E78. [PMID: 31480458 PMCID: PMC6784194 DOI: 10.3390/bioengineering6030078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
Neutrophils, the first cells that interact with surface-adsorbed proteins on biomaterials, have been increasingly recognized as critical maestros in the foreign body response for guided tissue regeneration. Recent research has shown that small diameter (SD) fibers of electrospun tissue regeneration templates, which have a high surface area to volume ratio (SAVR), enhance the release of neutrophil extracellular traps (NETs) compared to large diameter (LD) fibers, resulting in impaired tissue regeneration. In this study, we evaluated the adsorption of eight human serum proteins on the surface of electrospun templates to investigate how protein adsorption may regulate the release of NETs. Electrospun polydioxanone templates made from SD fibers with high SAVR and LD fibers with low SAVR, were incubated with 0.2% human serum and in situ protein adsorption was quantified with infrared-based immunodetection. Of the detected proteins, IgM and vitronectin adsorbed at low levels, suggesting that they do not play a central role in the release of NETs. Contrastingly, albumin and IgG adsorbed rapidly to the surface of the templates. One-hundred to 200 times more IgG adsorbed on the templates compared to albumin, with significantly greater adsorption occurring on the SD templates with high SAVR. Given that neutrophils express receptors that interact with IgG during phagocytosis and NET release, these results suggest that SAVR-dependent adsorption of IgG on the SD electrospun templates may contribute to the up-regulated release of NETs. Overall, this study may aid in the design of immunomodulatory biomaterials that regulate NET release and thus the potential for neutrophil-driven tissue regeneration.
Collapse
Affiliation(s)
- Allison E Fetz
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA
| | - Cristina A Fantaziu
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA
| | - Richard A Smith
- Department of Biomedical Engineering, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Marko Z Radic
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
55
|
Jacobsen DW, Hannibal L. Redox signaling in inherited diseases of metabolism. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
56
|
Jarrot PA, Tellier E, Plantureux L, Crescence L, Robert S, Chareyre C, Daniel L, Secq V, Garcia S, Dignat-George F, Panicot-Dubois L, Dubois C, Kaplanski G. Neutrophil extracellular traps are associated with the pathogenesis of diffuse alveolar hemorrhage in murine lupus. J Autoimmun 2019; 100:120-130. [PMID: 30930069 DOI: 10.1016/j.jaut.2019.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/30/2022]
Abstract
Diffuse alveolar hemorrhage (DAH) is a life-threatening complication of systemic lupus erythematosus (SLE) and systemic vasculitis. Although initially described to have antibacterial properties, increasing evidence suggests that neutrophil extracellular traps (NETs) have a detrimental role in both autoimmune diseases and acute lung injury. We investigated whether NETs could be detected in a murine model of pristane-induced lupus DAH and contribute to lung injury. Such NETs might constitute a therapeutic target. NETs were characterized by immunofluorescence staining of DNA, neutrophil elastase and citrullinated histones. Evaluation of lung injury was performed by haematoxylin-eosin staining and a quantification program. Clinical status of the mice was assessed by measurement of arterial oxygen saturation and survival curves after recombinant human deoxyribonuclease-1 (Rh-DNase-1) inhalations or polymorphonuclear neutrophil (PMN) depletion. Pristane was found to promote NETs formation in vitro and in vivo. Treatment of mice with Rh-DNase-1 inhalations cleared NETs and reduced lung injury. Clinical status improved significantly, with increased arterial oxygenation and survival. Following PMN depletion, NETs were absent with a subsequent reduction of lung injury and improved arterial oxygenation. These results support a pathogenic role of PMNs and NETs in lung injury during pristane-induced DAH. Targeting NETs with Rh-DNase-1 inhalations could constitute an interesting adjuvant therapy in human DAH.
Collapse
Affiliation(s)
- Pierre-André Jarrot
- Aix-Marseille Univ, INSERM, INRA, C2VN, Marseille, France; Department of Internal Medicine and Clinical Immunology CHU Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France.
| | - Edwige Tellier
- Aix-Marseille Univ, INSERM, INRA, C2VN, Marseille, France
| | - Lea Plantureux
- Aix-Marseille Univ, INSERM, INRA, C2VN, Marseille, France
| | | | | | | | - Laurent Daniel
- Laboratory of Pathology, CHU La Timone, AP-HM, Marseille, France
| | - Véronique Secq
- Laboratory of Pathology, CHU Nord, AP-HM, Marseille, France
| | | | - Françoise Dignat-George
- Aix-Marseille Univ, INSERM, INRA, C2VN, Marseille, France; Laboratory of Haematology, CHU La Conception, AP-HM, Marseille, France
| | | | | | - Gilles Kaplanski
- Aix-Marseille Univ, INSERM, INRA, C2VN, Marseille, France; Department of Internal Medicine and Clinical Immunology CHU Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| |
Collapse
|