51
|
Zaidi N, Soban M, Chen F, Kinkead H, Mathew J, Yarchoan M, Armstrong TD, Haider S, Jaffee EM. Role of in silico structural modeling in predicting immunogenic neoepitopes for cancer vaccine development. JCI Insight 2020; 5:136991. [PMID: 32879142 PMCID: PMC7526456 DOI: 10.1172/jci.insight.136991] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022] Open
Abstract
In prior studies, we delineated the landscape of neoantigens arising from nonsynonymous point mutations in a murine pancreatic cancer model, Panc02. We developed a peptide vaccine by targeting neoantigens predicted using a pipeline that incorporates the MHC binding algorithm NetMHC. The vaccine, when combined with immune checkpoint modulators, elicited a robust neoepitope-specific antitumor immune response and led to tumor clearance. However, only a small fraction of the predicted neoepitopes induced T cell immunity, similarly to that reported for neoantigen vaccines tested in clinical studies. While these studies have used binding affinities to MHC I as surrogates for T cell immunity, this approach does not include spatial information on the mutated residue that is crucial for TCR activation. Here, we investigate conformational alterations in and around the MHC binding groove induced by selected minimal neoepitopes, and we examine the influence of a given mutated residue as a function of its spatial position. We found that structural parameters, including the solvent-accessible surface area (SASA) of the neoepitope and the position and spatial configuration of the mutated residue within the sequence, can be used to improve the prediction of immunogenic neoepitopes for inclusion in cancer vaccines. Structural parameters, including the solvent exposed surface area of the neoepitope and the position and spatial configuration of the mutated residue can be used to improve the prediction of immunogenic neoepitopes for inclusion in cancer vaccines.
Collapse
Affiliation(s)
- Neeha Zaidi
- The Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreatic Cancer, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mariya Soban
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, United Kingdom.,Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Fangluo Chen
- The Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreatic Cancer, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heather Kinkead
- The Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreatic Cancer, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jocelyn Mathew
- The Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreatic Cancer, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Yarchoan
- The Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreatic Cancer, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Todd D Armstrong
- The Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreatic Cancer, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, United Kingdom
| | - Elizabeth M Jaffee
- The Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreatic Cancer, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
52
|
Structural dissimilarity from self drives neoepitope escape from immune tolerance. Nat Chem Biol 2020; 16:1269-1276. [PMID: 32807968 DOI: 10.1038/s41589-020-0610-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023]
Abstract
T-cell recognition of peptides incorporating nonsynonymous mutations, or neoepitopes, is a cornerstone of tumor immunity and forms the basis of new immunotherapy approaches including personalized cancer vaccines. Yet as they are derived from self-peptides, the means through which immunogenic neoepitopes overcome immune self-tolerance are often unclear. Here we show that a point mutation in a non-major histocompatibility complex anchor position induces structural and dynamic changes in an immunologically active ovarian cancer neoepitope. The changes pre-organize the peptide into a conformation optimal for recognition by a neoepitope-specific T-cell receptor, allowing the receptor to bind the neoepitope with high affinity and deliver potent T-cell signals. Our results emphasize the importance of structural and physical changes relative to self in neoepitope immunogenicity. Considered broadly, these findings can help explain some of the difficulties in identifying immunogenic neoepitopes from sequence alone and provide guidance for developing novel, neoepitope-based personalized therapies.
Collapse
|
53
|
Chirmule N, Khare R, Khandekar A, Jawa V. Failure Mode and Effects Analysis (FMEA) for Immunogenicity of Therapeutic Proteins. J Pharm Sci 2020; 109:3214-3222. [PMID: 32721473 DOI: 10.1016/j.xphs.2020.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022]
Abstract
Biotherapeutic drugs made by cell-based systems are revolutionizing the practice of medicine. The next generation of biotherapeutics include recombinant proteins, monoclonal antibodies, viral vector expressed proteins, and cell therapies. Immunogenicity associated adverse events is one of the major risks for these biologics. Accurate and precise measurement of the immunogenicity of biologics is a critical component during all phases of drug development. We have utilized the principles of Failure Mode and Effects Analysis (FMEA) in performing assessment of risk of immunogenicity. The multi-dimensional approach involves: i) listing all the potential risks by likelihood of occurrence and severity as part of quality target product profile. ii) ascribing the causes by identifying the risks at each stage of development. iii) predicting the effects. iv) determining the risk mitigation strategy. v) implementing a monitoring process. vi) developing templates for data collection. vii) timely reporting and. viii) life cycle management. FMEA is a continuous process that works throughout the lifecycle of the product or the process and keeps on getting updated with new insights and knowledge.
Collapse
|
54
|
Adaptive T cell immunotherapy in cancer. SCIENCE CHINA-LIFE SCIENCES 2020; 64:363-371. [PMID: 32712831 DOI: 10.1007/s11427-020-1713-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
Impaired tumor-specific effector T cells contribute to tumor progression and unfavorable clinical outcomes. As a compensatory T cell-dependent cancer immunoediting strategy, adoptive T cell therapy (ACT) has achieved encouraging therapeutic results, and this strategy is now on the center stage of cancer treatment and research. ACT involves the ex vivo stimulation and expansion of tumor-infiltrating lymphocytes (TILs) with inherent tumor reactivity or T cells that have been genetically modified to express the cognate chimeric antigen receptor or T cell receptor (CAR/TCR), followed by the passive transfer of these cells into a lymphodepleted host. Primed T cells must provide highly efficient and long-lasting immune defense against transformed cells during ACT. Anin-depth understanding of the basic mechanisms of these living drugs can help us improve upon current strategies and design better next-generation T cell-based immunotherapies. From this perspective, we provide an overview of current developments in different ACT strategies, with a focus on frontier clinical trials that offer a proof of principle. Meanwhile, insights into the determinants of ACT are discussed, which will lead to more rational, potent and widespread applications in the future.
Collapse
|
55
|
High-affinity oligoclonal TCRs define effective adoptive T cell therapy targeting mutant KRAS-G12D. Proc Natl Acad Sci U S A 2020; 117:12826-12835. [PMID: 32461371 DOI: 10.1073/pnas.1921964117] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Complete cancer regression occurs in a subset of patients following adoptive T cell therapy (ACT) of ex vivo expanded tumor-infiltrating lymphocytes (TILs). However, the low success rate presents a great challenge to broader clinical application. To provide insight into TIL-based immunotherapy, we studied a successful case of ACT where regression was observed against tumors carrying the hotspot mutation G12D in the KRAS oncogene. Four T cell receptors (TCRs) made up the TIL infusion and recognized two KRAS-G12D neoantigens, a nonamer and a decamer, all restricted by human leukocyte antigen (HLA) C*08:02. Three of them (TCR9a, 9b, and 9c) were nonamer-specific, while one was decamer-specific (TCR10). We show that only mutant G12D but not the wild-type peptides stabilized HLA-C*08:02 due to the formation of a critical anchor salt bridge to HLA-C. Therapeutic TCRs exhibited high affinities, ranging from nanomolar to low micromolar. Intriguingly, TCR binding affinities to HLA-C inversely correlated with their persistence in vivo, suggesting the importance of antigenic affinity in the function of therapeutic T cells. Crystal structures of TCR-HLA-C complexes revealed that TCR9a to 9c recognized G12D nonamer with multiple conserved contacts through shared CDR2β and CDR3α. This allowed CDR3β variation to confer different affinities via a variable HLA-C contact, generating an oligoclonal response. TCR10 recognized an induced and distinct G12D decamer conformation. Thus, this successful case of ACT included oligoclonal TCRs of high affinity recognizing distinct conformations of neoantigens. Our study revealed the potential of a structural approach to inform clinical efforts in targeting KRAS-G12D tumors by immunotherapy and has general implications for T cell-based immunotherapies.
Collapse
|
56
|
Chen X, Yang J, Wang L, Liu B. Personalized neoantigen vaccination with synthetic long peptides: recent advances and future perspectives. Theranostics 2020; 10:6011-6023. [PMID: 32483434 PMCID: PMC7255011 DOI: 10.7150/thno.38742] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Therapeutic cancer vaccines are one of the most promising strategies of immunotherapy. Traditional vaccines consisting of tumor-associated antigens have met with limited success. Recently, neoantigens derived from nonsynonymous mutations in tumor cells have emerged as alternatives that can improve tumor-specificity and reduce on-target off-tumor toxicity. Synthetic peptides are a common platform for neoantigen vaccines. It has been suggested that extending short peptides into long peptides can overcome immune tolerance and induce both CD4+ and CD8+ T cell responses. This review will introduce the history of long peptide-based neoantigen vaccines, discuss their advantages, summarize current preclinical and clinical developments, and propose future perspectives.
Collapse
|
57
|
Specht G, Roetschke HP, Mansurkhodzhaev A, Henklein P, Textoris-Taube K, Urlaub H, Mishto M, Liepe J. Large database for the analysis and prediction of spliced and non-spliced peptide generation by proteasomes. Sci Data 2020; 7:146. [PMID: 32415162 PMCID: PMC7228940 DOI: 10.1038/s41597-020-0487-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/16/2020] [Indexed: 11/10/2022] Open
Abstract
Proteasomes are the main producers of antigenic peptides presented to CD8+ T cells. They can cut proteins and release their fragments or recombine non-contiguous fragments thereby generating novel sequences, i.e. spliced peptides. Understanding which are the driving forces and the sequence preferences of both reactions can streamline target discovery in immunotherapies against cancer, infection and autoimmunity. Here, we present a large database of spliced and non-spliced peptides generated by proteasomes in vitro, which is available as simple CSV file and as a MySQL database. To generate the database, we performed in vitro digestions of 55 unique synthetic polypeptide substrates with different proteasome isoforms and experimental conditions. We measured the samples using three mass spectrometers, filtered and validated putative peptides, identified 22,333 peptide product sequences (15,028 spliced and 7,305 non-spliced product sequences). Our database and datasets have been deposited to the Mendeley (doi:10.17632/nr7cs764rc.1) and PRIDE (PXD016782) repositories. We anticipate that this unique database can be a valuable source for predictors of proteasome-catalyzed peptide hydrolysis and splicing, with various future translational applications.
Collapse
Affiliation(s)
- Gerd Specht
- Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Hanna P Roetschke
- Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | | | - Petra Henklein
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, D-10117, Berlin, Germany
| | - Kathrin Textoris-Taube
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Shared Facility for Mass Spectrometry, D-10117, Berlin, Germany
| | - Henning Urlaub
- Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Michele Mishto
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, D-10117, Berlin, Germany.
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, United Kingdom.
| | - Juliane Liepe
- Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| |
Collapse
|
58
|
Nerli S, Sgourakis NG. Structure-based modeling of SARS-CoV-2 peptide/HLA-A02 antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511353 DOI: 10.1101/2020.03.23.004176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
As a first step toward the development of diagnostic and therapeutic tools to fight the Coronavirus disease (COVID-19), it is important to characterize CD8+ T cell epitopes in the SARS-CoV-2 peptidome that can trigger adaptive immune responses. Here, we use RosettaMHC, a comparative modeling approach which leverages existing high-resolution X-ray structures from peptide/MHC complexes available in the Protein Data Bank, to derive physically realistic 3D models for high-affinity SARS-CoV-2 epitopes. We outline an application of our method to model 439 9mer and 279 10mer predicted epitopes displayed by the common allele HLA-A*02:01, and we make our models publicly available through an online database ( https://rosettamhc.chemistry.ucsc.edu ). As more detailed studies on antigen-specific T cell recognition become available, RosettaMHC models of antigens from different strains and HLA alleles can be used as a basis to understand the link between peptide/HLA complex structure and surface chemistry with immunogenicity, in the context of SARS-CoV-2 infection.
Collapse
|
59
|
Biernacki MA, Bleakley M. Neoantigens in Hematologic Malignancies. Front Immunol 2020; 11:121. [PMID: 32117272 PMCID: PMC7033457 DOI: 10.3389/fimmu.2020.00121] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
T cell cancer neoantigens are created from peptides derived from cancer-specific aberrant proteins, such as mutated and fusion proteins, presented in complex with human leukocyte antigens on the cancer cell surface. Because expression of the aberrant target protein is exclusive to malignant cells, immunotherapy directed against neoantigens should avoid “on-target, off-tumor” toxicity. The efficacy of neoantigen vaccines in melanoma and glioblastoma and of adoptive transfer of neoantigen-specific T cells in epithelial tumors indicates that neoantigens are valid therapeutic targets. Improvements in sequencing technology and innovations in antigen discovery approaches have facilitated the identification of neoantigens. In comparison to many solid tumors, hematologic malignancies have few mutations and thus fewer potential neoantigens. Despite this, neoantigens have been identified in a wide variety of hematologic malignancies. These include mutated nucleophosmin1 and PML-RARA in acute myeloid leukemia, ETV6-RUNX1 fusions and other mutated proteins in acute lymphoblastic leukemia, BCR-ABL1 fusions in chronic myeloid leukemia, driver mutations in myeloproliferative neoplasms, immunoglobulins in lymphomas, and proteins derived from patient-specific mutations in chronic lymphoid leukemias. We will review advances in the field of neoantigen discovery, describe the spectrum of identified neoantigens in hematologic malignancies, and discuss the potential of these neoantigens for clinical translation.
Collapse
Affiliation(s)
- Melinda A Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|