51
|
Batra M, Bhatnager R, Kumar A, Suneja P, Dang AS. Interplay between PCOS and microbiome: The road less travelled. Am J Reprod Immunol 2022; 88:e13580. [PMID: 35598286 DOI: 10.1111/aji.13580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a complicated neuro-endocrinal, reproductive, and metabolic condition. It encompasses patterns such as hyperandrogenism, recurrent cysts triggered by steroidogenic functional aberrations in the ovaries, overweight, chronic inflammation, and more. The underlying cause of this heterogeneous illness is obscure, although it is suspected to be driven by a blend of environmental and hereditary factors. In recent years, the connection between the microbiome and PCOS has been acknowledged and is thought to be involved in the genesis of the syndrome's emergence. Microbiota vary in different pathological features of PCOS, and fundamental pathways linked to their involvement in the commencement of diverse clinical presentations in PCOS open up a new avenue for its management. Prebiotic, probiotic, synbiotic, and fecal-microbiota-transplant, by promoting eubiosis and nullifying the effect caused by the altered microbial profile in PCOS women, can aid in management of diverse phenotypes associated with the syndrome. These microbiota-mediated treatments improve PCOS women's metabolic, inflammatory, and hormonal profiles. However, more studies are needed to elucidate the mechanisms that drive this positive effect.
Collapse
Affiliation(s)
- Manya Batra
- Centre For Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | | | - Anil Kumar
- Centre For Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pooja Suneja
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Amita Suneja Dang
- Centre For Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
52
|
Feng T, Liu Y. Microorganisms in the reproductive system and probiotic's regulatory effects on reproductive health. Comput Struct Biotechnol J 2022; 20:1541-1553. [PMID: 35465162 PMCID: PMC9010680 DOI: 10.1016/j.csbj.2022.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/18/2022] Open
Abstract
The presence of microbial communities in the reproductive tract has been revealed, and this resident microbiota is involved in the maintenance of health. Intentional modulation via probiotics has been proposed as a possible strategy to enhance reproductive health and reduce the risk of diseases. The male seminal microbiota has been suggested as an important factor that influences a couple’s health, pregnancy outcomes, and offspring health. Probiotics have been reported to play a role in male fertility and to affect the health of mothers and offspring. While the female reproductive microbiota is more complicated and has been identified in both the upper and lower reproductive systems, they together contribute to health maintenance. Probiotics have shown regulatory effects on the female reproductive tract, thereby contributing to homeostasis of the tract and influencing the health of offspring. Further, through transmission of bacteria or through other indirect mechanisms, the parent’s reproductive microbiota and probiotic intervention influence infant gut colonization and immunity development, with potential health consequences. In vitro and in vivo studies have explored the mechanisms underlying the benefits of probiotic administration and intervention, and an array of positive results, such as modulation of microbiota composition, regulation of metabolism, promotion of the epithelial barrier, and improvement of immune function, have been observed. Herein, we review the state of the art in reproductive system microbiota and its role in health and reproduction, as well as the beneficial effects of probiotics on reproductive health and their contributions to the prevention of associated diseases.
Collapse
|
53
|
Chen S, Holyoak M, Liu H, Bao H, Ma Y, Dou H, Jiang G. Effects of spatially heterogeneous warming on gut microbiota, nutrition and gene flow of a heat-sensitive ungulate population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150537. [PMID: 34844317 DOI: 10.1016/j.scitotenv.2021.150537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Effects of climate warming on trophic cascades are increasingly reported for large herbivores occupying northern latitudes. During the last 40 years, moose (Alces alces) in northeast China have lost nearly half of their historical distribution through their habitat shifting northwards. There are many possible causes of bottom-up and top-down effects of temperature and for moose in northeast China they are poorly understood. Of particular relevance are the effects of extrinsic environmental factors on gene flow, nutritional adaptions, and gut microbiota that occur as moose populations retreat northwards. We combined molecular biology, nutritional ecology and metagenomics to gain deeper mechanistic insights into the effects of temperature on moose populations. In this study, we revealed that the direction and intensity of gene flow is consistent with global warming driving retreats of moose populations. We interpret this as evidence for the northward movement of moose populations, with cooler northern populations receiving more immigrants and warmer southern populations supplying emigrants. Comparison across latitudes showed that warmer late spring temperatures were associated with plant community composition and facilitated related changes in moose protein and carbohydrate intake through altering forage availability, forage quality and diet composition. Furthermore, these nutrient shifts were accompanied by changes in gut microbial composition and functional pathways related to nutrient metabolism. This study provided insights into mechanisms driving effects of spatial heterogeneous warming on genetic, nutritional and physiological adaptions related to key demographic rates and patterns of survival of heat-sensitive ungulates along a latitude gradient. Understanding such changes helps to identify key habitat areas and plant species to ensure accurate assessment of population status and targeted management of moose populations.
Collapse
Affiliation(s)
- Shiyu Chen
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Marcel Holyoak
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA
| | - Hui Liu
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; College of Forestry, Hainan University, Haikou 570228, China
| | - Heng Bao
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yingjie Ma
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxi Road, Chaoyang, Beijing 100101, China
| | - Hongliang Dou
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Guangshun Jiang
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
54
|
Gu Y, Zhou G, Zhou F, Li Y, Wu Q, He H, Zhang Y, Ma C, Ding J, Hua K. Gut and Vaginal Microbiomes in PCOS: Implications for Women's Health. Front Endocrinol (Lausanne) 2022; 13:808508. [PMID: 35282446 PMCID: PMC8905243 DOI: 10.3389/fendo.2022.808508] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
PCOS is defined as a kind of endocrine and metabolic disorder which affects females at reproductive ages, is becoming much more common, nowadays. Microbiomes are known as microorganisms that inhabit the body to play a vital role in human health. In recent years, several basic and clinical studies have tried to investigate the correlation between the reproductive health/disorder and microbiomes (gut microbiomes and vaginal microbiomes). However, the mechanism is still unclear. In this review, we reviewed the relationship between PCOS and microbiomes, including gut/vaginal microbiomes compositions in PCOS, mechanism of microbiomes and PCOS, and then collectively focused on the recent findings on the influence of microbiomes on the novel insight regarding the therapeutic strategies for PCOS in the future clinical practice.
Collapse
Affiliation(s)
- Yuanyuan Gu
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Guannan Zhou
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Fangyue Zhou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Li
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Qiongwei Wu
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Hongyu He
- Department of Intensive Care Unit, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Zhang
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Chengbin Ma
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
- *Correspondence: Chengbin Ma, ; Jingxin Ding, ; Keqin Hua,
| | - Jingxin Ding
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- *Correspondence: Chengbin Ma, ; Jingxin Ding, ; Keqin Hua,
| | - Keqin Hua
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- *Correspondence: Chengbin Ma, ; Jingxin Ding, ; Keqin Hua,
| |
Collapse
|
55
|
Abstract
Colorectal cancer (CRC) is still one of the most common types of cancer in the world, and the gut microbiome plays an important role in its development. The microbiome is involved in the carcinogenesis, formation and progression of CRC as well as its response to different systemic therapies. The composition of bacterial strains and the influence of geography, race, sex, and diet on the composition of the microbiome serve as important information for screening, early detection and prediction of the treatment outcome of CRC. Microbiome modulation is one of the most prospective new strategies in medicine to improve the health of individuals. Therefore, future research and clinical trials on the gut microbiome in oncology as well as in the treatment of CRC patients are warranted to determine the efficacy of systemic treatments for CRC, minimize adverse effects and increase survival rates.
Collapse
Affiliation(s)
- Martina Rebersek
- Department of Medical Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000, Ljubljana, Slovenia. .,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
56
|
Zhou Z, Sun X, Zhang Q, Zeng F, Yin J, Wang L. Lactobacillus rhamnosus GG attenuates the pathology of Chlamydial muridarium in the upper genital tract in mice. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:1187-1194. [PMID: 34911852 PMCID: PMC10929854 DOI: 10.11817/j.issn.1672-7347.2021.210218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Chlamydia trachomatis is a pathogen which can cause hydrosalpinx and tubal fibrosis when infecting the urogenital tract. However, the mechanism is still not clear. There is growing evidence that the gut microbiota is associated with the pathogenesis of both intestinal and extra-intestinal disorders, such as cardiovascular disease, hepatocirrhosis, allergy, respiratory tract infection, polycystic ovary syndrome, endometriosis, and bacterial vaginitis. Lactobacillus rhamnosus GG (LGG) is one of the most extensively studied and widely used probiotic bacteria, the benefits of LGG including the treatment in gastrointestinal disorders and immunomodulation are well demonstrated, and it can also alleviate hypersensitivity reaction and diarrhoea, inhibit a variety of respiratory and urogenital diseases. Chlamydia muridarium (Cm) infection is a good model for the study on human Chlamydia pathogenicity in genitourinary tract. The mice infected with Cm were used as animal models to preliminarily explore the mechanism for the effect of LGG on upper reproductive tract infection in the mice, and to provide experimental basis for the pathogenesis of Chlamydia trachomatis genitourinary tract infection and the new idea for the treatment of Chlamydia trachomatis infection. METHODS Five to six weeks-old C57BL/6J mice were divided into 2 groups: An experimental group and a control group. The experimental group were administrated with 5×108 colony forming units (CFU) LGG for 19 consecutive days, while the control group were feed PBS. The mice in the 2 group were subcutaneously injected with 2.5 mg progesterone on Day 9 and infected with 1×105 inclusion body forming unit of Cm via the vaginal tract on Day 14. Vaginal and rectal swabs were taken every 7 days to infect HeLa cells for 24 hours, then the indirect immunofluorescence assay was used and the number of inclusion bodies of Chlamydia were calculated. Mice were euthanized on Day 14 and Day 63 after Cm inoculation, the vaginal tracts were dissected, and the tissue homogenates were prepared to culture the pathogens for 24 hours. The Cm bearing capacity in the bilateral uterine horn, tubal ovary, and cervical vaginal tissues in the 2 groups were calculated. The spleen cells were harvested to assay the intracellular IFN-γ, IL-5, and IL-17 by flow cytometry. On Day 63 after the Chlamydia infection, the pathology injury in the bilateral uterine horn and oviduct was observed, and the pathological sections and HE staining in the various part of genital tract were performed. The inflammatory cell infiltration and lumen dilatation was assessed. The specific IgM and IgG in sera were detected by indirect ELISA on Day 14 and 63 after infection. RESULTS There was no effect of LGG on the clearing of Cm from the urogenital tract, the Chlamydia ascending to fallopian tube or the uterine horn, and the organism dissemination and colonization to the gastrointestinal tract (all P>0.05). On Day 14 after Cm infection via the vagina, the IL-17 expression level in the experimental group was significant decreased than that in the control group (t=2.486, P<0.05), but there was no significant difference between the 2 groups in the CD4+ T rate in spleen and IgM and IgG levels in serum after Cm intravaginal infection (all P>0.05). On Day 63 after Cm infection, there was no difference in the severity of inflammation in the uterine horns and fallopian tubes between the 2 groups (P>0.05), but the dilation of the fallopian tubes and hydrosalpinx was attenuated in the experimental group compared with the control group (P<0.05). CONCLUSIONS Oral administration of LGG has no effect on inhibiting Cm ascending to upper genital tract and preventing the dissemination and colonization of Cm to the gastrointestinal tract, which also cannot affect the secretion of specific IgM and IgG in sera. Oral administration of LGG can suppress the production of IL-17 in the spleen cells and attenuate hydrosalpinx development when following Cm intravaginal infection in mice.
Collapse
Affiliation(s)
- Zengzi Zhou
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013.
| | - Xin Sun
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Fei Zeng
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Jiaxin Yin
- Department of Obstetrics and Gynecology, Jingzhou People's Hospital, Huaihua Hunan 418400, China
| | - Luying Wang
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013.
| |
Collapse
|
57
|
Duan L, An X, Zhang Y, Jin D, Zhao S, Zhou R, Duan Y, Zhang Y, Liu X, Lian F. Gut microbiota as the critical correlation of polycystic ovary syndrome and type 2 diabetes mellitus. Biomed Pharmacother 2021; 142:112094. [PMID: 34449321 DOI: 10.1016/j.biopha.2021.112094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022] Open
Abstract
Gut microbiota forms a symbiotic relationship with the host and maintains the ecological balance of the internal and external environment of the human body. However, dysbiosis of the gut microbiota and immune deficiency, as well as environmental changes, can destroy the host-microbial balance, leading to the occurrence of a variety of diseases, such as polycystic ovary syndrome (PCOS), type 2 diabetes mellitus (T2DM), and obesity. Meanwhile, diseases can also affect gut microbiota, forming a vicious cycle. The role of the intestinal microbiota in different diseases have been proven by several studies; however, as a common target of PCOS and T2DM, there are few reports on the treatment of different diseases through the regulation of intestinal microbiota as the critical correlation. This review analyzed the common mechanisms of intestinal microbiota in PCOS and T2DM, including the dysbiosis of gut microbiota, endotoxemia, short-chain fatty acids, biotransformation of bile acids, and synthesis of amino acid in regulating insulin resistance, obesity, chronic inflammation, and mitochondrial dysfunction. The possible therapeutic effects of probiotics and/or prebiotics, fecal microbiota transplantation, bariatric surgery, dietary intervention, drug treatment, and other treatments targeted at regulating intestinal microbiota were also elucidated.
Collapse
Affiliation(s)
- Liyun Duan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xuedong An
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuehong Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - De Jin
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shenghui Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rongrong Zhou
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yingying Duan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuqing Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xinmin Liu
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Fengmei Lian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
58
|
Hong W, Mo Q, Wang L, Peng F, Zhou Y, Zou W, Sun R, Liang C, Zheng M, Li H, Zhao D, Gao M, Pu J, Li B, Ran P, Peng G. Changes in the gut microbiome and metabolome in a rat model of pulmonary arterial hypertension. Bioengineered 2021; 12:5173-5183. [PMID: 34405758 PMCID: PMC8806624 DOI: 10.1080/21655979.2021.1952365] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The gut microbiota is widely considered to be involved in several diseases, including atherosclerosis, obesity, chronic obstructive pulmonary disease (COPD) and pulmonary arterial hypertension (PAH). This study aimed to determine if changes in the gut microbiome and metabolome play a major role in the early pathogenesis of PAH. Male Wistar rats were injected with monocrotaline (MCT) (55 mg/kg) at day 1 and injected with calcium-sensing receptor (CaSR) antagonist NPS2143 (4.5 mg/kg/d) from days 1 to 21. Fecal samples were obtained. The gut microbiota and metabolome were analyzed by 16S rRNA gene sequencing and mass spectrometry-based analysis to investigate the effect of PAH in this rat model. MCT injection had a marked effect on the composition of the gut microbiota. This finding was further confirmed by metabolomic analysis with identification of several metabolites relevant to the gut microflora. However, NPS2143 partially abrogated this intestinal flora disorder and reversed fecal metabolite abnormalities. In conclusion, our study shows correlations between changes in the gut microbiome and the metabolome in PAH, which are affected by NPS2143.
Collapse
Affiliation(s)
- Wei Hong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangzhou, Guangdong, China.,GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiudi Mo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangzhou, Guangdong, China.,Department of Respiratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Luyao Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangzhou, Guangdong, China
| | - Fang Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangzhou, Guangdong, China.,Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangzhou, Guangdong, China
| | - Yuming Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangzhou, Guangdong, China
| | - Weifeng Zou
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, Guangdong, China
| | - Ruiting Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangzhou, Guangdong, China
| | - Chunxiao Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangzhou, Guangdong, China
| | - Mengning Zheng
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Haiqing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangzhou, Guangdong, China
| | - Dongxing Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangzhou, Guangdong, China
| | - Mi Gao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinding Pu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangzhou, Guangdong, China
| | - Gongyong Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangzhou, Guangdong, China
| |
Collapse
|
59
|
Corrie L, Gulati M, Vishwas S, Kapoor B, Singh SK, Awasthi A, Khursheed R. Combination therapy of curcumin and fecal microbiota transplant: Potential treatment of polycystic ovarian syndrome. Med Hypotheses 2021; 154:110644. [PMID: 34332209 DOI: 10.1016/j.mehy.2021.110644] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is a combination of various symptoms like anovulation, hirsutism, chronic amenorrhea, infertility, obesity and polycystic ovaries. It affects over 7 million women worldwide. The current strategy to treat this disorder is based on the use of drugs that provide symptomatic relief. Most of these, however, exhibit numerous side effects and are not able to ameliorate all the signs and symptoms of PCOS. As dysbiosis is considered as one of the prime underlying causes of PCOS, restoration of eubiosis was considered as a plausible way to treat it. Bacteriotherpeutics like probiotics, synbiotics and even fecal microbiota transplant (FMT) have shown considerable effectiveness in PCOS. Of these baceteriotherapeutic options, FMT is considered to be the most holistic as it encompasses the bacteriome, virome, fungome, archaeome and even parasitome while both probiotics as well as synbiotics mainly comprise bacteria. Repeated FMT, however, is not a pragmatic option because of its inconvenience, lack of standardization, involved risk and scepticism amongst patients and physicians. If the eubiosis ushered by FMT is sustained for a long time, the repeated administrations of FMT can be avoided and maintenance therapy with any agent that can maintain the eubiotic condition can be adopted. Role of curcumin on gut microbiota is widely known. It is largely attributed to the ability of certain microbes to consume polyphenols as substrates and its positive effect on bacterial consumption of nutrients such as sugars. Based on various mechanisms and studies, a new hypothesis is being proposed wherein FMT and curcumin combination is predicted to be an effective and sustained treatment of PCOS with much lower rates of remission.
Collapse
Affiliation(s)
- Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
60
|
Effects of the Cistanche tubulosa Aqueous Extract on the Gut Microbiota of Mice with Intestinal Disorders. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4936970. [PMID: 34335809 PMCID: PMC8294959 DOI: 10.1155/2021/4936970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022]
Abstract
Disorders of the gut microbiota are associated with many diseases. The aqueous extract from Cistanche tubulosa (CT), a traditional Chinese herbal formula, has been reported to play a role in protecting the human intestine. However, little is known about its effects on the gut microbiota. The present study was carried out to determine whether the CT aqueous extract can modulate the gut microbiome in mice with intestinal disorders. We found that the damaged intestinal morphology resulting from treatment with cefixime could be rescued using the CT aqueous extract. The comparison of microbial diversity between mice treated with the CT extract and control mice also indicated that the disorder in the microbiome community of model groups could be restored by treatment with high and medium concentrations of the CT aqueous extract. Treatment with cefixime led to a significant decrease in lactic acid bacteria; however, the supplementation of the CT aqueous extract recovered the growth of these lactic acid bacteria. Furthermore, the CT aqueous extract was able to moderate the dramatic changes in the metabolic pathways of the gut microbiome induced by cefixime. These findings provided an insight into the beneficial effects of the CT aqueous extract on gut microbiota, and they also provided an important reference for the development of related drugs in the future.
Collapse
|
61
|
Yu Y, Cao Y, Huang W, Liu Y, Lu Y, Zhao J. β-Sitosterol Ameliorates Endometrium Receptivity in PCOS-Like Mice: The Mediation of Gut Microbiota. Front Nutr 2021; 8:667130. [PMID: 34179058 PMCID: PMC8224531 DOI: 10.3389/fnut.2021.667130] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Polycystic ovary syndrome (PCOS), one of the most common endocrine diseases in women of childbearing age, has been found to be accompanied by changes in the gut microbiota. The Bu Shen Yang Xue formula (BSYXF) is a traditional Chinese medicine widely used for the treatment of PCOS. This study aimed to investigate whether the protective effects of β-sitosterol, the main active ingredient of BSYXF, on PCOS was mediated by regulating gut microbiota. Methods: The presence of β-sitosterol in BSYXF was detected by liquid chromatography-mass spectrometry. The PCOS-like mouse model was induced by dehydroepiandrosterone. The fecal supernatant of β-sitosterol-treated mice was prepared for fecal microbiota transplantation (FMT). Body weight and wet weight of the uterus and ovary of the mice were recorded for organ index calculation. Hematoxylin and eosin stain was used to assess the endometrial morphology and microenvironment changes. Expression of endometrial receptivity markers cyclooxygenase-2 (COX-2), Integrin ανβ3, leukemia inhibitory factor (LIF), and homeobox A10 (HOXA10) in the endometrium were determined by immunohistochemistry and western blot analysis. Enzyme-linked immunosorbent assay was employed to detect the expression of follicle stimulating hormone (FSH), luteinizing hormone (LH), progesterone (P), and testosterone (T) in the serum. The diversity of gut microbiota was examined by 16S rDNA gene sequencing. Results: With the treatment of β-sitosterol and β-sitosterol-FMT, the uterine index of PCOS-like mice increased, the ovarian index decreased, levels of COX-2, LH and T decreased, and levels of Integrin ανβ3, LIF, HOXA10, FSH, and P increased. Under β-sitosterol treatment, the structure of the gut microbiota in PCOS-like mice was also changed. Conclusion: β-sitosterol regulates the endometrial receptivity of PCOS and harmonizes the sex hormone balance, which may be related to the changes in the structure and composition of gut microbiota, thus affecting the pathological process of PCOS.
Collapse
Affiliation(s)
- Yanyan Yu
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Cao
- College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Wenling Huang
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanxia Liu
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Lu
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiajing Zhao
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
62
|
Moumne O, Hampe ME, Montoya-Williams D, Carson TL, Neu J, Francois M, Rhoton-Vlasak A, Lemas DJ. Implications of the vaginal microbiome and potential restorative strategies on maternal health: a narrative review. J Perinat Med 2021; 49:402-411. [PMID: 33554571 DOI: 10.1515/jpm-2020-0367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/10/2020] [Indexed: 11/15/2022]
Abstract
The vaginal microbiome undergoes dramatic shifts before and throughout pregnancy. Although the genetic and environmental factors that regulate the vaginal microbiome have yet to be fully elucidated, high-throughput sequencing has provided an unprecedented opportunity to interrogate the vaginal microbiome as a potential source of next-generation therapeutics. Accumulating data demonstrates that vaginal health during pregnancy includes commensal bacteria such as Lactobacillus that serve to reduce pH and prevent pathogenic invasion. Vaginal microbes have been studied as contributors to several conditions occurring before and during pregnancy, and an emerging topic in women's health is finding ways to alter and restore the vaginal microbiome. Among these restorations, perhaps the most significant effect could be preterm labor (PTL) prevention. Since bacterial vaginosis (BV) is known to increase risk of PTL, and vaginal and oral probiotics are effective as supplemental treatments for BV prevention, a potential therapeutic benefit exists for pregnant women at risk of PTL. A new method of restoration, vaginal microbiome transplants (VMTs) involves transfer of one women's cervicovaginal secretions to another. New studies investigating recurrent BV will determine if VMTs can safely establish a healthy Lactobacillus-dominant vaginal microbiome. In most cases, caution must be taken in attributing a disease state and vaginal dysbiosis with a causal relationship, since the underlying reason for dysbiosis is usually unknown. This review focuses on the impact of vaginal microflora on maternal outcomes before and during pregnancy, including PTL, gestational diabetes, preeclampsia, and infertility. It then reviews the clinical evidence focused on vaginal restoration strategies, including VMTs.
Collapse
Affiliation(s)
- Olivia Moumne
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mary E Hampe
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Tiffany L Carson
- Division of Preventive Medicine, Department of Medicine, University of Alabama, Birmingham, AL, USA
| | - Josef Neu
- Division of Neonatology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Magda Francois
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Alice Rhoton-Vlasak
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Dominick J Lemas
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
63
|
Alkan ML. Hemoplasma haemohominis, A New Human Pathogen. Clin Infect Dis 2021; 72:641-642. [PMID: 31999827 DOI: 10.1093/cid/ciaa094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/29/2020] [Indexed: 12/26/2022] Open
Affiliation(s)
- Michael L Alkan
- Medical School for International Health, Faculty for Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
64
|
Hong X, Qin P, Yin J, Shi Y, Xuan Y, Chen Z, Zhou X, Yu H, Peng D, Wang B. Clinical Manifestations of Polycystic Ovary Syndrome and Associations With the Vaginal Microbiome: A Cross-Sectional Based Exploratory Study. Front Endocrinol (Lausanne) 2021; 12:662725. [PMID: 33967963 PMCID: PMC8104084 DOI: 10.3389/fendo.2021.662725] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background Previous studies suggest that the vaginal microbiome is associated with polycystic ovary syndrome (PCOS). However, the clinical manifestations of PCOS are heterogeneous. Whether the vaginal microbiome is related with different clinical symptoms was unknown. Materials and Methods In this cross-sectional study, 89 female patients with PCOS admitted to Zhongda Hospital (Nanjing, China) were included. Basic demographic information, health-related behaviors, clinical manifestations and sex hormone levels were comprehensively recorded for all patients. Vaginal swabs were acquired for microbiota sequencing of the V3-V4 region of the 16S rRNA gene. Results The prevalence of bacterial vaginitis and vulvovaginal candidiasis was 15.7% and 13.5%, respectively, within the PCOS patients, which were the most important factors affecting the vaginal microbiome (permutational multivariate analysis of variance test, R2 = 0.108, P = 0.001). The vaginal microbiome was associated with specific clinical manifestations of PCOS, including acanthosis nigricans, intermenstrual bleeding, pregnancy history, testosterone level and anti-müllerian hormone level, with P values < 0.05. The abundance of Lactobacillus crispatus was higher (P = 0.010) while that of Lactobacillus iners was lower (P = 0.036) among PCOS patients with elevated testosterone levels. Other potential bacterial biomarkers were not statistically significant after adjusting for confounding factors. No evidence of associations of other common manifestations of PCOS, such as obesity and acne, with the vaginal microbiome was obtained. Conclusion Vaginal bacterial species among PCOS patients with variable clinical manifestations, especially differences in testosterone levels, are distinct. Further studies are essential to investigate the microbiota and molecular mechanisms underpinning this disease.
Collapse
Affiliation(s)
- Xiang Hong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Pengfei Qin
- Department of Obstetrics and Gynecology, Medical School, Southeast University, Nanjing, China
| | - Jiechen Yin
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yong Shi
- Department of Obstetrics and Gynecology, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Yan Xuan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Zhengqi Chen
- Department of Obstetrics and Gynecology, Medical School, Southeast University, Nanjing, China
| | - Xu Zhou
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Hong Yu
- Department of Obstetrics and Gynecology, Medical School, Southeast University, Nanjing, China
- Department of Obstetrics and Gynecology, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Danhong Peng
- Department of Obstetrics and Gynecology, Medical School, Southeast University, Nanjing, China
- Department of Obstetrics and Gynecology, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Bei Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
65
|
D'Alterio MN, Giuliani C, Scicchitano F, Laganà AS, Oltolina NM, Sorrentino F, Nappi L, Orrù G, Angioni S. Possible role of microbiome in the pathogenesis of endometriosis. Minerva Obstet Gynecol 2021; 73:193-214. [PMID: 33851803 DOI: 10.23736/s2724-606x.21.04788-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION There is an urgent necessity to explore the complex pathophysiological nature of endometriosis, which may enable the rationale for new diagnostic and therapeutic strategies to be discovered. This systematic review aimed to clarify the bidirectional relationship between endometriosis and the microbiome and evaluate if the microbiome may be involved in endometriosis's pathogenesis, establishing a potential connection between the different studies. EVIDENCE ACQUISITION Studies were identified through a systematic literature search of papers that evaluated the microbiomes of human or other animal species with endometriosis and of those without in the electronic database PubMed/Medline, and Embase without a date restriction. We included all cohort studies focusing on the interaction between endometriosis and the microbiomes of humans or other mammals, evaluating if the microbiome may be involved in endometriosis's pathogenesis. EVIDENCE SYNTHESIS Endometriosis appears to be associated with elevated levels of different microorganisms across various microbiome sites. An ineffective immune response seems to play a key role in endometriosis pathogenesis, and there is some scientific proof to state that the immune response may be modulated by the microbiome. Interestingly, nine studies of our review detected species belonging to the phyla Proteobacteria, Bacteroidetes, and Negativicutes characterized by Gram-negative staining, that were significantly increased in endometriosis cohorts. CONCLUSIONS Laboratory and clinical investigations indicate that hosts' microbiome profiles with and without endometriosis can be significantly different. To further our understanding of the relationships between endometriosis and the host microbiome, more studies are necessary.
Collapse
Affiliation(s)
- Maurizio N D'Alterio
- Division of Obstetrics and Gynecology, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy -
| | - Carlotta Giuliani
- Division of Obstetrics and Gynecology, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Francesco Scicchitano
- Division of Obstetrics and Gynecology, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Antonio S Laganà
- Department of Obstetrics and Gynecology, Filippo del Ponte Hospital, University of Insubria, Varese, Italy
| | - Noemi M Oltolina
- Department of Obstetrics and Gynecology, Filippo del Ponte Hospital, University of Insubria, Varese, Italy
| | - Felice Sorrentino
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynecology, University of Foggia, Foggia, Italy
| | - Luigi Nappi
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynecology, University of Foggia, Foggia, Italy
| | - Germano Orrù
- Molecular Biology Service Lab, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Stefano Angioni
- Division of Obstetrics and Gynecology, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
66
|
Vaginal Microbiota Is Stable throughout the Estrous Cycle in Arabian Maress. Animals (Basel) 2020; 10:ani10112020. [PMID: 33153053 PMCID: PMC7692283 DOI: 10.3390/ani10112020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
Lactic acid bacteria (LAB) dominate human vaginal microbiota and inhibit pathogen proliferation. In other mammals, LAB do not dominate vaginal microbiota, however shifts of dominant microorganisms occur during ovarian cycle. The study objectives were to characterize equine vaginal microbiota in mares by culture-dependent and independent methods and to describe its variation in estrus and diestrus. Vaginal swabs from 8 healthy adult Arabian mares were obtained in estrus and diestrus. For culture-dependent processing, bacteria were isolated on Columbia blood agar (BA) and Man Rogosa Sharpe (MRS) agar. LAB comprised only 2% of total bacterial isolates and were not related to ovarian phases. For culture-independent processing, V3/V4 variable regions of the 16S ribosomal RNA gene were amplified and sequenced using Illumina Miseq. The diversity and composition of the vaginal microbiota did not change during the estrous cycle. Core equine vaginal microbiome consisted of Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria at the phylum level. At the genus level it was defined by Porphyromonas, Campylobacter, Arcanobacterium, Corynebacterium, Streptococcus, Fusobacterium, uncultured Kiritimatiaellae and Akkermansia. Lactobacillus comprised only 0.18% of the taxonomic composition in estrus and 0.37% in diestrus. No differences in the relative abundance of the most abundant phylum or genera were observed between estrus and diestrus samples.
Collapse
|
67
|
Amabebe E, Anumba DOC. Female Gut and Genital Tract Microbiota-Induced Crosstalk and Differential Effects of Short-Chain Fatty Acids on Immune Sequelae. Front Immunol 2020; 11:2184. [PMID: 33013918 PMCID: PMC7511578 DOI: 10.3389/fimmu.2020.02184] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
The gut and genital tract microbiota of females represent very complex biological ecosystems that are in continuous communication with each other. The crosstalk between these two ecosystems impacts host physiological, immunological and metabolic homeostasis and vice versa. The vaginal microbiota evolved through a continuous translocation of species from the gut to the vagina or through a mother-to-child transfer during delivery. Though the organisms retain their physio-biochemical characteristics while in the vagina, the immune responses elicited by their metabolic by-products appear to be at variance with those in the gut. This has critical implications for the gynecological, reproductive as well as overall wellbeing of the host and by extension her offspring. The homeostatic and immunomodulatory effects of the bacterial fermentation products (short chain fatty acids, SCFAs) in the gut are better understood compared to the genital tract. While gut SCFAs prevent a leakage of bacteria and bacterial products from the gut in to circulation (leaky gut) and consequent systemic inflammation (anti-inflammatory/protective role); they have been shown to exhibit dysbiotic and proinflammatory effects in the genital tract that can lead to unfavorable gynecological and reproductive outcomes. Therefore, this review was conceived to critically examine the correlation between the female gut and genital tract microbiota. Secondly, we explored the metabolic patterns of the respective microbiota niches; and thirdly, we described the diverse effects of products of bacterial fermentation on immunological responses in the vaginal and rectal ecosystems.
Collapse
Affiliation(s)
- Emmanuel Amabebe
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Dilly O C Anumba
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
68
|
Huang YW, Pan P, Echeveste CE, Wang HT, Oshima K, Lin CW, Yearsley M, Xiao J, Chen J, Sun C, Yu J, Wang LS. Transplanting fecal material from wild-type mice fed black raspberries alters the immune system of recipient mice. FOOD FRONTIERS 2020; 1:253-259. [PMID: 34308364 PMCID: PMC8301209 DOI: 10.1002/fft2.34] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
By constantly stimulating intestinal immunity, gut microbes play important regulatory roles, and their possible involvement in human physical and mental disorders beyond intestinal diseases suggests the importance of maintaining homeostasis in the gut microbiota. Both transplantation of fecal microbiota and dietary interventions have been shown to restore microbial homeostasis in recipients. In the current study with wild-type mice, we combined these two approaches to determine if transplanting fecal material from mice fed black raspberries (BRB, 5%) altered recipients' immune system. The donors received a control or 5% BRB diet, and fecal transplantation was performed every other day 15 times into recipients fed control diet. Afterward, we used flow cytometry to analyze populations of CD3+ T, CD4+ T, CD8+ T cells, and NK cells among bone marrow cells, splenocytes, and peripheral blood mononuclear cells (PBMCs) collected from the recipients. We found that BRB-fecal material that contained both fecal microbiota and their metabolites increased NK cell populations among bone marrow cells, splenocytes, and PBMCs, and raised levels of CD8+ T cells in splenocytes. Our findings suggest that fecal transplantation can modulate the immune system and might therefore be valuable for managing a range of physical and mental disorders.
Collapse
Affiliation(s)
- Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Pan Pan
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Carla Elena Echeveste
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Hsin-Tzu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Kiyoko Oshima
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Martha Yearsley
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Jiebiao Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Wauwatosa, Wisconsin
| |
Collapse
|
69
|
Wang J, Xu J, Han Q, Chu W, Lu G, Chan WY, Qin Y, Du Y. Changes in the vaginal microbiota associated with primary ovarian failure. BMC Microbiol 2020; 20:230. [PMID: 32727366 PMCID: PMC7392721 DOI: 10.1186/s12866-020-01918-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Primary ovarian failure (POF) is defined as follicular failure in women of reproductive age. Although many factors are speculated to contribute to the occurrence of POF, the exact aetiology remains unclear. Moreover, alterations in the microbiome of patients with POF are poorly studied. RESULTS This study investigated the vaginal microbiota of 22 patients with POF and 29 healthy individuals. High-throughput Illumina MiSeq sequencing targeting the V3-V4 region of the 16S ribosomal RNA (rRNA) gene was used to evaluate the relationships between the vaginal flora and clinical characteristics of POF. Different from results of previous studies, we found that the diversity and richness of the vaginal flora of patients with POF was significantly different from those of healthy controls. Comparison of the vaginal flora of patients with POF with that of menopausal women revealed that the relative abundance of Lactobacillus was significantly reduced in the latter. A reduced abundance of Lactobacillus was furthermore associated with a lower pregnancy success rate. Of particular interest is that L. gallinarum especially appeared to be beneficially associated with reproductive-related indicators (FSH, E2, AMH, PRL) whilst L. iners appeared to have a detrimental effect. The result of the present study may enable the identification of microbiota associated with POF, however, further investigations of differences in the microbiota in the context of POF will enable a deeper understanding of the disease pathogenesis that involves modification of the vaginal microbiota. CONCLUSIONS The present study identified the microbiota associated with POF. Further investigations on the differences in the microbiota in the context of POF will improve our understanding of the pathogenesis of the disease which involves modification of the vaginal microbiota.
Collapse
Affiliation(s)
- Juan Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Jieying Xu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Qixin Han
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Weiwei Chu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Gang Lu
- The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Wai-Yee Chan
- The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yingying Qin
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China.
| |
Collapse
|
70
|
Molina NM, Sola-Leyva A, Saez-Lara MJ, Plaza-Diaz J, Tubić-Pavlović A, Romero B, Clavero A, Mozas-Moreno J, Fontes J, Altmäe S. New Opportunities for Endometrial Health by Modifying Uterine Microbial Composition: Present or Future? Biomolecules 2020; 10:593. [PMID: 32290428 PMCID: PMC7226034 DOI: 10.3390/biom10040593] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 02/08/2023] Open
Abstract
Current knowledge suggests that the uterus harbours its own microbiota, where the microbes could influence the uterine functions in health and disease; however, the core uterine microbial composition and the host-microbial relationships remain to be fully elucidated. Different studies are indicating, based on next-generation sequencing techniques, that microbial dysbiosis could be associated with several gynaecological disorders, such as endometriosis, chronic endometritis, dysfunctional menstrual bleeding, endometrial cancer, and infertility. Treatments using antibiotics and probiotics and/or prebiotics for endometrial microbial dysbiosis are being applied. Nevertheless there is no unified protocol for assessing the endometrial dysbiosis and no optimal treatment protocol for the established dysbiosis. With this review we outline the microbes (mostly bacteria) identified in the endometrial microbiome studies, the current treatments offered for bacterial dysbiosis in the clinical setting, and the future possibilities such as pro- and prebiotics and microbial transplants for modifying uterine microbial composition.
Collapse
Affiliation(s)
- Nerea M. Molina
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (N.M.M.); (A.S.-L.); (M.J.S.-L.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (N.M.M.); (A.S.-L.); (M.J.S.-L.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
| | - Maria Jose Saez-Lara
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (N.M.M.); (A.S.-L.); (M.J.S.-L.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- “José Mataix Verdú” Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain
| | - Julio Plaza-Diaz
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- “José Mataix Verdú” Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain
| | | | - Barbara Romero
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- Unidad de Reproducción, UGC de Obstetricia y Ginecología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- Unidad de Reproducción, UGC de Obstetricia y Ginecología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Juan Mozas-Moreno
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- Unidad de Reproducción, UGC de Obstetricia y Ginecología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública-CIBERESP), 28029 Madrid, Spain
- Departament of Obstetrics and Gynecology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Juan Fontes
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- Unidad de Reproducción, UGC de Obstetricia y Ginecología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (N.M.M.); (A.S.-L.); (M.J.S.-L.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- Competence Centre on Health Technologies, 50410 Tartu, Estonia
| |
Collapse
|
71
|
Zhu Y, Li Y, Liu M, Hu X, Zhu H. Guizhi Fuling Wan, Chinese Herbal Medicine, Ameliorates Insulin Sensitivity in PCOS Model Rats With Insulin Resistance via Remodeling Intestinal Homeostasis. Front Endocrinol (Lausanne) 2020; 11:575. [PMID: 32973686 PMCID: PMC7482315 DOI: 10.3389/fendo.2020.00575] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disease with reproductive dysfunction and metabolic disorder in women of childbearing age. Gastrointestinal microbiome contributes to PCOS through mediating insulin resistance. Guizhi Fuling Wan, Chinese herbal medicine, can treat PCOS with insulin resistance (PCOS-IR), but the underlying mechanism is not clear. The aim of this study was to characterize the exact mechanism of Guizhi Fuling Wan action and whether it is related to the regulation of intestinal flora structure. We induced PCOS-IR rat model by means of letrozole sodium carboxymethyl cellulose (CMC-na) solution combined with high-fat emulsion administration and randomly divided it into blank control group (K), model control group (M), low dose of Guizhi Fuling Wan group (D), middle dose of Guizhi Fuling Wan group (Z), high dose of Guizhi Fuling Wan group (G) and positive drug (Metformin) control group (Y). After 36 days of modeling and treatment, serum and stool samples from all rats were collected for a follow-up analysis. The data display that, compared with K group, elevated testosterone and HOMA-IR, turbulent estrous cycles and polycystic ovaries in M group, indicating the PCOS-IR rat model is successfully established. Increased fasting insulin is associated with higher inflammation(plasma TNF-α, IL-6, and HS-CPR concentration were determined) in M group, and the altered intestinal flora (compared with the K group, in M group the relative abundance of Alloprevotella was decreased significantly, while the relative abundance of Lachnospiraceae UCG-008, Lachnospiraceae NK4A136, Lactobacillus, Ruminiclostridium 9, and Ruminococcaceae UCG-003 was increased significantly) induced the secretion of inflammatory markers. On the other hand, Guizhi Fuling Wan can alleviate inflammation, improve insulin resistence: Lower inflammation decreased fasting insulin can be seen in G group compared with M group, this effect is related to the regulating effect of Guizhi Fuling Wan on intestinal flora (in G group, the relative abundance of Alloprevotella, Ruminococcaceae UCG-003, and Lachnospiraceae UCG-008 was increased significantly, compared with M group). This research demonstrates Guizhi Fuling Wan improve insulin resistance in polycystic ovary syndrome with the underlying mechanism of regulating intestinal flora to control inflammation. It would be useful to promote the therapeutic effect of Guizhi Fuling Wan on PCOS-IR.
Collapse
Affiliation(s)
- Ying Zhu
- School of Clinical Medical, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Li
- School of Clinical Medical, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Liu
- School of Clinical Medical, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - XiaoDan Hu
- School of Clinical Medical, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongqiu Zhu
- College of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Hongqiu Zhu
| |
Collapse
|