51
|
Kemble S, Croft AP. Critical Role of Synovial Tissue-Resident Macrophage and Fibroblast Subsets in the Persistence of Joint Inflammation. Front Immunol 2021; 12:715894. [PMID: 34539648 PMCID: PMC8446662 DOI: 10.3389/fimmu.2021.715894] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic prototypic immune-mediated inflammatory disease which is characterized by persistent synovial inflammation, leading to progressive joint destruction. Whilst the introduction of targeted biological drugs has led to a step change in the management of RA, 30-40% of patients do not respond adequately to these treatments, regardless of the mechanism of action of the drug used (ceiling of therapeutic response). In addition, many patients who acheive clinical remission, quickly relapse following the withdrawal of treatment. These observations suggest the existence of additional pathways of disease persistence that remain to be identified and targeted therapeutically. A major barrier for the identification of therapeutic targets and successful clinical translation is the limited understanding of the cellular mechanisms that operate within the synovial microenvironment to sustain joint inflammation. Recent insights into the heterogeneity of tissue resident synovial cells, including macropahges and fibroblasts has revealed distinct subsets of these cells that differentially regulate specific aspects of inflammatory joint pathology, paving the way for targeted interventions to specifically modulate the behaviour of these cells. In this review, we will discuss the phenotypic and functional heterogeneity of tissue resident synovial cells and how this cellular diversity contributes to joint inflammation. We discuss how critical interactions between tissue resident cell types regulate the disease state by establishing critical cellular checkpoints within the synovium designed to suppress inflammation and restore joint homeostasis. We propose that failure of these cellular checkpoints leads to the emergence of imprinted pathogenic fibroblast cell states that drive the persistence of joint inflammation. Finally, we discuss therapeutic strategies that could be employed to specifically target pathogenic subsets of fibroblasts in RA.
Collapse
Affiliation(s)
| | - Adam P. Croft
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
52
|
Xing XW, Shi HY, Liu S, Feng SX, Feng SQ, Gong BQ. miR-496/MMP10 Is Involved in the Proliferation of IL-1β-Induced Fibroblast-Like Synoviocytes Via Mediating the NF-κB Signaling Pathway. Inflammation 2021; 44:1359-1369. [PMID: 33548006 DOI: 10.1007/s10753-021-01421-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis (RA) is a common chronic autoimmune disease featured by synovial inflammation. miR-496 is closely involved in various pathologic conditions. However, its role in RA has not yet been elucidated. Expression of miR-496 and MMP10 was determined based on the clinical samples with RA retrieved from the Gene Expression Omnibus (GEO) datasets. In vitro model of RA was constructed in MH7A cells stimulated by IL-1β (10 ng/mL). Cell counting kit 8 (CCK-8) and flow cytometry experiments were implemented to investigate the cell viability and apoptosis rate of MH7A cells. TargetScan was applied to identify the targets of miR-496, and the regulation of miR-496 on MMP10 expression was validated by a dual-luciferase reporter gene assay. qRT-PCR and western blot analyses were conducted to examine the expression. miR-496 expression was decreased in RA tissues and MH7A cells after IL-1β treatment. Overexpression of miR-496 significantly inhibited IL-1β-treated MH7A cell viability. MMP10 was identified as a target of miR-496 and its expression was negatively regulated by miR-496. The effects of miR-496 on MH7A cell proliferation and apoptosis were reversed by MMP10. The activity of NF-κB pathway was associated with the miR-496/MMP10 axis in IL-1β-stimulated MH7A cells. To summarize, this study demonstrated that miR-496 can impair the proliferative ability and facilitate the apoptosis of IL-1β-treated MH7A through regulating MMP10 expression and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xue-Wu Xing
- Department of Orthopedics, Tianjin First Central Hospital, No.24 FuKang Road, Nankai District, Tianjin, 300192, China
| | - Hong-Yu Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Shen Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Shu-Xin Feng
- Department of Orthopedics, Tianjin First Central Hospital, No.24 FuKang Road, Nankai District, Tianjin, 300192, China
| | - Shi-Qing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Bao-Qi Gong
- Department of Rheumatology, Tianjin First Central Hospital, No.24 FuKang Road, Nankai District, Tianjin, 300192, China.
| |
Collapse
|
53
|
MicroRNAs Involved in the Therapeutic Functions of Noni ( Morinda citrifolia L.) Fruit Juice in the Treatment of Acute Gouty Arthritis in Mice Induced with Monosodium Urate. Foods 2021; 10:foods10071638. [PMID: 34359507 PMCID: PMC8308103 DOI: 10.3390/foods10071638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 12/27/2022] Open
Abstract
We investigated the functions of microRNAs in the therapeutic effects of noni (Morinda citrifolia L.) fruit juice on mouse models of acute gouty arthritis induced with monosodium urate (MSU). Compared with the model group (treated with MSU), mice in both the positive control group (treated with both MSU and colchicine) and noni fruit juice group (treated with MSU and noni fruit juice) showed a significantly decreased degree of paw swelling in 5 days, as well as the contents of two types of proinflammatory cytokines (i.e., NALP3 and TNF-α). Based on the next-generation sequencing technology, a total of 3896 microRNAs (234 known and 3662 novel) were identified in mice treated with noni fruit juice. A large amount of differentially expressed miRNAs were identified in the noni fruit juice group, suggesting the significant effects of noni fruit juice on the mice with acute gouty arthritis, while the different patterns of change in the numbers of both upregulated and downregulated miRNAs in both noni fruit juice and positive control groups indicated that the mice of acute gouty arthritis may be regulated by differential mechanisms between the treatments of noni fruit juice and colchicine. The target genes of microRNAs involved in the pathogenesis and pathology of acute gouty arthritis in mice were identified and further annotated by both Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Our results revealed the therapeutic effects of noni fruit juice on acute gouty arthritis in mice with a group of microRNAs involved in the pharmacological mechanisms of noni fruit juice, providing scientific evidence to support both the agricultural cultivation and pharmacological significance of noni plants.
Collapse
|
54
|
Huang J, Fu X, Chen X, Li Z, Huang Y, Liang C. Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis. Front Immunol 2021; 12:686155. [PMID: 34305919 PMCID: PMC8299711 DOI: 10.3389/fimmu.2021.686155] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both existing and emerging targets, including the proteins, small molecular metabolites, and epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that result in inflammation and the development of new drugs for blocking the various modulators in RA.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xinxin Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuhong Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
55
|
Li S, Cao Y, Zhang H, Lu X, Wang T, Xu S, Kong T, Bo C, Li L, Ning S, Wang J, Wang L. Construction of lncRNA-Mediated ceRNA Network for Investigating Immune Pathogenesis of Ischemic Stroke. Mol Neurobiol 2021; 58:4758-4769. [PMID: 34173933 DOI: 10.1007/s12035-021-02426-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022]
Abstract
Ischemic stroke (IS) is a common and serious neurological disease. Extensive evidence indicates that activation of the immune system contributes significantly to the development of IS pathology. In recent years, some long non-coding RNAs (lncRNAs), acting as competing endogenous RNAs (ceRNAs), have been reported to affect IS process, especially the immunological response after stroke. However, the roles of lncRNA-mediated ceRNAs in immune pathogenesis of IS are not systemically investigated. In the present study, we generated a global immune-related ceRNA network containing immune-related genes (IRGs), miRNAs, and lncRNAs based on experimentally verified interactions. Further, we excavated an IS immune-related ceRNA (ISIRC) network through mapping significantly differentially expressed IRGs, miRNAs, and lncRNAs of patients with IS into the global network. We analyzed the topological properties of the two networks, respectively, and found that lncRNA NEAT1 and lncRNA KCNQ1OT1 played core roles in aforementioned two immune-related networks. Moreover, the results of functional enrichment analyses revealed that lncRNAs in the ISIRC network were mainly involved in several immune-related biological processes and pathways. Finally, we identified 17 lncRNAs which were highly related to the immune mechanism of IS through performing random walk with restart for the ISIRC network. Importantly, it has been confirmed that NEAT1, KCNQ1OT1, GAS5, and RMRP could regulate immuno-inflammatory response after stroke, such as production of inflammatory factors and activation of the immune cells. Our results suggested that lncRNAs exerted an important role in the immune pathogenesis of IS and provided a new strategy to do research on IS.
Collapse
Affiliation(s)
- Shuang Li
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yuze Cao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Xiaoyu Lu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Tianfeng Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Si Xu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Tongxiao Kong
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Chunrui Bo
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Lifang Li
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| | - Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| |
Collapse
|
56
|
Ghafouri-Fard S, Abak A, Shoorei H, Talebi SF, Mohaqiq M, Sarabi P, Taheri M, Mokhtari M. Interaction between non-coding RNAs and Toll-like receptors. Biomed Pharmacother 2021; 140:111784. [PMID: 34087695 DOI: 10.1016/j.biopha.2021.111784] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs) are a large group of pattern recognition receptors which are involved in the regulation of innate immune responses. Based on the interplay between TLRs and adapter molecules, two distinctive signaling cascades, namely the MyD88-dependent and TRIF-dependent pathways have been recognized. TLRs are involved in the development of a wide variety of diseases including cancer and autoimmune disorders. A large body of evidence has shown interaction between two classes of non-coding RNAs, namely microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). These interactions have prominent roles in the pathogenesis of several disorders including infectious disorders, autoimmune conditions and neoplastic disorders. This review aims at description of the interaction between these non-coding RNAs and TLRs.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mahdi Mohaqiq
- School of Advancement, Centennial College, Ashtonbee Campus, Toronto, ON, Canada
| | - Parisa Sarabi
- Deputy for Research & Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Mokhtari
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
57
|
Jiang H, Fan C, Lu Y, Cui X, Liu J. Astragaloside regulates lncRNA LOC100912373 and the miR‑17‑5p/PDK1 axis to inhibit the proliferation of fibroblast‑like synoviocytes in rats with rheumatoid arthritis. Int J Mol Med 2021; 48:130. [PMID: 34013364 PMCID: PMC8136124 DOI: 10.3892/ijmm.2021.4963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Previous studies have confirmed that astragaloside (AST) exerts a positive effect on alleviating synovial and joint injury in rheumatoid arthritis (RA). However, the precise mechanisms through which AST acts in the treatment of RA remain unclear. Long non-coding RNA (lncRNA) LOC100912373 was identified as a key gene related to RA and has been proven to interact with miR-17-5p, in order to regulate the pyruvate dehydrogenase kinase 1 and protein kinase B axis (PDK1/AKT axis). The present study aimed to determine whether AST may treat RA through the interaction between lncRNA LOC100912373 and the miR-17-5p/PDK1 axis. MTT assays and flow cytometry were used to detect the proliferation and cell cycle progression of AST-treated fibroblast-like synoviocytes (FLSs). The expression of lncRNA LOC100912373 and miR-17-5p, as well as relative the mRNA expression of the PDK1 and AKT genes following AST intervention was detected by reverse transcription-quantitative PCR (RT-qPCR), immunofluorescence and western blot analysis. The results revealed that AST inhibited FLS proliferation, reduced lncRNA LOC100912373 expression levels, increased miR-17-5p expression levels, and decreased the PDK1 and p-AKT expression levels. Additionally, consecutive rescue experiments revealed that AST counteracted the effects of lncRNA LOC100912373 overexpression on FLS proliferation and cell cycle progression. On the whole, the present study demonstrates that AST inhibits FLS proliferation by regulating the expression of lncRNA LOC100912373 and the miR-17-5p/PDK1 axis.
Collapse
Affiliation(s)
- Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Yunqi Lu
- Department of Biochemistry, Drew University, Madison, NJ 07940, USA
| | - Xiaoya Cui
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Jian Liu
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
58
|
Khan S, Masood M, Gaur H, Ahmad S, Syed MA. Long non-coding RNA: An immune cells perspective. Life Sci 2021; 271:119152. [PMID: 33548285 DOI: 10.1016/j.lfs.2021.119152] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 02/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) were considered as accumulated genetic waste until they were found to be gene expression regulators by highly sensitive modern genomics platforms. It is a huge class of non-coding transcripts with an arbitrary length of >200 nucleotides, which has gained much attention in the past few years. Increasing evidence from several experimental studies unraveled the expression of lncRNA linked to immune response and disease progression. However, only a small number of lncRNAs have robust evidence of their function. Differential expression of lncRNAs in different immune cells is also evident. In this review, we focused on how lncRNAs expression assist in shaping immune cells (Macrophages, Dendritic cells, NK cells, T cells, B cells, eosinophils, neutrophils, and microglial cells) function and their response to the diseased conditions. Emerging evidence revealed lncRNAs may serve as key regulators in the innate and adaptive immune response system. So, the molecular mechanism insight into the function of lncRNAs in immune response may contribute to the development of potential therapeutic targets for various disease treatments. Therefore, it is imperative to explore the expression of lncRNAs and understand its relevance associated with the immune system.
Collapse
Affiliation(s)
- Salman Khan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Masood
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Harshita Gaur
- Department of Life Sciences, University of Glasgow, United Kingdom
| | - Shaniya Ahmad
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
59
|
Fan K, Shen Y, Xu X, Tao L, Bao T, Li J. LncRNA-WAS and lncRNA-C8807 interact with miR-142a-3p to regulate the inflammatory response in grass carp. FISH & SHELLFISH IMMUNOLOGY 2021; 111:201-207. [PMID: 33582280 DOI: 10.1016/j.fsi.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Septicemia of grass carp is a systemic inflammatory reaction caused by bacterial infection. More and more evidences show that long non-coding RNAs (lncRNAs) can participate in the regulation of inflammatory response. In the present study, lncRNA-WAS and lncRNA-C8807 were confirmed to be involved in the inflammatory response following infection with Aeromonas hydrophila. LncRNA-WAS and lncRNA-C8807 could interact with miR-142a-3p. LncRNA-WAS and lncRNA-C8807 interact with miR-142a-3p to effect pro-inflammatory genes and NF-κB pathway. Our results provide a theoretical basis for studying the molecular mechanism underlying the regulation of inflammation by lncRNA in grass carp.
Collapse
Affiliation(s)
- Kun Fan
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Lizhu Tao
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Tianjie Bao
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
60
|
Yang J, Villar VAM, Jose PA, Zeng C. Renal Dopamine Receptors and Oxidative Stress: Role in Hypertension. Antioxid Redox Signal 2021; 34:716-735. [PMID: 32349533 PMCID: PMC7910420 DOI: 10.1089/ars.2020.8106] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: The kidney plays an important role in the long-term control of blood pressure. Oxidative stress is one of the fundamental mechanisms responsible for the development of hypertension. Dopamine, via five subtypes of receptors, plays an important role in the control of blood pressure by various mechanisms, including the inhibition of oxidative stress. Recent Advances: Dopamine receptors exert their regulatory function to decrease the oxidative stress in the kidney and ultimately maintain normal sodium balance and blood pressure homeostasis. An aberration of this regulation may be involved in the pathogenesis of hypertension. Critical Issues: Our present article reviews the important role of oxidative stress and intrarenal dopaminergic system in the regulation of blood pressure, summarizes the current knowledge on renal dopamine receptor-mediated antioxidation, including decreasing reactive oxygen species production, inhibiting pro-oxidant enzyme nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase, and stimulating antioxidative enzymes, and also discusses its underlying mechanisms, including the increased activity of G protein-coupled receptor kinase 4 (GRK4) and abnormal trafficking of renal dopamine receptors in hypertensive status. Future Directions: Identifying the mechanisms of renal dopamine receptors in the regulation of oxidative stress and their contribution to the pathogenesis of hypertension remains an important research focus. Increased understanding of the role of reciprocal regulation between renal dopamine receptors and oxidative stress in the regulation of blood pressure may give us novel insights into the pathogenesis of hypertension and provide a new treatment strategy for hypertension.
Collapse
Affiliation(s)
- Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Van Anthony M Villar
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Chunyu Zeng
- Department of Cardiology, Fujian Heart Medical Center, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.,Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
61
|
Ghafouri-Fard S, Abak A, Fattahi F, Hussen BM, Bahroudi Z, Shoorei H, Taheri M. The interaction between miRNAs/lncRNAs and nuclear factor-κB (NF-κB) in human disorders. Biomed Pharmacother 2021; 138:111519. [PMID: 33756159 DOI: 10.1016/j.biopha.2021.111519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/27/2021] [Accepted: 03/14/2021] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor-κB (NF-κB) represents a group of inducible transcription factors (TFs) regulating the expression of a great variety of genes implicated in diverse processes, particularly modulation of immune system responses. This TF has functional interactions with non-coding RNAs, constructing a complicated network through which NF-κB, miRNAs, and lncRNAs coordinately regulate gene expression at different facets. This type of interaction is involved in the pathophysiology of several human disorders including both neoplastic disorders and non-neoplastic conditions. MALAT1 and NKILA are among lncRNAs whose interactions with NF-κB have been vastly assessed in different conditions including cancer and inflammatory conditions. In addition, miR-146a/b has functional interactions with this TF in different contexts. Although miRNAs have mutual interactions with NF-κB, the regulatory role of miRNAs on this TF has been more clarified. The aim of the current review is to explore the function of NF-κB-related miRNAs and lncRNAs in these two types of human disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afete Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faranak Fattahi
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Bashdar M Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
62
|
Liu CH, Lu YL, Huang HT, Wang CF, Luo HC, Wei GJ, Lei M, Tan T, Wang Y, Huang YY, Wei YS, Lan Y. Association of LncRNA-GAS5 gene polymorphisms and PBMC LncRNA-GAS5 level with risk of systemic lupus erythematosus in Chinese population. J Cell Mol Med 2021; 25:3548-3559. [PMID: 33728802 PMCID: PMC8034459 DOI: 10.1111/jcmm.16438] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 12/21/2022] Open
Abstract
Growth arrest‐specific 5 (GAS5) is a kind of long non‐coding RNAs (lncRNAs). Previous studies showed that down‐regulation of LncRNA‐GAS5 was involved in the development of systemic lupus erythematosus (SLE). However, the regulatory mechanism of down‐expressed LncRNA‐GAS5 in SLE remains obscure. In this study, we aimed to investigate the association of LncRNA‐GAS5 polymorphism with SLE risk. And further explore how LncRNA‐GAS5 is involved in the occurrence of SLE. Here, we evaluated the relationship between the risk for the development of SLE and the 5‐base pair (AGGCA/‐) insertion/deletion (I/D) polymorphism (rs145204276) in the LncRNA‐GAS5 promoter region. A custom 36‐Plex SNPscan kit was used for genotyping the LncRNA‐GAS5 polymorphisms. The LncRNA‐GAS5 and miR‐21 target prediction was performed using bioinformatics software. Enzyme‐linked immunosorbent assay (ELISA) and quantitative real‐time PCR (qRT‐PCR) were performed to assess GAS5 and miR‐21 mRNA expression and PTEN protein expression. The results revealed that rs145204276 resulted in a decreased risk of SLE (DD genotypes vs II genotypes: adjusted OR = 0.538, 95% CI, 0.30‐0.97, P = .039; ID genotypes vs II genotypes: adjusted OR = 0.641, 95% CI, 0.46‐0.89, P = .007; ID/DD genotypes vs II genotypes: adjusted OR = 0.621, 95% CI, 0.46‐0.84, P = .002; D alleles vs I alleles: adjusted OR = 0.680, 95% CI, 0.53‐0.87, P = .002). A reduced incidence of renal disorders in SLE was found to be related to ID/DD genotypes and D alleles (ID/DD genotypes vs II genotypes: OR = 0.57, 95% CI, 0.36‐0.92, P = .020; D alleles vs I alleles: OR = 0.63, 95% CI, 0.43‐0.93, P = .019). However, no significant association of rs2235095, rs6790, rs2067079 and rs1951625 polymorphisms with SLE risk was observed (P > .05). Additionally, haplotype analysis showed that a decreased SLE risk resulted from the A‐A‐C‐G‐D haplotype (OR = 0.67, 95% CI, 0.49‐0.91, P = .010). Also, patients in the SLE group showed a down‐regulated expression of LncRNA‐GAS5 and PTEN than the healthy volunteers; however, patients with rs145204276 ID/DD genotypes showed up‐regulated expression of LncRNA‐GAS5 and PTEN compared with patients carrying the II genotype. Furthermore, the miR‐21 levels were considerably up‐regulated in the SLE group than the healthy volunteers, and patients with rs145204276 ID/DD genotype had lower miR‐21 levels than the ones with the II genotype. Thus, we found that the LncRNA‐GAS5/miR‐21/PTEN signalling pathway was involved in the development of SLE, where LncRNA‐GAS5 acted as an miR‐21 target, and miR‐21 regulated the expression of PTEN. These findings indicated that the rs145204276 ID/DD genotypes in the LncRNA‐GAS5 gene promoter region may be protected against SLE by up‐regulating the expression of LncRNA‐GAS5, which consecutively regulated miR‐21 and PTEN levels.
Collapse
Affiliation(s)
- Chun-Hong Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yu-Lan Lu
- Department of Medical Reproduction Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Hua-Tuo Huang
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Chun-Fang Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Hong-Cheng Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Gui-Jiang Wei
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Ming Lei
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Tan Tan
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yan Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yan-Yun Huang
- Department of Clinical Laboratory, People's Hospital of Baise, Baise, China
| | - Ye-Sheng Wei
- Department of Laboratory Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yan Lan
- Department of Dermatology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
63
|
Miao C, Bai L, Yang Y, Huang J. Dysregulation of lncRNAs in Rheumatoid Arthritis: Biomarkers, Pathogenesis and Potential Therapeutic Targets. Front Pharmacol 2021; 12:652751. [PMID: 33776780 PMCID: PMC7994855 DOI: 10.3389/fphar.2021.652751] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease of unknown etiology, mainly manifested by persistent abnormal proliferation of fibroblast-like synoviocytes (FLSs), inflammation, synovial hyperplasia and cartilage erosion, accompanied by joint swelling and joint destruction. Abnormal expression or function of long noncoding RNAs (lncRNAs) are closely related to human diseases, including cancers, mental diseases, autoimmune diseases and others. The abnormal sequence and spatial structure of lncRNAs, the disorder expression and the abnormal interaction with the binding protein will lead to the change of gene expression in the way of epigenetic modification. Increasing evidence demonstrated that lncRNAs were involved in the activation of FLSs, which played a key role in the pathogenesis of RA. In this review, the research progress of lncRNAs in the pathogenesis of RA was systematically summarized, including the role of lncRNAs in the diagnosis of RA, the regulatory mechanism of lncRNAs in the pathogenesis of RA, and the intervention role of lncRNAs in the treatment of RA. Furthermore, the activated signal pathways, the role of DNA methylation and other mechanism have also been overview in this review.
Collapse
Affiliation(s)
- Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Anhui Provincial Key Laboratory of Chinese Medicine Compound, Anhui University of Chinese Medicine, Hefei, China.,Department of Pharmacy, School of Life and Health Sciences, Anhui University of Science and Technology, Fengyang, China
| | - Liangliang Bai
- Department of Biomedical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Yaru Yang
- Department of Pharmacy, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jinling Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
64
|
Huang D, Liu J, Wan L, Fang Y, Long Y, Zhang Y, Bao B. Identification of lncRNAs associated with the pathogenesis of ankylosing spondylitis. BMC Musculoskelet Disord 2021; 22:272. [PMID: 33711974 PMCID: PMC7955637 DOI: 10.1186/s12891-021-04119-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/25/2021] [Indexed: 12/20/2022] Open
Abstract
Background Ankylosing spondylitis (AS) is a chronic autoimmune disease affecting the sacroiliac joint. To date, few studies have examined the association between long non-coding RNAs (lncRNAs) and AS pathogenesis. As such, we herein sought to characterize patterns of AS-related lncRNA expression and to evaluate the potential role played by these lncRNAs in this complex autoimmune context. Methods We conducted a RNA-seq analysis of peripheral blood mononuclear cell (PBMC) samples isolated from five AS patients and corresponding controls. These data were then leveraged to characterize AS-related lncRNA expression patterns. We further conducted GO and KEGG enrichment analyses of the parental genes encoding these lncRNAs, and we confirmed the validity of our RNA-seq data by assessing the expression of six lncRNAs via qRT-PCR in 15 AS and control patient samples. Pearson correlation analyses were additionally employed to examine the associations between the expression levels of these six lncRNAs and patient clinical index values. Results We detected 56,575 total lncRNAs in AS and control patient samples during our initial RNA-seq analysis, of which 200 and 70 were found to be up- and down-regulated (FC > 2 or < 0.05; P < 0.05), respectively, in AS samples relative to controls. In qRT-PCR validation assays, we confirmed the significant upregulation of NONHSAT118801.2, ENST00000444046, and NONHSAT183847.1 and the significant downregulation of NONHSAT205110.1, NONHSAT105444.2, and NONHSAT051856.2 in AS patient samples. We further found the expression of NONHSAT118801.2 and NONHSAT183847.1 to be positively correlated with disease severity. Conclusion Overall, our findings highlight several lncRNAs that are specifically expressed in PBMCs of AS patients, indicating that they may play key functions in the pathogenesis of this autoimmune disease. Specifically, we determined that NONHSAT118801.2 and NONHSAT183847.1 may influence the occurrence and development of AS.
Collapse
Affiliation(s)
- Dan Huang
- Department of Rheumatology, First Affiliated Hospital of Anhui University of Chinese Medicine, No 117 Meishan Road, Shushan District, Hefei City, Anhui Province, 230031, People's Republic of China
| | - Jian Liu
- Department of Rheumatology, First Affiliated Hospital of Anhui University of Chinese Medicine, No 117 Meishan Road, Shushan District, Hefei City, Anhui Province, 230031, People's Republic of China. .,Rheumatology institute of Anhui Academy Chinese Medicine, No 117 Meishan Road, Shushan District, Hefei City, Anhui Province, 230031, People's Republic of China.
| | - Lei Wan
- Department of Rheumatology, First Affiliated Hospital of Anhui University of Chinese Medicine, No 117 Meishan Road, Shushan District, Hefei City, Anhui Province, 230031, People's Republic of China.,Rheumatology institute of Anhui Academy Chinese Medicine, No 117 Meishan Road, Shushan District, Hefei City, Anhui Province, 230031, People's Republic of China
| | - Yanyan Fang
- Department of Rheumatology, First Affiliated Hospital of Anhui University of Chinese Medicine, No 117 Meishan Road, Shushan District, Hefei City, Anhui Province, 230031, People's Republic of China
| | - Yan Long
- Department of Rheumatology, First Affiliated Hospital of Anhui University of Chinese Medicine, No 117 Meishan Road, Shushan District, Hefei City, Anhui Province, 230031, People's Republic of China
| | - Ying Zhang
- Department of Rheumatology, First Affiliated Hospital of Anhui University of Chinese Medicine, No 117 Meishan Road, Shushan District, Hefei City, Anhui Province, 230031, People's Republic of China
| | - Bingxi Bao
- Department of Rheumatology, First Affiliated Hospital of Anhui University of Chinese Medicine, No 117 Meishan Road, Shushan District, Hefei City, Anhui Province, 230031, People's Republic of China
| |
Collapse
|
65
|
Bao X, Ma L, He C. MicroRNA-23a-5p regulates cell proliferation, migration and inflammation of TNF-α-stimulated human fibroblast-like MH7A synoviocytes by targeting TLR4 in rheumatoid arthritis. Exp Ther Med 2021; 21:479. [PMID: 33767774 PMCID: PMC7976437 DOI: 10.3892/etm.2021.9910] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/22/2020] [Indexed: 12/23/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovial joint inflammation. RA synovial fibroblasts (RASFs) constitute a major cell subset of the RA synovia. MicroRNAs (miRNAs/miRs) have been reported to serve a role in the activation and proliferation of RASFs. The present study aimed to investigate the effects and underlying mechanisms of miR-23a-5p on RA progression. Peripheral blood was collected from patients with RA (n=20) to analyze the expression levels of miR-23a-5p. The effects of miR-23a-5p on cell apoptosis, proliferation and migration in MH7A cells were determined in TNF-α-treated human fibroblast-like synoviocytes (MH7A cells) by flow cytometry, colony formation assay and Transwell assay, respectively. The cell cycle distribution was evaluated using flow cytometry. The binding relationship between miR-23a-5p and toll-like receptor (TLR) 4 was analyzed using a dual luciferase reporter gene assay. ELISA and reverse transcription-quantitative PCR assays were used to detect the levels of the inflammatory factors IL-6, IL-1β and IL-10. The expression levels of apoptosis- and migration-related proteins were analyzed using western blotting. The results of the present study revealed that the expression levels of miR-23a-5p were significantly downregulated in the plasma of patients with RA and in MH7A cells. In addition, the TNF-α-induced increase in the cell proliferative and migratory rates and the production of IL-6 and IL-1β were markedly inhibited following miR-23a-5p overexpression. The TNF-α-induced decreases in MH7A cell apoptosis were also reversed following miR-23a-5p overexpression. Additionally, transfection with miR-23a-5p mimics significantly inhibited the activation of the TLR4/NF-κB signaling pathway in TNF-α-treated MH7A cells by targeting TLR4. Notably, TLR4 overexpression weakened the effects of miR-23a-5p mimic on cell proliferation, apoptosis, migration, inflammation and the TLR4/NF-κB signaling pathway in TNF-α-induced MH7A cells. In conclusion, the findings of the present study indicated that the miR-23a-5p/TLR4/NF-κB axis may serve as a promising target for RA diagnosis and treatment.
Collapse
Affiliation(s)
- Xiao Bao
- Department of Rheumatology and Immunology, The People's Hospital of De Yang City, Deyang, Sichuan 618000, P.R. China
| | - Ling Ma
- Department of Rheumatology and Immunology, The People's Hospital of De Yang City, Deyang, Sichuan 618000, P.R. China
| | - Chengsong He
- Department of Rheumatology and Immunology, Southwest Medical University Affiliated Hospital, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
66
|
Su Y, Liu Y, Ma C, Guan C, Ma X, Meng S. Mesenchymal stem cell-originated exosomal lncRNA HAND2-AS1 impairs rheumatoid arthritis fibroblast-like synoviocyte activation through miR-143-3p/TNFAIP3/NF-κB pathway. J Orthop Surg Res 2021; 16:116. [PMID: 33549125 PMCID: PMC7866436 DOI: 10.1186/s13018-021-02248-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Long non-coding RNA heart and neural crest derivatives expressed 2-antisense RNA 1 (HAND2-AS1) was found to be elevated in rheumatoid arthritis (RA) fibroblast-like synoviocytes (RA-FLSs). However, whether HAND2-AS1 functions as an exosomal lncRNA related to mesenchymal stem cells (MSCs) in RA progression is unknown. Methods The expression of HAND2-AS1, microRNA (miR)-143-3p, and tumor necrosis factor alpha-inducible protein 3 (TNFAIP3) was detected using quantitative real-time polymerase chain reaction and Western blot. Cell proliferation, apoptosis, migration, and invasion were detected using cell counting kit-8, flow cytometry, and wound healing and transwell assays. The levels of tumor necrosis factor-α (TNF-α) and interleukins (IL)-6 were analyzed using enzyme-linked immunosorbent assay. The level of phosphorylated-p65 was examined by Western blot. The binding interaction between miR-143-3p and HAND2-AS1 or TNFAIP3 was confirmed by the dual-luciferase reporter and RIP assays. Exosomes were isolated by ultracentrifugation and qualified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot. Results HAND2-AS1 was lowly expressed in RA synovial tissues, and HAND2-AS1 re-expression suppressed the proliferation, motility, and inflammation and triggered the apoptosis in RA-FLSs via the inactivation of NF-κB pathway. Mechanistically, HAND2-AS1 directly sponged miR-143-3p and positively regulated TNFAIP3 expression, the target of miR-143-3p. Moreover, the effects of HAND2-AS1 on RA-FLSs were partially attenuated by miR-143-3p upregulation or TNFAIP3 knockdown. HAND2-AS1 could be packaged into hMSC-derived exosomes and absorbed by RA-FLSs, and human MSC-derived exosomal HAND2-AS1 also repressed above malignant biological behavior of RA-FLSs. Conclusion MSC-derived exosomes participated in the intercellular transfer of HAND2-AS1 and suppressed the activation of RA-FLSs via miR-143-3p/TNFAIP3/NF-κB pathway, which provided a novel insight into the pathogenesis and treatment of RA.
Collapse
Affiliation(s)
- Yuhua Su
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, NO.2428 Yuhe Road, Kuiwen District, Weifang, 261000, Shandong, China
| | - Yajing Liu
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, NO.2428 Yuhe Road, Kuiwen District, Weifang, 261000, Shandong, China
| | - Chao Ma
- Internal medicine, Yuncheng Hospital of traditional Chinese Medicine, Heze, 274700, Shandong, China
| | - Chunxiao Guan
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, NO.2428 Yuhe Road, Kuiwen District, Weifang, 261000, Shandong, China
| | - Xiufen Ma
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, NO.2428 Yuhe Road, Kuiwen District, Weifang, 261000, Shandong, China
| | - Shan Meng
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, NO.2428 Yuhe Road, Kuiwen District, Weifang, 261000, Shandong, China.
| |
Collapse
|
67
|
Hu Y, Zhang Y, Ding M, Xu R. LncRNA LINC00511 Acts as an Oncogene in Colorectal Cancer via Sponging miR-29c-3p to Upregulate NFIA. Onco Targets Ther 2021; 13:13413-13424. [PMID: 33536761 PMCID: PMC7847767 DOI: 10.2147/ott.s250377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background Colorectal cancer (CRC), characterized by high mortality and incidence rate, is one of the most common types of rectum tumors in the gastrointestinal tract worldwide. An increasing number of investigations indicated that long noncoding RNAs (lncRNAs) have been implicated in the growth of a wide range of cancers. Although it has obtained general acceptance that lncRNA LINC00511 plays a significant role in numerous cancers, the regulatory mechanism of LINC00511 in CRC still needs to be explored. Materials and Methods Bioinformatics analysis and a wide range of experiments of sphere formation assay, cell proliferation assay, RT-qPCR, colony formation assay, Transwell assay and Western blot assays investigated the function and mechanism of LINC00511 in CRC tissues and cells. Results Our results manifested that the expression level of LINC00511 was obviously upregulated in CRC tissues and cells and it accelerated CRC development through facilitating cell proliferation, metastasis and stemness. Molecular mechanism exploration uncovered that LINC00511 acted as a ceRNA competing with NFIA to bind with miR-29c-3p. Through rescue experiments, we discovered that NFIA upregulation partly counteracted the inhibitive effect induced by LINC00511 silencing on CRC progression. Conclusion These results revealed that LINC00511 participated in the progression of CRC by targeting the LINC00511/miR-29c-3p/NFIA axis, indicating that LINC00511 may be a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Yu Hu
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, People's Republic of China
| | - Ying Zhang
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, People's Republic of China
| | - Meng Ding
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, People's Republic of China
| | - Ruisi Xu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, People's Republic of China
| |
Collapse
|
68
|
Yang G, Zhao Y. MicroRNA-490-3p inhibits inflammatory responses in LPS-induced acute lung injury of neonatal rats by suppressing the IRAK1/TRAF6 pathway. Exp Ther Med 2020; 21:152. [PMID: 33456519 PMCID: PMC7792502 DOI: 10.3892/etm.2020.9584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Acute lung injury (ALI) is a main reason for neonatal death. Studying the molecular mechanism behind neonatal ALI is critical for the development of therapeutic strategies. The present study explored microRNA (miR)-490-3p-mediated regulatory effects on lipopolysaccharide (LPS)-induced neonatal ALI. Initially, LPS (10 mg/kg body weight) was injected to 3-8 day old neonatal SD rats to induce ALI, and LPS (100 ng/ml) was used to treat lung epithelial cells to construct an ALI model in vitro. Next, miR-490-3p, pro-inflammatory factors (that included IL-1β, IL-6 and TNFα), interleukin 1 receptor associated kinase 1 (IRAK1) and TNF receptor associated factor 6 (TRAF6) mRNA expression levels in lung tissues and epithelial cells were assessed via reverse transcription-quantitative PCR. In addition, miR-490-3p mimics were adopted to construct its overexpressed cell model, and Cell Counting Kit-8 and BrdU assays were conducted to assess cell viability. Furthermore, the miR-490-3p target, IRAK was predicted by bioinformatics analysis and verified via Dual-luciferase reporter gene assay. The results revealed that miR-490-3p was markedly downregulated in an LPS-induced rat ALI model, while IL-1β, IL-6, TNFα, IRAK1 and TRAF6 were all upregulated and negatively correlated with miR-490-3p expression. Moreover, overexpressed miR-490-3p significantly inhibited LPS-induced lung epithelial cell injury and inflammatory response. Mechanistically, miR-490-3p targeted and attenuated IRAK1 expression, which thus inactivated the LPS-mediated TRAF6/NF-κB pathway. Overall, the present study indicated that miR-490-3p overexpression significantly inhibited LPS-induced ALI and inflammatory responses by restricting the IRAK1/TRAF6 pathway.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pediatrics, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yuan Zhao
- Department of Neonatal Internal Medicine, Shanxi Children's Hospital, Taiyuan, Shanxi 030013, P.R. China
| |
Collapse
|
69
|
Suppression of lncRNA MALAT1 reduces pro-inflammatory cytokines production by regulating miR-150-5p/ZBTB4 axis through JAK/STAT signal pathway in systemic juvenile idiopathic arthritis. Cytokine 2020; 138:155397. [PMID: 33341002 DOI: 10.1016/j.cyto.2020.155397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
Systemic juvenile idiopathic arthritis (sJIA) is a common chronic disease occurring in children. Increasing studies have demonstrated that long noncoding RNAs (lncRNAs) play important roles in the pathogenesis of diverse human diseases. This study aimed to explore the role of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and its mechanism in sJIA. We found that the expression of MALAT1, the plasma level of pro-inflammatory cytokines (IL-6, IL-17, IL-1β, and TNF-α) as well as MMP-8 and MMP-9 production were significantly elevated in sJIA patients. Moreover, we observed that the production of these cytokines in peripheral blood mononuclear cells (PBMCs) from sJIA patients were reduced after MALAT1 knockdown. Furthermore, bioinformatics analysis predicted that MALAT1 might bind to miR-150-5p and ZBTB4 was a downstream target gene of miR-150-5p. Besides, rescue assays revealed that MALAT1 knockdown-mediated suppressive effects on cytokine production could be reversed by ZBTB4 overexpression. In addition, MALAT1 activated the JAK/STAT signaling by upregulating ZBTB4 expression. In summary, our findings demonstrated that MALAT1 promoted pro-inflammatory cytokine and MMP production by targeting the miR-150-5p/ZBTB4 axis through JAK/STAT signaling pathway in sJIA, suggesting that MALAT1 may have a potential diagnostic biomarker for the pathogenesis and therapy of sJIA.
Collapse
|
70
|
Zhang Y, Mao X, Li W, Chen W, Wang X, Ma Z, Lin N. Tripterygium wilfordii: An inspiring resource for rheumatoid arthritis treatment. Med Res Rev 2020; 41:1337-1374. [PMID: 33296090 DOI: 10.1002/med.21762] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/02/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022]
Abstract
Tripterygium wilfordii Hook F (TwHF)-based therapy is among the most efficient and crucial therapeutics for the treatment of rheumatoid arthritis (RA), which indicates that TwHF is a potential source of novel anti-RA drugs. However, accumulating studies have observed that TwHF-based therapy induces multi-organ toxicity, which prevents the wide use of this herb in clinical practice, although several recent studies have attempted to reduce the toxicity of TwHF. Notably, our research group developed a "Clinical Practice Guideline for Tripterygium Glycosides/Tripterygium wilfordii Tablets in the Treatment of Rheumatoid Arthritis" (No. T/CACM 1337-2020) approved by the China Association of Chinese Medicine to standardize the clinical application of TwHF-based therapy and thus avoid adverse effects. Although great strides have been made toward the characterization of TwHF-based therapy and revealing its underlying pharmacological and toxicological mechanisms, several crucial gaps in knowledge remain as potential barriers to enhance its therapeutic effects on the premise of safety assurance. This review offers a global view of TwHF, ranging from its chemical constituents, quality control, clinical observations, and underlying pharmacological mechanisms to toxic manifestations and mechanisms. We focus on the important and emerging aspects of this field and highlight the major challenges and strategies for using novel techniques and approaches to gain new insights into unresolved questions. We hope that this review will improve the understanding of TwHF application and draw increasing interdisciplinary attention from clinicians that practice both Chinese and Western medicine, basic researchers, and computer scientists.
Collapse
Affiliation(s)
- Yanqiong Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xia Mao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weijie Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjia Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyue Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhaochen Ma
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Na Lin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
71
|
Yang J, Cheng M, Gu B, Wang J, Yan S, Xu D. CircRNA_09505 aggravates inflammation and joint damage in collagen-induced arthritis mice via miR-6089/AKT1/NF-κB axis. Cell Death Dis 2020; 11:833. [PMID: 33028811 PMCID: PMC7542153 DOI: 10.1038/s41419-020-03038-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023]
Abstract
A number of circular RNAs (circRNAs) have been implicated in rheumatoid arthritis (RA) pathogenesis; however, little is known about their function and hidden molecular mechanism in immune and inflammation regulation. We investigated the role and the underlying mechanism of circRNA_09505 in RA in this study. Real-time PCR and fluorescence in situ hybridization (FISH) are adopted to estimate the quantitative expression and localization of circRNA_09505 in macrophages. The altering effect of circRNA_09505 on inflammation is investigated in vitro and in vivo by use of macrophage cell models and collagen-induced arthritis (CIA) mice. Luciferase reporter assay and RNA-binding protein immunoprecipitation (RIP) are used to confirm the circRNA_09505/miR-6089 ceRNA network predicted by bioinformatics analysis. Compared with controls, the expression of circRNA_09505 is upregulated in peripheral blood mononuclear cells (PBMCs) from patients with RA. The proliferation and cell cycle are significantly promoted when circRNA_09505 is upregulated in macrophages, whereas knockdown of circRNA_09505 inhibits macrophage proliferation and cell- cycle progression. Besides, circRNA_09505 can act as a miRNA sponge for miR-6089 in macrophages, and promote the production of TNF-α, IL-6, and IL-12 through ceRNA mechanism. Moreover, AKT1 is a direct target of miR-6089. CircRNA_09505 can promote AKT1 expression by acting as a miR-6089 sponge via IκBα/NF-κB signaling pathway in macrophages. Most interestingly, knockdown of circRNA_09505 significantly alleviates arthritis and inflammation in vivo in CIA mice. These data support the hypothesis that circRNA_09505 can function as a miR-6089 sponge and regulate inflammation via miR-6089/AKT1/NF-κB axis in CIA mice.
Collapse
Affiliation(s)
- Jinghan Yang
- Department of Rheumatology & Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, 261053, China
| | - Min Cheng
- Department of Physiology, Clinical Medicine College, Weifang Medical University, Weifang, 261053, China
| | - Bingjie Gu
- Department of Rheumatology and Immunology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Jinghua Wang
- Department of Rheumatology & Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, 261053, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery of the Affiliated Hospital, Weifang Medical University, Weifang, 261053, China.
| | - Donghua Xu
- Department of Rheumatology & Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
72
|
Zhang Y, Wang X, Li W, Wang H, Yin X, Jiang F, Su X, Chen W, Li T, Mao X, Guo M, Jiang Q, Lin N. Inferences of individual differences in response to tripterysium glycosides across patients with Rheumatoid arthritis using a novel ceRNA regulatory axis. Clin Transl Med 2020; 10:e185. [PMID: 33135351 PMCID: PMC7545341 DOI: 10.1002/ctm2.185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To identify biomarkers for guiding therapy and predicting clinical response of Tripterysium Glycosides Tablets (TGT) treatment is an urgent task due to individual differences in TGT response across rheumatoid arthritis (RA) patients. Competing endogenous RNA (ceRNA) regulatory system may influence drug response with involvement in diverse biological processes. Herein, we aimed to identify a TGT response-related ceRNA axis. METHODS A TGT response-related ceRNA axis was screened according to clinical cohort-based RNA expression profiling, lncRNA-mRNA coexpression, and ceRNA network analyses. Its clinical relevance was evaluated by computational modeling. Regulatory mechanisms of ceRNA axis were also experimentally investigated. RESULTS The ceRNA regulatory axis combined with lncRNA ENST00000494760, miR-654-5p, and C1QC was identified as a candidate biomarker for RA patients' response to TGT. Both ENST00000494760 and C1QC mRNA expression were significantly lower, while miR-654-5p expression was dramatically higher in TGT responders than nonresponders. Its clinical relevance was verified by computational modeling based on both independent clinical validation cohort and collagen-induced arthritis (CIA) mice. Mechanistically, miR-654-5p directly bound to the 3'-untranslated region of both ENST00000494760 and C1QC mRNA to inhibit their expression. Moreover, miR-654-5p suppressed C1QC mRNA expression, but ENST00000494760 bound to miR-654-5p and relieved its repression on C1QC mRNA, leading to RA aggressive progression and weak TGT response. CONCLUSIONS LncRNA ENST00000494760 overexpression may sponge miR-654-5p to promote C1QC expression in RA patients. This novel ceRNA axis may serve as a biomarker for screening the responsive RA patients to TGT treatment, which will allow improved personalized healthcare.
Collapse
Affiliation(s)
- Yanqiong Zhang
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
| | - Xiaoyue Wang
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
| | - Weijie Li
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
| | - Hailong Wang
- Division of RheumatologyGuang An Men HospitalChina Academy of Chinese Medical ScienceBeijingP. R. China
| | - Xiaoli Yin
- College of Life ScienceSouth China Normal UniversityGuangzhouP. R. China
| | - Funeng Jiang
- Guangdong Key Laboratory of Clinical Molecular Medicine and DiagnosticsSouth China University of TechnologyGuangzhouP. R. China
| | - Xiaohui Su
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
| | - Wenjia Chen
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
| | - Taixian Li
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
| | - Xia Mao
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
| | - Minqun Guo
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
| | - Quan Jiang
- Division of RheumatologyGuang An Men HospitalChina Academy of Chinese Medical ScienceBeijingP. R. China
| | - Na Lin
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingP. R. China
| |
Collapse
|
73
|
Xu YT, Leng YR, Liu MM, Dong RF, Bian J, Yuan LL, Zhang JG, Xia YZ, Kong LY. MicroRNA and long noncoding RNA involvement in gout and prospects for treatment. Int Immunopharmacol 2020; 87:106842. [DOI: 10.1016/j.intimp.2020.106842] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 02/08/2023]
|
74
|
Construction of circRNA-Associated ceRNA Network Reveals Novel Biomarkers for Esophageal Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:7958362. [PMID: 32908582 PMCID: PMC7474783 DOI: 10.1155/2020/7958362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023]
Abstract
Objective Esophageal cancer (ESCC) is reported to be the eighth most common malignant tumors worldwide with high mortality. However, the functions of majority circRNAs in ESCC requires to be further explored. Methods This study identified differently expressed circRNAs in 3 paired ESCC using RNA-sequencing method. The interactions among circRNAs, miRNAs, and mRNAs were predicted using bioinformatics analysis. Results In this study, using RNA-sequencing method and integrated bioinformatics analysis, 418 overexpressed circRNAs and 637 reduced circRNAs in ESCC sample were identified. Based on the mechanism that circRNAs could play as ceRNAs to modulate targets expression, circRNA-miRNA and circRNA-miRNA-mRNA networks were constructed in this study. Based on the network analysis, 7 circRNAs, including circ_0002255, circ_0000530, circ_0001904, circ_0001005, circ_0000513, circ_0000075, and circ_0001121, were identified as key circRNAs in ESCC. We found that circ_0002255 was related to the regulation of substrate adhesion-dependent cell spreading. circ_0001121 was involved in regulating nucleocytoplasmic transport. circ_0000513 played a key role in regulating Adherens junction, B cell receptor signaling pathway. Meanwhile, we observed circ_0000075 was involved in regulating zinc II ion transport, transition metal ion homeostasis, and angiogenesis. Conclusion We thought this study could provide novel biomarkers for the prognosis of ESCC.
Collapse
|
75
|
Macrophage Long Non-Coding RNAs in Pathogenesis of Cardiovascular Disease. Noncoding RNA 2020; 6:ncrna6030028. [PMID: 32664594 PMCID: PMC7549353 DOI: 10.3390/ncrna6030028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammation is inextricably linked to cardiovascular disease (CVD). Macrophages themselves play important roles in atherosclerosis, as well as acute and chronic heart failure. Although the role of macrophages in CVD pathophysiology is well-recognized, little is known regarding the precise mechanisms influencing their function in these contexts. Long non-coding RNAs (lncRNAs) have emerged as significant regulators of macrophage function; as such, there is rising interest in understanding how these nucleic acids influence macrophage signaling, cell fate decisions, and activity in health and disease. In this review, we summarize current knowledge regarding lncRNAs in directing various aspects of macrophage function in CVD. These include foam cell formation, Toll-like receptor (TLR) and NF-kβ signaling, and macrophage phenotype switching. This review will provide a comprehensive understanding concerning previous, ongoing, and future studies of lncRNAs in macrophage functions and their importance in CVD.
Collapse
|
76
|
Jusic A, Salgado-Somoza A, Paes AB, Stefanizzi FM, Martínez-Alarcón N, Pinet F, Martelli F, Devaux Y, Robinson EL, Novella S. Approaching Sex Differences in Cardiovascular Non-Coding RNA Research. Int J Mol Sci 2020; 21:E4890. [PMID: 32664454 PMCID: PMC7402336 DOI: 10.3390/ijms21144890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is the biggest cause of sickness and mortality worldwide in both males and females. Clinical statistics demonstrate clear sex differences in risk, prevalence, mortality rates, and response to treatment for different entities of CVD. The reason for this remains poorly understood. Non-coding RNAs (ncRNAs) are emerging as key mediators and biomarkers of CVD. Similarly, current knowledge on differential regulation, expression, and pathology-associated function of ncRNAs between sexes is minimal. Here, we provide a state-of-the-art overview of what is known on sex differences in ncRNA research in CVD as well as discussing the contributing biological factors to this sex dimorphism including genetic and epigenetic factors and sex hormone regulation of transcription. We then focus on the experimental models of CVD and their use in translational ncRNA research in the cardiovascular field. In particular, we want to highlight the importance of considering sex of the cellular and pre-clinical models in clinical studies in ncRNA research and to carefully consider the appropriate experimental models most applicable to human patient populations. Moreover, we aim to identify sex-specific targets for treatment and diagnosis for the biggest socioeconomic health problem globally.
Collapse
Affiliation(s)
- Amela Jusic
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina;
| | - Antonio Salgado-Somoza
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (A.S.-S.); (F.M.S.); (Y.D.)
| | - Ana B. Paes
- INCLIVA Biomedical Research Institute, Menéndez Pelayo 4 Accesorio, 46010 Valencia, Spain; (A.B.P.); (N.M.-A.)
| | - Francesca Maria Stefanizzi
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (A.S.-S.); (F.M.S.); (Y.D.)
| | - Núria Martínez-Alarcón
- INCLIVA Biomedical Research Institute, Menéndez Pelayo 4 Accesorio, 46010 Valencia, Spain; (A.B.P.); (N.M.-A.)
| | - Florence Pinet
- INSERM, CHU Lille, Institut Pasteur de Lille, University of Lille, U1167 F-59000 Lille, France;
| | - Fabio Martelli
- Molecular Cardiology Laboratory, Policlinico San Donato IRCCS, San Donato Milanese, 20097 Milan, Italy;
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (A.S.-S.); (F.M.S.); (Y.D.)
| | - Emma Louise Robinson
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Susana Novella
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, and INCLIVA Biomedical Research Institute, Menéndez Pelayo 4 Accesorio, 46010 Valencia, Spain
| |
Collapse
|
77
|
Wang J, Zhao Q. LncRNA LINC-PINT increases SOCS1 expression by sponging miR-155-5p to inhibit the activation of ERK signaling pathway in rheumatoid arthritis synovial fibroblasts induced by TNF-α. Int Immunopharmacol 2020; 84:106497. [DOI: 10.1016/j.intimp.2020.106497] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/29/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
|
78
|
Ala U. Competing Endogenous RNAs, Non-Coding RNAs and Diseases: An Intertwined Story. Cells 2020; 9:E1574. [PMID: 32605220 PMCID: PMC7407898 DOI: 10.3390/cells9071574] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs), a class of small non-coding RNA molecules, are responsible for RNA silencing and post-transcriptional regulation of gene expression. They can mediate a fine-tuned crosstalk among coding and non-coding RNA molecules sharing miRNA response elements (MREs). In a suitable environment, both coding and non-coding RNA molecules can be targeted by the same miRNAs and can indirectly regulate each other by competing for them. These RNAs, otherwise known as competing endogenous RNAs (ceRNAs), lead to an additional post-transcriptional regulatory layer, where non-coding RNAs can find new significance. The miRNA-mediated interplay among different types of RNA molecules has been observed in many different contexts. The analyses of ceRNA networks in cancer and other pathologies, as well as in other physiological conditions, provide new opportunities for interpreting omics data for the field of personalized medicine. The development of novel computational tools, providing putative predictions of ceRNA interactions, is a rapidly growing field of interest. In this review, I discuss and present the current knowledge of the ceRNA mechanism and its implications in a broad spectrum of different pathologies, such as cardiovascular or autoimmune diseases, cancers and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ugo Ala
- Department of Veterinary Sciences, University of Turin, 10124 Turin, Italy
| |
Collapse
|
79
|
Inhibiting role of long non-coding RNA LINC01197 in inflammation in rheumatoid arthritis through the microRNA-150/THBS2 axis. Exp Cell Res 2020; 394:112136. [PMID: 32540401 DOI: 10.1016/j.yexcr.2020.112136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE Rheumatoid arthritis (RA) is a commonly diagnosed systemic autoimmune disease. Aberrant expression of long non-coding RNAs (lncRNAs) is closely linked to the development of RA. This study was conducted to explore the functions of the lncRNA LINC01197 in RA progression. METHODS Differentially expressed lncRNAs/microRNAs/mRNAs in patients with RA were analyzed using RNA microarrays. A mouse model with RA was established and RA-fibroblast-like synoviocytes (RA-FLS) were acquired for in vitro experiments. The function of LINC01197 in inflammation and RA progression in mice and its role in the viability of RA-FLS were determined by experiments involving its overexpression or suppression. The sub-cellular localization of LINC01197 was determined and the downstream molecules involved in LINC01197-mediated events were identified. RESULTS LINC01197 was poorly expressed in the synovial tissues in the RA model mice. Overexpression of LINC01197 reduced RA severity in mice and inhibited proliferation and inflammatory responses as well as promoted apoptosis in RA-FLS. Online predictions and dual luciferase reporter gene assays suggested that LINC01197 could bind to miR-150 and further regulate THBS2 expression. LINC01197 promoted THBS2 expression through miR-150 sponging and inactivated the TLR4/NF-κB signaling pathway, thus alleviating RA inflammation. CONCLUSION The current study suggested that LINC01197 sponged miR-150 to promote THBS2 expression, leading to TLR4/NF-κB inactivation, and ameliorated RA inflammation. These findings may offer new insights into RA treatment.
Collapse
|
80
|
Chen X, Li Z, Xu D, Li S. LINC01121 induced intervertebral disc degeneration via modulating miR-150-5p/MMP16 axis. J Gene Med 2020; 22:e3231. [PMID: 32436632 DOI: 10.1002/jgm.3231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/02/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Growing evidence indicates that Long noncoding RNAs contribute to cell differentiation, invasion, metabolism, proliferation and metastasis. However, the potential role of LINC01121 in progression of intervertebral disc degeneration (IDD) remains unclear. METHODS LINC01121, matrix metalloprotease (MMP)-16 and miR-150-5p expression was determined by a quantitative-reverse transcriptase-polymerase chain reaction assay. Inflammatory cytokines level was measured by an enzyme-linked immunosorbent assay and cell counting kit-8 analysis was used to assess cell proliferation. MMP-16-specific binding with miR-150-5p was verified with a luciferase reporter assay. RESULTS We noted that interleukin (IL)-1β and tumor necrosis factor (TNF)-α treatment enhanced LINC01121 and MMP-16 expression in nucleus pulposus (NP) cells. LINC01121 was higher in IDD specimens compared to that in control specimens. Higher expression of LINC01121 was correlated with disc degeneration degree. Ectopic expression of LINC01121 enhanced cell proliferation and promoted ki-67, MMP-3 and ADAMTS5 expression and also suppressed collagen II expression in NP cells. We observed that overexpression of LINC01121 increased the secretion of three inflammatory cytokines, including IL-6, TNF-α and IL-1β. We found that ectopic expression of LINC01121 decreased the miR-150-5p level in NP cells. Luciferase reporter data confirmed that MMP-16 was one direct target of miR-150-5p. Overexpression of miR-150-5p inhibited MMP-16 level and elevated the expression of LINC01121 enhanced MMP-16 level. We also found that MMP-16 was up-regulated in IDD specimens compared to that in control specimens. Higher expression of MMP-16 was correlated with disc degeneration degree. Interestingly, MMP-16 expression was positively related to LINC01121 in IDD specimens. Finally, overexpression of LINC01121 regulated cell growth, extracellular matrix degradation and inflammatory cytokine secretion via modulating MMP-16. CONCLUSIONS our data suggested LINC01121 may be a new therapeutic target for IDD.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopaedic, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate school of Peking Union Medical College, Beijing, 100042, China
| | - Zheng Li
- Department of Orthopaedic, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate school of Peking Union Medical College, Beijing, 100042, China
| | - Derong Xu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shugang Li
- Department of Orthopaedic, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate school of Peking Union Medical College, Beijing, 100042, China
| |
Collapse
|
81
|
Li X, Yu S, Yang R, Wang Q, Liu X, Ma M, Li Y, Wu S. Identification of lncRNA-associated ceRNA network in high-grade serous ovarian cancer metastasis. Epigenomics 2020; 12:1175-1191. [PMID: 32462930 DOI: 10.2217/epi-2020-0097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: To uncover a novel lncRNA-miRNA-mRNA network associated with high-grade serous ovarian cancer metastasis. Material & methods: The candidate differentially expressed lncRNAs were obtained from RNA-sequencing data and determined by functional experiments. The downstream miRNAs and mRNAs were identified by bioinformatic prediction and subjected to functional enrichment analysis. Results: The expression levels of lncRNA ENTPD1-AS1/PRANCR/NR2F2-AS1 were reduced in omental metastatic tissues. Similar differential expression patterns of these lncRNAs were also found in lnCAR database and we verified their tumor suppressive roles by performing functional experiments. Furthermore, we predicted miRNAs and mRNAs via bioinformatic tools and validated their alteration in expression levels in presence of lncRNA interference. Conclusion: We proposed a potential ceRNA regulatory mechanism in high-grade serous ovarian cancer omental metastasis.
Collapse
Affiliation(s)
- Xi Li
- Department of Obstetrics & Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sihui Yu
- Department of Obstetrics & Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Yang
- Department of Obstetrics & Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Wang
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiangnan Liu
- Department of Obstetrics & Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjun Ma
- Department of Obstetrics & Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanli Li
- Department of Obstetrics & Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sufang Wu
- Department of Obstetrics & Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
82
|
Shi X, Pan S, Li L, Li Y, Ma W, Wang H, Xu C, Li L, Wang D. HIX003209 promotes vascular smooth muscle cell migration and proliferation through modulating miR-6089. Aging (Albany NY) 2020; 12:8913-8922. [PMID: 32463793 PMCID: PMC7288934 DOI: 10.18632/aging.103079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Accumulating references have showed that long noncoding RNAs (lncRNAs) act important roles in the development of human diseases. The role and expression of HIX003209 remains unclear in the pathogenesis of atherosclerosis. We showed that HIX003209 expression was upregulated in atherosclerotic coronary tissues compared to normal coronary artery samples. HIX003209 was overexpressed in vascular smooth muscle cells (VSMCs) induced by inflammatory mediators including tumor necrosis factor-α(TNF-α), ox-LDL and latelet-derived growth factor-BB (PDGF-BB). Ectopic expression of HIX003209 enhanced cell growth and migration and induced inflammatory mediators secretion such as interleukin 6 (IL-6), TNF-α and IL-1β in VSMCs. Furthermore, we showed that miR-6089 was downregulated in atherosclerotic coronary tissues compared to normal coronary artery samples. There was a negative association between expression of HIX003209 and miR-6089 in atherosclerotic coronary tissues. MiR-6089 expression was decreased in VSMCs induced by inflammatory mediators including TNF-α, ox-LDL and PDGF-BB. Dual luciferase analysis showed that miR-6089 overexpression decreased luciferase activity of HIX003209 WT-type 3’-UTR but not the mut-type 3’-UTR. Overexpression of HIX003209 suppressed the expression of miR-6089 in VSMCs. Ectopic expression of HIX003209 induced cell growth, migration and the secretion of inflammatory mediators via regulating miR-6089 expression. These data suggested that HIX003209 promoted VSMCs proliferation, migration and the secretion of inflammatory mediators partly via regulating miR-6089.
Collapse
Affiliation(s)
- Xiaofeng Shi
- Department of Emergency, Tianjin First Center Hospital, Tianjin 300192, People's Republic of China
| | - Shuang Pan
- Department of Physiology, School of Basic Medicine, Jinzhou Medicine University, Jinzhou 121000, Liaoning, People's Republic of China
| | - Li Li
- Clinical Nutrition Department, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, People's Republic of China
| | - Yongqi Li
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 3050005, Japan
| | - Wei Ma
- Department of Anatomy, Dalian Medical University, Dalian 116044, Liaoning, People's Republic of China
| | - Han Wang
- Department of Vascular Surgery, Dalian University Affiliated Xinhua Hospital, Dalian 116021, Liaoning, People's Republic of China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, Liaoning, People's Republic of China
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, People's Republic of China
| | - Dong Wang
- Neurosurgery Department, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, People's Republic of China
| |
Collapse
|
83
|
Piao X, Zhou J, Hu J. Role of RP11-83J16.1, a novel long non-coding RNA, in rheumatoid arthritis. Am J Transl Res 2020; 12:1397-1414. [PMID: 32355550 PMCID: PMC7191173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to explore the effects of long non-coding RNA (lncRNA) expression on rheumatoid arthritis (RA). LncRNA expression profiles were obtained from the synovial tissues of five RA patients and five age-/gender-matched controls by RNA-Seq. Six candidate lncRNAs were then chosen and their levels in synovial fluid further examined in 25 RA patients and 25 health controls using RT-qPCR. The effects of lncRNA RP11-83J16.1 overexpression and knockdown on RA fibroblast-like synoviocytes (RA-FLS) function, inflammation state, and URI1, FRAT1, and β-catenin levels were assessed. After RNA-Seq, lncRNA expression profiles clearly distinguished RA patients from controls, and 190 upregulated lncRNAs and 131 downregulated lncRNAs were identified, which were mainly enriched in proliferative/immune/inflammatory pathways. Results of RT-qPCR showed that the levels of lncRNAs MTCO2P12, KCNQ5-IT1 and RP11-83J16.1 were increased, whereas lncRNAs LINC00570, RP11-342M1.6, and REXO1L4P were decreased in RA patients compared to controls. Notably, lncRNA RP11-83J16.1 correlated with increased inflammation and disease activity in RA patients. Additionally, lncRNA RP11-83J16.1 promoted cell proliferation, migration, invasion and inflammation, reduced apoptosis, and positively regulates cellular URI1, FRAT1 and β-catenin expression in RA-FLS. Rescue experiments revealed that URI1 overexpression compensated for the regulatory effects of lncRNA RP11-83J16.1 knockdown in RA-FLS. In conclusion, lncRNA RP11-83J16.1, a novel lncRNA identified by RNA-Seq, correlates with increased risk and disease activity of RA, and promotes RA-FLS proliferation, migration, invasion and inflammation by regulating URI1 and downstream β-catenin pathway components.
Collapse
Affiliation(s)
- Xuemei Piao
- Department of Rheumatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Jieru Zhou
- Department of Health Management, Shanghai East Hospital, Tongji University School of MedicineShanghai, China
| | - Jiandong Hu
- Department of Rheumatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese MedicineShanghai, China
| |
Collapse
|
84
|
Wang J, Kong X, Hu H, Shi S. Knockdown of long non-coding RNA PVT1 induces apoptosis of fibroblast-like synoviocytes through modulating miR-543-dependent SCUBE2 in rheumatoid arthritis. J Orthop Surg Res 2020; 15:142. [PMID: 32293498 PMCID: PMC7158104 DOI: 10.1186/s13018-020-01641-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Rheumatoid arthritis (RA), a kind of autoimmune disorder, is featured by many physical symptoms and proliferation of fibroblast-like synoviocytes (FLSs). The relevance of long non-coding RNAs (lncRNAs) in the progression of RA has been probed. Hence, the goal of this report was to investigate the action of plasmacytoma variant translocation 1 (PVT1), a lncRNA, in FLSs and the basic mechanism. Methods Initially, RA rats were developed to evaluate the expression of PVT1, microRNA-543 (miR-543), and signal peptide-CUB-EGF-like containing protein 2 (SCUBE2) in synovial tissues. Enhancement or loss of PVT1 or miR-543 was achieved to explore their effects on proliferation, cell cycle, and apoptosis of FLSs. The interaction between PVT1 and miR-543 and between miR-543 and its putative target SCUBE2 was examined to elucidate the correlations. Finally, the protein expression of proliferation- and apoptosis-associated genes were assessed by western blot assays. Results PVT1 was overexpressed in synovial tissues from RA patients through microarray expression profiles. The PVT1 and SCUBE2 expression was boosted, and miR-543 was reduced in synovial tissues of rats with RA. PVT1 specifically bound to miR-543, and miR-543 negatively regulated SCUBE2 expression. Overexpression of PVT1 or silencing of miR-543 enhanced SCUBE2 expression, thereby promoting proliferation and interleukin-1β (IL-1β) secretion, while inhibiting apoptosis rate of FLSs. Conversely, si-SCUBE2 reversed the role of miR-543 inhibitor. Conclusion The key findings support that PVT1 knockdown has the potency to hinder RA progression by inhibiting SCUBE2 expression to sponge miR-543.
Collapse
Affiliation(s)
- Junxia Wang
- Department of Rheumatism, Linyi Central Hospital, No. 17, Jiankang Road, Yishui Town, Linyi, 276400, Shandong, People's Republic of China
| | - Xianghui Kong
- Department of Rheumatism, Linyi Central Hospital, No. 17, Jiankang Road, Yishui Town, Linyi, 276400, Shandong, People's Republic of China
| | - Haijian Hu
- Department of Rheumatism, Linyi Central Hospital, No. 17, Jiankang Road, Yishui Town, Linyi, 276400, Shandong, People's Republic of China
| | - Shunfang Shi
- Department of Rheumatism, Linyi Central Hospital, No. 17, Jiankang Road, Yishui Town, Linyi, 276400, Shandong, People's Republic of China.
| |
Collapse
|
85
|
Jia Y, Wei Y. Modulators of MicroRNA Function in the Immune System. Int J Mol Sci 2020; 21:E2357. [PMID: 32235299 PMCID: PMC7177468 DOI: 10.3390/ijms21072357] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) play a key role in fine-tuning host immune homeostasis and responses through the negative regulation of mRNA stability and translation. The pathways regulated by miRNAs are well characterized, but the precise mechanisms that control the miRNA-mediated regulation of gene expression during immune cell-development and immune responses to invading pathogens are incompletely understood. Context-specific interactions of miRNAs with other RNA species or proteins may modulate the function of a given miRNA. Dysregulation of miRNA function is associated with various human diseases, such as cardiovascular diseases and cancers. Here, we review the potential modulators of miRNA function in the immune system, including the transcription regulators of miRNA genes, miRNA-processing enzymes, factors affecting miRNA targeting, and intercellular communication.
Collapse
Affiliation(s)
- Yunhui Jia
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuanyuan Wei
- Department of Immunology, Shanghai Key laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
86
|
Zou Y, Xu H. Involvement of long noncoding RNAs in the pathogenesis of autoimmune diseases. J Transl Autoimmun 2020; 3:100044. [PMID: 32743525 PMCID: PMC7388364 DOI: 10.1016/j.jtauto.2020.100044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/08/2020] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases are a group of heterogeneous disorders characterized by damage to various organs caused by abnormal innate and adaptive immune responses. The pathogenesis of autoimmune diseases is extremely complicated and has not yet been fully elucidated. Long noncoding RNAs (lncRNAs), which are defined as transcripts containing more than 200 nucleotides with no protein-coding capacity, are emerging as important regulators of gene expression via epigenetic modification, transcriptional regulation and posttranscriptional regulation. Accumulating evidence has demonstrated that lncRNAs play a key role in the regulation of immunological functions and autoimmunity. In this review, we discuss various molecular mechanisms by which lncRNAs regulate gene expression and recent findings regarding the involvement of lncRNAs in many human autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), idiopathic inflammatory myopathy (IIM), systemic sclerosis (SSc) and Sjögren’s syndrome (pSS). lncRNAs are observed to be differentially expressed in various autoimmune diseases. lncRNAs are involved in abnormal immune regulation and inflammatory responses in autoimmune diseases, which provides new insight into disease pathogenesis. LncRNAs may have the potential of biomarkers for diagnosis and prognosis of autoimmune diseases.
Collapse
Affiliation(s)
- Yaoyao Zou
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
87
|
Wang J, Yan S, Yang J, Lu H, Xu D, Wang Z. Non-coding RNAs in Rheumatoid Arthritis: From Bench to Bedside. Front Immunol 2020; 10:3129. [PMID: 32047497 PMCID: PMC6997467 DOI: 10.3389/fimmu.2019.03129] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis is a common systemic and autoimmune disease characterized by symmetrical and inflammatory destruction of distal joints. Its primary pathological characters are synovitis and vasculitis. Accumulating studies have implicated the critical role of non-coding RNAs (ncRNAs) in inflammation and autoimmune regulation, primarily including microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). NcRNAs are significant regulators in distinct physiological and pathophysiological processes. Many validated non-coding RNAs have been identified as promising biomarkers for the diagnosis and treatment of RA. This review will shed some light on RA pathogenesis and be helpful for identifying potential ncRNA biomarkers for RA.
Collapse
Affiliation(s)
- Jinghua Wang
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jinghan Yang
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongying Lu
- Functional Laboratory, Clinical Medicine College of Weifang Medical University, Weifang, China
| | - Donghua Xu
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zengyan Wang
- Department of Operating Room, Zhucheng People's Hospital, Zhucheng, China
| |
Collapse
|