51
|
Pagkou D, Kogias E, Foroglou N, Kotzampassi K. Probiotics in Traumatic Brain Injury: New Insights into Mechanisms and Future Perspectives. J Clin Med 2024; 13:4546. [PMID: 39124812 PMCID: PMC11313054 DOI: 10.3390/jcm13154546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Traumatic brain injury (TBI) is a serious global public health issue, recognized as a chronic and progressive disease that can affect multiple organs, including the gastrointestinal (GI) tract. Research shows that there is a specific link between the GI tract and the central nervous system, termed the gut-brain axis, which consists of bidirectional exchange between these two. Several preclinical and clinical studies have demonstrated intestinal barrier dysfunction, intestinal inflammation and gut dysbiosis in patients with TBI. It is proven that probiotics can modulate the inflammatory process and modify gut microbiota. Numerous animal studies and human clinical trials have proven the effectiveness of selected bacterial strains as an adjuvant treatment in reducing inflammation, infection rates and time spent in intensive care of hospitalized patients suffering from brain injury. Thus, this review summarizes the current evidence regarding the beneficial effects of probiotic administration in patients suffering from TBI-related complications. This review will help identify novel therapeutic strategies in the future as probiotics have an extensive history of apparently safe use.
Collapse
Affiliation(s)
- Diamantoula Pagkou
- Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Kiriakidi 1, 54636 Thessaloniki, Greece; (E.K.); (N.F.)
| | - Evangelos Kogias
- Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Kiriakidi 1, 54636 Thessaloniki, Greece; (E.K.); (N.F.)
| | - Nikolaos Foroglou
- Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Kiriakidi 1, 54636 Thessaloniki, Greece; (E.K.); (N.F.)
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, Kiriakidi 1, 54636 Thessaloniki, Greece;
| |
Collapse
|
52
|
Yang R, Zong Y, Zhang C. Potential correlation between chronic periodontitis and Parkinson's disease. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2024; 42:521-530. [PMID: 39049641 PMCID: PMC11338491 DOI: 10.7518/hxkq.2024.2024010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/21/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES This study aims to investigate possible hub genes, associated pathways, and transcription factors between chronic periodontitis (CP) and Parkinson's disease (PD). METHODS Gene expression profiles of CP (GSE16134, GSE23586, and GSE10334) and PD (GSE20141 and GSE49036) were downloaded from the gene expression omnibus (GEO) database for differential expression analysis and functional clustering analysis. The protein-protein interaction (PPI) network was constructed, and hub genes were screened by four topological analysis algorithms and modular segmentation. Functional clustering analysis was performed. The hub genes were validated by external datasets of CP and PD, and causal relation was further assessed by Mendelian randomization (MR). RESULTS After merging the data, 1 211 differentially expressed genes (DEGs) were screened in the CP datasets; of which, 551 were upregulated and 660 were downregulated. A total of 2 407 DEGs were screened in the PD dataset, of which, 1 438 were upregulated and 969 were downregulated. The PPI network included 145 nodes and 126 edges. Four hub genes (FCGR3B, PRF1, IL18, and CD33) and three transcription factors (HSF1, HSF2, and HSF4) were finally screened. The relevant pathway was predominantly natural killer (NK) cell-mediated toxic effects. The MR results suggest a possible positive causal relationship between CP and the risk of developing PD. CONCLUSIONS This study indicated the probably shared pathophysiology and possible causal relationship between CP and PD and may offer novel concepts and therapeutic targets for future mechanistic investigations.
Collapse
Affiliation(s)
- Rongxia Yang
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yingrui Zong
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chen Zhang
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
53
|
Du Y, An Y, Song Y, Li N, Zheng J, Lu Y. Live and pasteurized Akkermansia muciniphila ameliorates diabetic cognitive impairment by modulating gut microbiota and metabolites in db/db mice. Exp Neurol 2024; 378:114823. [PMID: 38782351 DOI: 10.1016/j.expneurol.2024.114823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/05/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
The established role of disturbances in the microbiota-gut-brain axis in the development of diabetic cognitive impairment (DCI) has long been recognized. It has shown the potential of Akkermansia muciniphila (A. muciniphila) in improving metabolic disorders and exerting anti-inflammatory effects. However, there remains a lack of comprehensive understanding regarding the specific effects and mechanisms underlying the treatment of DCI with A. muciniphila. This study aimed to evaluate the potential of A. muciniphila in alleviating DCI in db/db mice. Eleven-week-old db/db mice were administered either live or pasteurized A. muciniphila (5 × 109 CFU/200 μL) for a duration of eight weeks. Administering live A. muciniphila significantly ameliorated cognitive impairments, improved the synaptic ultrastructure, and inhibited hippocampal neuron loss in the CA1 and CA3 subregions in db/db mice. Both live and pasteurized A. muciniphila effectively mitigated neuroinflammation. Moreover, live A. muciniphila increased the relative abundance of Lactococcus and Staphylococcus, whereas pasteurized A. muciniphila increased the relative abundance of Lactobacillus, Prevotellaceae_UCG_001, and Alistipes. Supplementation of A. muciniphila also induced alterations in serum and brain metabolites, with a particular enrichment observed in tryptophan metabolism, glyoxylate and dicarboxylate metabolism, nitrogen metabolism, and pentose and glucuronate interconversions. Correlation analysis further demonstrated a direct and substantial correlation between the altered gut microbiota and the metabolites in the serum and brain tissue. In conclusion, the results indicate that live A. muciniphila demonstrated greater efficacy compared to pasteurized A. muciniphila. The observed protective effects of A. muciniphila against DCI are likely mediated through the neuroinflammation and microbiota-metabolites-brain axis.
Collapse
Affiliation(s)
- Yage Du
- School of Nursing, Peking University, Beijing 100191, China
| | - Yu An
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ying Song
- School of Nursing, Peking University, Beijing 100191, China
| | - Nan Li
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jie Zheng
- School of Nursing, Peking University, Beijing 100191, China
| | - Yanhui Lu
- School of Nursing, Peking University, Beijing 100191, China.
| |
Collapse
|
54
|
Behrens LMP, Gasparotto J, Rampelotto PH, Escalona MAR, da Silva LDS, Carazza-Kessler FG, Barbosa CP, Campos MS, Dorn M, Gelain DP, Moreira JCF. Sodium propionate oral supplementation ameliorates depressive-like behavior through gut microbiome and histone 3 epigenetic regulation. J Nutr Biochem 2024; 130:109660. [PMID: 38685283 DOI: 10.1016/j.jnutbio.2024.109660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Major depressive disorder (MDD) is a global health concern, affecting over 250 million individuals worldwide. In recent years, the gut-brain axis has emerged as a promising field for understanding the pathophysiology of MDD. Microbial metabolites, such as short-chain fatty acids (SCFAs)-acetate, butyrate, and propionate-, have gained attention for their potential to influence epigenetic modifications within the host brain. However, the precise mechanisms through which these metabolites participate in MDD pathophysiology remain elusive. This study was designed to investigate the effects of oral SCFA supplementation in adult male Wistar rats subjected to chronic unpredictable mild stress (CUMS). A subset of control and CUMS-exposed rats received different supplementations: sodium acetate (NaOAc) at a concentration of 60 mM, sodium butyrate (NaB) at 40 mM, sodium propionate (NaP) at 50 mM, or a mixture of these SCFAs. The gut microbiome was assessed through 16S rRNA sequencing, and epigenetic profiling was performed using Western blot analysis. Results demonstrated that NaP supplementation significantly alleviated anhedonia in stressed animals, as evidenced by improved performance in the sucrose consumption test. This ameliorative effect was potentially associated with the modulation of gut bacterial communities, accompanied by the attenuation of the region-specific epigenetic dysregulation in the brain of the animals exposed to chronic stress. These findings suggest a potential association between gut dysbiosis and stress response, and NaP could be a promising target for future MDD interventions. However, further studies are needed to fully elucidate the underlying mechanisms of these effects.
Collapse
Affiliation(s)
- Luiza Marques Prates Behrens
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil; Graduate Program in Biological Sciences: Biochemistry, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil; Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 91501-970, Brazil.
| | - Juciano Gasparotto
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 91501-907, Brazil
| | - Manuel Adrian Riveros Escalona
- Graduate Program in Veterinary Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 91540-000, Brazil
| | - Lucas Dos Santos da Silva
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil; Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 91501-970, Brazil
| | - Flávio Gabriel Carazza-Kessler
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil; Graduate Program in Biological Sciences: Biochemistry, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| | - Camila Pocharski Barbosa
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| | - Marlene Soares Campos
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| | - Márcio Dorn
- Department of Theoretical Informatics, Institute of Informatics, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 91501-970, Brazil; Center of Biotechnology, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 91501-970, Brazil
| | - Daniel Pens Gelain
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| | - José Cláudio Fonseca Moreira
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| |
Collapse
|
55
|
Hasaniani N, Mostafa Rahimi S, Akbari M, Sadati F, Pournajaf A, Rostami-Mansoor S. The Role of Intestinal Microbiota and Probiotics Supplementation in Multiple Sclerosis Management. Neuroscience 2024; 551:31-42. [PMID: 38777135 DOI: 10.1016/j.neuroscience.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/26/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Multiple sclerosis (MS) is a neurological autoimmune disorder predominantly afflicting young adults. The etiology of MS is intricate, involving a variety of environmental and genetic factors. Current research increasingly focuses on the substantial contribution of gut microbiota in MS pathogenesis. The commensal microbiota resident within the intestinal milieu assumes a central role within the intricate network recognized as the gut-brain axis (GBA), wielding beneficial impact in neurological and psychological facets. As a result, the modulation of gut microbiota is considered a pivotal aspect in the management of neural disorders, including MS. Recent investigations have unveiled the possibility of using probiotic supplements as a promising strategy for exerting a positive impact on the course of MS. This therapeutic approach operates through several mechanisms, including the reinforcement of gut epithelial integrity, augmentation of the host's resistance against pathogenic microorganisms, and facilitation of mucosal immunomodulatory processes. The present study comprehensively explains the gut microbiome's profound influence on the central nervous system (CNS). It underscores the pivotal role played by probiotics in forming the immune system and modulating neurotransmitter function. Furthermore, the investigation elucidates various instances of probiotic utilization in MS patients, shedding light on the potential therapeutic advantages afforded by this intervention.
Collapse
Affiliation(s)
- Nima Hasaniani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Mostafa Rahimi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Marziyeh Akbari
- Department of Genetics, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Fahimeh Sadati
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Abazar Pournajaf
- Biomedical and Microbial Advanced Technologies (BMAT) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sahar Rostami-Mansoor
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
56
|
Ren Y, Huang P, Zhang L, Tang YF, Luo SL, She Z, Peng H, Chen YQ, Luo JW, Duan WX, Liu LJ, Liu LQ. Dual Regulation Mechanism of Obesity: DNA Methylation and Intestinal Flora. Biomedicines 2024; 12:1633. [PMID: 39200098 PMCID: PMC11351752 DOI: 10.3390/biomedicines12081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Obesity is a multifactorial chronic inflammatory metabolic disorder, with pathogenesis influenced by genetic and non-genetic factors such as environment and diet. Intestinal microbes and their metabolites play significant roles in the occurrence and development of obesity by regulating energy metabolism, inducing chronic inflammation, and impacting intestinal hormone secretion. Epigenetics, which involves the regulation of host gene expression without changing the nucleotide sequence, provides an exact direction for us to understand how the environment, lifestyle factors, and other risk factors contribute to obesity. DNA methylation, as the most common epigenetic modification, is involved in the pathogenesis of various metabolic diseases. The epigenetic modification of the host is induced or regulated by the intestinal microbiota and their metabolites, linking the dynamic interaction between the microbiota and the host genome. In this review, we examined recent advancements in research, focusing on the involvement of intestinal microbiota and DNA methylation in the etiology and progression of obesity, as well as potential interactions between the two factors, providing novel perspectives and avenues for further elucidating the pathogenesis, prevention, and treatment of obesity.
Collapse
Affiliation(s)
- Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Pediatrics, Haikou Hospital of the Maternal and Child Health, Haikou 570100, China
- Department of Children’s Healthcare, Hainan Modern Women and Children’s Medical, Haikou 570100, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Fen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Sen-Lin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Qiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jin-Wen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wang-Xin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Ling-Juan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Li-Qun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
57
|
Kuźniar J, Kozubek P, Czaja M, Leszek J. Correlation between Alzheimer's Disease and Gastrointestinal Tract Disorders. Nutrients 2024; 16:2366. [PMID: 39064809 PMCID: PMC11279885 DOI: 10.3390/nu16142366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease is the most common cause of dementia globally. The pathogenesis is multifactorial and includes deposition of amyloid-β in the central nervous system, presence of intraneuronal neurofibrillary tangles and a decreased amount of synapses. It remains uncertain what causes the progression of the disease. Nowadays, it is suggested that the brain is connected to the gastrointestinal tract, especially the enteric nervous system and gut microbiome. Studies have found a positive association between AD and gastrointestinal diseases such as periodontitis, Helicobacter pylori infection, inflammatory bowel disease and microbiome disorders. H. pylori and its metabolites can enter the CNS via the oropharyngeal olfactory pathway and may predispose to the onset and progression of AD. Periodontitis may cause systemic inflammation of low severity with high levels of pro-inflammatory cytokines and neutrophils. Moreover, lipopolysaccharide from oral bacteria accompanies beta-amyloid in plaques that form in the brain. Increased intestinal permeability in IBS leads to neuronal inflammation from transference. Chronic inflammation may lead to beta-amyloid plaque formation in the intestinal tract that spreads to the brain via the vagus nerve. The microbiome plays an important role in many bodily functions, such as nutrient absorption and vitamin production, but it is also an important factor in the development of many diseases, including Alzheimer's disease. Both the quantity and diversity of the microbiome change significantly in patients with AD and even in people in the preclinical stage of the disease, when symptoms are not yet present. The microbiome influences the functioning of the central nervous system through, among other things, the microbiota-gut-brain axis. Given the involvement of the microbiome in the pathogenesis of AD, antibiotic therapy, probiotics and prebiotics, and faecal transplantation are being considered as possible therapeutic options.
Collapse
Affiliation(s)
- Julia Kuźniar
- Student Scientific Group of Psychiatry, Faculty of Medicine, Wroclaw Medical University, 50-369 Wroclaw, Poland; (P.K.); (M.C.)
| | - Patrycja Kozubek
- Student Scientific Group of Psychiatry, Faculty of Medicine, Wroclaw Medical University, 50-369 Wroclaw, Poland; (P.K.); (M.C.)
| | - Magdalena Czaja
- Student Scientific Group of Psychiatry, Faculty of Medicine, Wroclaw Medical University, 50-369 Wroclaw, Poland; (P.K.); (M.C.)
| | - Jerzy Leszek
- Department of Psychiatry, Faculty of Medicine, Wroclaw Medical University, 50-369 Wroclaw, Poland;
| |
Collapse
|
58
|
Morys J, Małecki A, Nowacka-Chmielewska M. Stress and the gut-brain axis: an inflammatory perspective. Front Mol Neurosci 2024; 17:1415567. [PMID: 39092201 PMCID: PMC11292226 DOI: 10.3389/fnmol.2024.1415567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
The gut-brain axis (GBA) plays a dominant role in maintaining homeostasis as well as contributes to mental health maintenance. The pathways that underpin the axis expand from macroscopic interactions with the nervous system, to the molecular signals that include microbial metabolites, tight junction protein expression, or cytokines released during inflammation. The dysfunctional GBA has been repeatedly linked to the occurrence of anxiety- and depressive-like behaviors development. The importance of the inflammatory aspects of the altered GBA has recently been highlighted in the literature. Here we summarize current reports on GBA signaling which involves the immune response within the intestinal and blood-brain barrier (BBB). We also emphasize the effect of stress response on altering barriers' permeability, and the therapeutic potential of microbiota restoration by probiotic administration or microbiota transplantation, based on the latest animal studies. Most research performed on various stress models showed an association between anxiety- and depressive-like behaviors, dysbiosis of gut microbiota, and disruption of intestinal permeability with simultaneous changes in BBB integrity. It could be postulated that under stress conditions impaired communication across BBB may therefore represent a significant mechanism allowing the gut microbiota to affect brain functions.
Collapse
Affiliation(s)
| | | | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| |
Collapse
|
59
|
Sadowski K, Zając W, Milanowski Ł, Koziorowski D, Figura M. Exploring Fecal Microbiota Transplantation for Modulating Inflammation in Parkinson's Disease: A Review of Inflammatory Markers and Potential Effects. Int J Mol Sci 2024; 25:7741. [PMID: 39062985 PMCID: PMC11277532 DOI: 10.3390/ijms25147741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by numerous motor and non-motor symptoms. Recent data highlight a potential interplay between the gut microbiota and the pathophysiology of PD. The degeneration of dopaminergic neurons in PD leads to motor symptoms (tremor, rigidity, and bradykinesia), with antecedent gastrointestinal manifestations, most notably constipation. Consequently, the gut emerges as a plausible modulator in the neurodegenerative progression of PD. Key molecular changes in PD are discussed in the context of the gut-brain axis. Evidence suggests that the alterations in the gut microbiota composition may contribute to gastroenteric inflammation and influence PD symptoms. Disturbances in the levels of inflammatory markers, including tumor necrosis factor-α (TNF α), interleukin -1β (IL-1β), and interleukin-6 (IL-6), have been observed in PD patients. These implicate the involvement of systemic inflammation in disease pathology. Fecal microbiota transplantation emerges as a potential therapeutic strategy for PD. It may mitigate inflammation by restoring gut homeostasis. Preclinical studies in animal models and initial clinical trials have shown promising results. Overall, understanding the interplay between inflammation, the gut microbiota, and PD pathology provides valuable insights into potential therapeutic interventions. This review presents recent data about the bidirectional communication between the gut microbiome and the brain in PD, specifically focusing on the involvement of inflammatory biomarkers.
Collapse
Affiliation(s)
- Karol Sadowski
- Students Scientific Group NEKON by the Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (K.S.); (W.Z.)
| | - Weronika Zając
- Students Scientific Group NEKON by the Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (K.S.); (W.Z.)
| | - Łukasz Milanowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (D.K.)
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (D.K.)
| | - Monika Figura
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (D.K.)
| |
Collapse
|
60
|
Burgos-Aceves MA, Banaee M, Vazzana I, Betancourt-Lozano M, González-Mille DJ, Aliko V, Faggio C, Ilizaliturri-Hernández CA. Effect of emerging pollutants on the gut microbiota of freshwater animals: Focusing on microplastics and pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174809. [PMID: 39019277 DOI: 10.1016/j.scitotenv.2024.174809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
In recent years, emerging environmental pollutants have increasingly endangered the health of freshwater organisms. The gut microbiota exhibits sensitivity to medications, dietary factors and environmental pollutants, rendering it a novel target for toxicological studies. The gut microbiota can be a potential exposure route affecting the host's health. Herein, we review the current knowledge on two different but concurrent pollutants, microplastics and pesticides, regarding their impact on the gut microbiota, which includes alterations in microbial composition, gene expression, function, and health effects in the hosts. Moreover, synergetic interactions between microplastics and pesticides can exacerbate dysbiosis and health risks. We discuss health-related implications of gut microbial changes based on the consequences in metabolism, immunity, and physiology function. Further research is needed to discover the mechanisms underlying these effects and develop strategies for mitigating their harmful impacts on freshwater animals.
Collapse
Affiliation(s)
- Mario A Burgos-Aceves
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Irene Vazzana
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Palermo, Italy
| | | | - Donají J González-Mille
- Programa Cátedras del Consejo Nacional de Ciencia y Tecnología (CONACyT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Valbona Aliko
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, Messina, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - César A Ilizaliturri-Hernández
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
61
|
Maleki MH, Omidi F, Javanshir Z, Bagheri M, Tanhadoroodzani Z, Dastghaib S, Shams M, Akbari M, Dastghaib S. β-Hydroxybutyrate and melatonin suppress maladaptive UPR, excessive autophagy and pyroptosis in Aβ 1-42 and LPS-Induced SH-SY5Y cells. Mol Biol Rep 2024; 51:802. [PMID: 39001949 DOI: 10.1007/s11033-024-09754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Alzheimer's disease is a neurological disease characterized by the build-up of amyloid beta peptide (Aβ) and lipopolysaccharide (LPS), which causes synapse dysfunction, cell death, and neuro-inflammation. A maladaptive unfolded protein response (UPR), excessive autophagy, and pyroptosis aggravate the disease. Melatonin (MEL) and hydroxybutyrate (BHB) have both shown promise in terms of decreasing Aβ pathology. The goal of this study was to see how BHB and MEL affected the UPR, autophagy, and pyroptosis pathways in Aβ1-42 and LPS-induced SH-SY5Y cells. MATERIALS AND METHODS Human neuroblastoma SH-SY5Y cells were treated with BHB, MEL, or a combination of the two after being exposed to A β1-42 and LPS. Cell viability was determined using the MTT test, and gene expression levels of UPR (ATF6, PERK, and CHOP), autophagy (Beclin-1, LC3II, P62, and Atg5), and pyroptosis-related markers (NLRP3, TXNIP, IL-1β, and NFκB1) were determined using quantitative Real-Time PCR (qRT-PCR). For statistical analysis, one-way ANOVA was employed, followed by Tukey's post hoc test. RESULTS BHB and MEL significantly increased SH-SY5Y cell viability in the presence of A β1-42 and LPS. Both compounds inhibited the expression of maladaptive UPR and autophagy-related genes, as well as inflammatory and pyroptotic markers caused by Aβ1-42 and LPS-induced SH-SY5Y cells. CONCLUSION BHB and MEL rescue neurons in A β1-42 and LPS-induced SH-SY5Y cells by reducing maladaptive UPR, excessive autophagy, and pyroptosis. More research is needed to fully comprehend the processes behind their beneficial effects and to discover their practical applications in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mohammad Hasan Maleki
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Omidi
- Students Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Javanshir
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mahla Bagheri
- Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Sahar Dastghaib
- School of Neurobiology Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Mesbah Shams
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadarian Akbari
- Science and Research Branch, Islamic Azad University, Tehran, Iran.
- Telsi Academy, Tehran, Iran.
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, Shiraz, Iran.
- Autophagy research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
62
|
Cha Z, Qiao Y, Lu Q, Wang Q, Lu X, Zhou H, Li T. Research progress and challenges of stem cell therapy for ischemic stroke. Front Cell Dev Biol 2024; 12:1410732. [PMID: 39040041 PMCID: PMC11260720 DOI: 10.3389/fcell.2024.1410732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Ischemic stroke is a significant global cause of death and disability. Currently, treatment options for acute ischemic stroke are limited to intravenous thrombolysis and mechanical recanalization. Therefore, novel neuroprotective strategies are imperative. Stem cell transplantation possesses the capabilities of differentiation, proliferation, neuronal replacement, nerve pathway reconstruction, secretion of nerve growth factors, and enhancement of the microenvironment; thus, it is a potential therapeutic approach for ischemic stroke. In addition, the immunomodulatory function of stem cells and the combined treatment of stem cells and exosomes exhibit a favorable protective effect on brain injury and neurological dysfunction following stroke. Meanwhile, the theory of microbiota-gut-brain axis provides us with a novel perspective for comprehending and managing neurological diseases. Lastly, stem cell transplantation has demonstrated promising outcomes not only in treating ischemic stroke but also in dealing with other neurological disorders, such as brain tumors. Furthermore, challenges related to the tissue source, delivery method, immune response, and timing of transplantation still need to be addressed to optimize the treatment.
Collapse
Affiliation(s)
- Zaihong Cha
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yisheng Qiao
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qixiong Lu
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qiyang Wang
- Department of Orthopedics, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaoyang Lu
- Department of Neurosurgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hu Zhou
- Department of Neurosurgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Tao Li
- Research Center for Clinical Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Neurosurgery and Neuroscience, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
63
|
Weng H, Deng L, Wang T, Xu H, Wu J, Zhou Q, Yu L, Chen B, Huang L, Qu Y, Zhou L, Chen X. Humid heat environment causes anxiety-like disorder via impairing gut microbiota and bile acid metabolism in mice. Nat Commun 2024; 15:5697. [PMID: 38972900 PMCID: PMC11228019 DOI: 10.1038/s41467-024-49972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
Climate and environmental changes threaten human mental health, but the impacts of specific environmental conditions on neuropsychiatric disorders remain largely unclear. Here, we show the impact of a humid heat environment on the brain and the gut microbiota using a conditioned housing male mouse model. We demonstrate that a humid heat environment can cause anxiety-like behaviour in male mice. Microbial 16 S rRNA sequencing analysis reveals that a humid heat environment caused gut microbiota dysbiosis (e.g., decreased abundance of Lactobacillus murinus), and metabolomics reveals an increase in serum levels of secondary bile acids (e.g., lithocholic acid). Moreover, increased neuroinflammation is indicated by the elevated expression of proinflammatory cytokines in the serum and cortex, activated PI3K/AKT/NF-κB signalling and a microglial response in the cortex. Strikingly, transplantation of the microbiota from mice reared in a humid heat environment readily recapitulates these abnormalities in germ-free mice, and these abnormalities are markedly reversed by Lactobacillus murinus administration. Human samples collected during the humid heat season also show a decrease in Lactobacillus murinus abundance and an increase in the serum lithocholic acid concentration. In conclusion, gut microbiota dysbiosis induced by a humid heat environment drives the progression of anxiety disorders by impairing bile acid metabolism and enhancing neuroinflammation, and probiotic administration is a potential therapeutic strategy for these disorders.
Collapse
Affiliation(s)
- Huandi Weng
- Department of Neurology and Stroke Center, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, 510632, PR China
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, PR China
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Li Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Tianyuan Wang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Huachong Xu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Jialin Wu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Qinji Zhou
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Lingtai Yu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, PR China
| | - Boli Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, PR China
| | - Li'an Huang
- Department of Neurology and Stroke Center, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, 510632, PR China
| | - Yibo Qu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, PR China
| | - Libing Zhou
- Department of Neurology and Stroke Center, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, 510632, PR China.
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, PR China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, PR China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong, PR China.
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, 200438, PR China.
| | - Xiaoyin Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
64
|
Zang X, Du Y, Jiang M, Zhou S, Wang L, Han X. A thorough investigation into the correlation between migraines and the gut microbiome: an in-depth analysis using Mendelian randomization studies. Front Neurol 2024; 15:1356974. [PMID: 39015315 PMCID: PMC11250663 DOI: 10.3389/fneur.2024.1356974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/29/2024] [Indexed: 07/18/2024] Open
Abstract
Objective A growing body of evidence underscores a significant association between neurological disorders, particularly migraines, and the gut microbiota. However, a research gap persists in understanding the cause-and-effect dynamics between these elements. Therefore, we employed robust methodologies aimed at thoroughly exploring the causal relationship between the gut microbiome and migraines. Methods Employing bidirectional Two Sample Mendelian Randomization (TSMR) analysis, we investigated the causal association between the composition of the gut microbiota and migraines. Data summarizing the relationship between gut microbiota and migraines were extracted from one or more genome-wide association studies. The TSMR analysis employed five methods to assess the correlation between the gut microbiota and migraines, with the inverse variance-weighted method serving as the primary approach for analyzing causal links. Sensitivity analyses were applied to address horizontal pleiotropy and heterogeneity. Simultaneously, a meta-analysis was performed to strengthen the robustness of the findings. Additionally, a reverse TSMR was carried out to explore potential occurrences of reverse causal relationships. Results The ongoing TSMR analysis identified a collection of 14 bacterial taxa connected to migraines. Among these, 8 taxa exhibited a protective effect, while 5 taxa had a detrimental impact, and 1 taxon maintained a neutral relationship. The reverse Mendelian randomization analysis highlighted stable outcomes for only one bacterial taxonomic group. Conclusion The study confirms a causal relationship between the gut microbiota and migraines, offering a new perspective for migraine research. Strategically targeting specific bacterial taxa with dysregulation may be effective in both preventing and treating migraines, thus opening new avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Xuege Zang
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchuan, Jilin, China
| | - Yongkun Du
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchuan, Jilin, China
| | - Mengshu Jiang
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchuan, Jilin, China
| | | | - Libo Wang
- Unity Health Toronto, Toronto, ON, Canada
| | - Xuemei Han
- Unity Health Toronto, Toronto, ON, Canada
| |
Collapse
|
65
|
Zhang W, Wang Y, Zhu M, Liu K, Zhang HL. Gut flora in multiple sclerosis: implications for pathogenesis and treatment. Neural Regen Res 2024; 19:1480-1488. [PMID: 38051890 PMCID: PMC10883522 DOI: 10.4103/1673-5374.387974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Multiple sclerosis is an inflammatory disorder characterized by inflammation, demyelination, and neurodegeneration in the central nervous system. Although current first-line therapies can help manage symptoms and slow down disease progression, there is no cure for multiple sclerosis. The gut-brain axis refers to complex communications between the gut flora and the immune, nervous, and endocrine systems, which bridges the functions of the gut and the brain. Disruptions in the gut flora, termed dysbiosis, can lead to systemic inflammation, leaky gut syndrome, and increased susceptibility to infections. The pathogenesis of multiple sclerosis involves a combination of genetic and environmental factors, and gut flora may play a pivotal role in regulating immune responses related to multiple sclerosis. To develop more effective therapies for multiple sclerosis, we should further uncover the disease processes involved in multiple sclerosis and gain a better understanding of the gut-brain axis. This review provides an overview of the role of the gut flora in multiple sclerosis.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Ying Wang
- Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Mingqin Zhu
- Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Kangding Liu
- Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
66
|
Binzer S, Hillert J, Manouchehrinia A. Concomitant autoimmunity and risk of multiple sclerosis disability worsening. Mult Scler Relat Disord 2024; 87:105637. [PMID: 38761694 DOI: 10.1016/j.msard.2024.105637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Few studies have examined the effect of concomitant autoimmune diseases on multiple sclerosis (MS) disability worsening. We set out to examine whether concomitant Crohn's Disease (CD), Ulcerative Colitis (UC), or Type 1 Diabetes (T1D) affect MS disability worsening in a nationwide cohort of MS patients as defined by reaching expanded disability scale status (EDSS) scores 3.0, 4.0 and 6.0. METHODS Patients with MS onset between January 2004 and January 2019 were identified from the Swedish MS registry and the Swedish National Patient Register. Kaplan-Meier analysis was used to estimate the median time to reach sustained disability milestones. Adjusted Cox proportional hazard regression models were used to calculate the risk of reaching disability milestones among persons with and without CD, UC, or T1D. RESULTS Out of 8972 persons with MS, 88 (1.0 %) had T1D, 47 (0.8 %) had UC, and 78 (0.9 %) had CD. There was a significantly higher risk of disability progression, for persons with MS and T1D for reaching EDSS 6.0, hazard ratio (HR) = 2.21 (95 % confidence interval (CI) = 1.48 -3.31) and persons with MS and comorbid CD for reaching EDSS 3.0, HR = 2.30 (95 %CI = 1.74-3.04) and 4.0, HR = 1.59 (95 %CI = 1.09-2.32), and persons with MS and comorbid UC for reaching EDSS 3.0 HR = 1.57 (95 %CI = 1.15-2.14). As defined by Charlson's comorbidity index, the co-existence of other co-morbidities conferred a significant increase in the risk of reaching all endpoints, with HR ranging from 1.23 to 1.62. CONCLUSION Comorbidity is associated with a significantly increased risk of reaching disability end-points, and T1D, CD, and UC increase the risk further. Thus, there appears to be a need for increased vigilance of comorbidites in persons with MS in order to optimise the long-term outcome of MS.
Collapse
Affiliation(s)
- Stefanie Binzer
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden; Kolding Hospital, Department of Neurology, Kolding, Denmark.
| | - Jan Hillert
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden; The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ali Manouchehrinia
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden; The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
67
|
Singh J, Vanlallawmzuali, Singh A, Biswal S, Zomuansangi R, Lalbiaktluangi C, Singh BP, Singh PK, Vellingiri B, Iyer M, Ram H, Udey B, Yadav MK. Microbiota-brain axis: Exploring the role of gut microbiota in psychiatric disorders - A comprehensive review. Asian J Psychiatr 2024; 97:104068. [PMID: 38776563 DOI: 10.1016/j.ajp.2024.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/28/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Mental illness is a hidden epidemic in modern science that has gradually spread worldwide. According to estimates from the World Health Organization (WHO), approximately 10% of the world's population suffers from various mental diseases each year. Worldwide, financial and health burdens on society are increasing annually. Therefore, understanding the different factors that can influence mental illness is required to formulate novel and effective treatments and interventions to combat mental illness. Gut microbiota, consisting of diverse microbial communities residing in the gastrointestinal tract, exert profound effects on the central nervous system through the gut-brain axis. The gut-brain axis serves as a conduit for bidirectional communication between the two systems, enabling the gut microbiota to affect emotional and cognitive functions. Dysbiosis, or an imbalance in the gut microbiota, is associated with an increased susceptibility to mental health disorders and psychiatric illnesses. Gut microbiota is one of the most diverse and abundant groups of microbes that have been found to interact with the central nervous system and play important physiological functions in the human gut, thus greatly affecting the development of mental illnesses. The interaction between gut microbiota and mental health-related illnesses is a multifaceted and promising field of study. This review explores the mechanisms by which gut microbiota influences mental health, encompassing the modulation of neurotransmitter production, neuroinflammation, and integrity of the gut barrier. In addition, it emphasizes a thorough understanding of how the gut microbiome affects various psychiatric conditions.
Collapse
Affiliation(s)
- Jawahar Singh
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
| | - Vanlallawmzuali
- Department of Biotechnology, Mizoram Central University, Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Amit Singh
- Department of Microbiology Central University of Punjab, Bathinda 151401, India
| | - Suryanarayan Biswal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Ruth Zomuansangi
- Department of Microbiology Central University of Punjab, Bathinda 151401, India
| | - C Lalbiaktluangi
- Department of Microbiology Central University of Punjab, Bathinda 151401, India
| | - Bhim Pratap Singh
- Department of Agriculture and Environmental Sciences (AES), National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Pachhunga University College Campus, Mizoram University (A Central University), Aizawl 796001, Mizoram, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, Punjab 151401, India
| | - Mahalaxmi Iyer
- Department of Microbiology Central University of Punjab, Bathinda 151401, India
| | - Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan 342001, India
| | - Bharat Udey
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
| | - Mukesh Kumar Yadav
- Department of Microbiology Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
68
|
Deng A, Espiridion ED. Multipronged Electronic Health Record Analysis of Antidepressant Effectiveness on Depression Remission in Patients With Concurrent Depression and Irritable Bowel Syndrome. Cureus 2024; 16:e64968. [PMID: 39161523 PMCID: PMC11331275 DOI: 10.7759/cureus.64968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/21/2024] Open
Abstract
Background Patients with irritable bowel syndrome (IBS) often experience chronic abdominal pain and bowel habit changes, with a heightened risk of depression and anxiety compared to the general population. Methods Using TriNetX data from 61 U.S. healthcare organizations, we conducted a retrospective study of three electronic health record (EHR) analyses. We used International Classification of Diseases, Tenth Revision (ICD-10) and Anatomical Therapeutic Chemical Classification (ATC) codes to analyze depression remission among IBS patients, comparing those using antidepressants to those who were not and comparing outcomes among different types of medication. Statistical methods included risk difference, risk ratio, hazard ratio, Kaplan-Meier survival analysis, log-rank tests, and Cox hazard ratios Results Among 78,673 patients with both depression and IBS, those using antidepressants showed significantly higher rates of depressive remission compared to non-users: risk difference (RD), -0.056; risk ratio (RR), 0.380; and hazard ratio (HR), 0.413. Both atypical antidepressants bupropion and trazodone exhibited greater efficacy in achieving remission compared to selective serotonin reuptake inhibitors (SSRIs), sertraline and escitalopram. For SSRI vs bupropion, RD is -0.041, RR is 0.664, and HR is 0.655. For SSRIs vs trazodone, RD is -0.018 , RR is 0.822, and HR is 0.806. The comparative impact of bupropion versus trazodone on remission remains inconclusive. Conclusion Depression presents a significant comorbidity in IBS patients, with atypical antidepressants potentially offering superior efficacy in achieving remission compared to SSRIs. Further research should explore these medications' psychiatric outcomes in this population to better understand their therapeutic benefits beyond gastrointestinal (GI) symptoms.
Collapse
Affiliation(s)
- Ashley Deng
- Psychiatry, Drexel University College of Medicine, West Reading, USA
| | - Eduardo D Espiridion
- Psychiatry, Drexel University College of Medicine, West Reading, USA
- Psychiatry, Reading Hospital Tower Health, West Reading, USA
| |
Collapse
|
69
|
Jain N. The molecular interplay between human and bacterial amyloids: Implications in neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141018. [PMID: 38641088 DOI: 10.1016/j.bbapap.2024.141018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/19/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Neurodegenerative disorders such as Parkinson's (PD) and Alzheimer's diseases (AD) are linked with the assembly and accumulation of proteins into structured scaffold called amyloids. These diseases pose significant challenges due to their complex and multifaceted nature. While the primary focus has been on endogenous amyloids, recent evidence suggests that bacterial amyloids may contribute to the development and exacerbation of such disorders. The gut-brain axis is emerging as a communication pathway between bacterial and human amyloids. This review delves into the novel role and potential mechanism of bacterial amyloids in modulating human amyloid formation and the progression of AD and PD.
Collapse
Affiliation(s)
- Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass, Karwar, 342030, Rajasthan, India.
| |
Collapse
|
70
|
Krothapalli M, Buddendorff L, Yadav H, Schilaty ND, Jain S. From Gut Microbiota to Brain Waves: The Potential of the Microbiome and EEG as Biomarkers for Cognitive Impairment. Int J Mol Sci 2024; 25:6678. [PMID: 38928383 PMCID: PMC11203453 DOI: 10.3390/ijms25126678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder and a leading cause of dementia. Aging is a significant risk factor for AD, emphasizing the importance of early detection since symptoms cannot be reversed once the advanced stage is reached. Currently, there is no established method for early AD diagnosis. However, emerging evidence suggests that the microbiome has an impact on cognitive function. The gut microbiome and the brain communicate bidirectionally through the gut-brain axis, with systemic inflammation identified as a key connection that may contribute to AD. Gut dysbiosis is more prevalent in individuals with AD compared to their cognitively healthy counterparts, leading to increased gut permeability and subsequent systemic inflammation, potentially causing neuroinflammation. Detecting brain activity traditionally involves invasive and expensive methods, but electroencephalography (EEG) poses as a non-invasive alternative. EEG measures brain activity and multiple studies indicate distinct patterns in individuals with AD. Furthermore, EEG patterns in individuals with mild cognitive impairment differ from those in the advanced stage of AD, suggesting its potential as a method for early indication of AD. This review aims to consolidate existing knowledge on the microbiome and EEG as potential biomarkers for early-stage AD, highlighting the current state of research and suggesting avenues for further investigation.
Collapse
Affiliation(s)
- Mahathi Krothapalli
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL 33612, USA; (M.K.); (L.B.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA;
| | - Lauren Buddendorff
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL 33612, USA; (M.K.); (L.B.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA;
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL 33612, USA; (M.K.); (L.B.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA;
| | - Nathan D. Schilaty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA;
- Center for Neuromusculoskeletal Research, University of South Florida, Tampa, FL 33612, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL 33612, USA; (M.K.); (L.B.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
71
|
Naik B, Sasikumar J, Das SP. From Skin and Gut to the Brain: The Infectious Journey of the Human Commensal Fungus Malassezia and Its Neurological Consequences. Mol Neurobiol 2024:10.1007/s12035-024-04270-w. [PMID: 38871941 DOI: 10.1007/s12035-024-04270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
The human mycobiome encompasses diverse communities of fungal organisms residing within the body and has emerged as a critical player in shaping health and disease. While extensive research has focused on the skin and gut mycobiome, recent investigations have pointed toward the potential role of fungal organisms in neurological disorders. Among those fungal organisms, the presence of the commensal fungus Malassezia in the brain has created curiosity because of its commensal nature and primary association with the human skin and gut. This budding yeast is responsible for several diseases, such as Seborrheic dermatitis, Atopic dermatitis, Pityriasis versicolor, Malassezia folliculitis, dandruff, and others. However recent findings surprisingly show the presence of Malassezia DNA in the brain and have been linked to diseases like Alzheimer's disease, Parkinson's disease, Multiple sclerosis, and Amyotrophic lateral sclerosis. The exact role of Malassezia in these disorders is unknown, but its ability to infect human cells, travel through the bloodstream, cross the blood-brain barrier, and reside along with the lipid-rich neuronal cells are potential mechanisms responsible for pathogenesis. This also includes the induction of pro-inflammatory cytokines, disruption of the blood-brain barrier, gut-microbe interaction, and accumulation of metabolic changes in the brain environment. In this review, we discuss these key findings from studies linking Malassezia to neurological disorders, emphasizing the complex and multifaceted nature of these cases. Furthermore, we discuss potential mechanisms through which Malassezia might contribute to the development of neurological conditions. Future investigations will open up new avenues for our understanding of the fungal gut-brain axis and how it influences human behavior. Collaborative research efforts among microbiologists, neuroscientists, immunologists, and clinicians hold promise for unraveling the enigmatic connections between human commensal Malassezia and neurological disorders.
Collapse
Affiliation(s)
- Bharati Naik
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Jayaprakash Sasikumar
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
72
|
Valiauga R, Talley S, Khemmani M, Fontes Noronha M, Gogliotti R, Wolfe AJ, Campbell E. Sex-dependent effects of carbohydrate source and quantity on caspase-1 activity in the mouse central nervous system. J Neuroinflammation 2024; 21:151. [PMID: 38840215 PMCID: PMC11155082 DOI: 10.1186/s12974-024-03140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Mounting evidence links glucose intolerance and diabetes as aspects of metabolic dysregulation that are associated with an increased risk of developing dementia. Inflammation and inflammasome activation have emerged as a potential link between these disparate pathologies. As diet is a key factor in both the development of metabolic disorders and inflammation, we hypothesize that long term changes in dietary factors can influence nervous system function by regulating inflammasome activity and that this phenotype would be sex-dependent, as sex hormones are known to regulate metabolism and immune processes. METHODS 5-week-old male and female transgenic mice expressing a caspase-1 bioluminescent reporter underwent cranial window surgeries and were fed control (65% complex carbohydrates, 15% fat), high glycemic index (65% carbohydrates from sucrose, 15% fat), or ketogenic (1% complex carbohydrates, 79% fat) diet from 6 to 26 weeks of age. Glucose regulation was assessed with a glucose tolerance test following a 4-h morning fast. Bioluminescence in the brain was quantified using IVIS in vivo imaging. Blood cytokine levels were measured using cytokine bead array. 16S ribosomal RNA gene amplicon sequencing of mouse feces was performed to assess alterations in the gut microbiome. Behavior associated with these dietary changes was also evaluated. RESULTS The ketogenic diet caused weight gain and glucose intolerance in both male and female mice. In male mice, the high glycemic diet led to increased caspase-1 biosensor activation over the course of the study, while in females the ketogenic diet drove an increase in biosensor activation compared to their respective controls. These changes correlated with an increase in inflammatory cytokines present in the serum of test mice and the emergence of anxiety-like behavior. The microbiome composition differed significantly between diets; however no significant link between diet, glucose tolerance, or caspase-1 signal was established. CONCLUSIONS Our findings suggest that diet composition, specifically the source and quantity of carbohydrates, has sex-specific effects on inflammasome activation in the central nervous system and behavior. This phenotype manifested as increased anxiety in male mice, and future studies are needed to determine if this phenotype is linked to alterations in microbiome composition.
Collapse
Affiliation(s)
- Rasa Valiauga
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Sarah Talley
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Mark Khemmani
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | | | - Rocco Gogliotti
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA
- Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Edward Campbell
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|
73
|
Song A, Cheng R, Jiang J, Qu H, Wu Z, Qian F, Shen S, Zhang L, Wang Z, Zhao W, Lou Y. Antidepressant-like effects of hyperoside on chronic stress-induced depressive-like behaviors in mice: Gut microbiota and short-chain fatty acids. J Affect Disord 2024; 354:356-367. [PMID: 38492650 DOI: 10.1016/j.jad.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/04/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND The antidepressant effect of hyperoside (HYP), which is the main component of Hypericum perforatum, is not established. This study aimed to determine the effects of HYP on depression. METHODS The antidepressant-like effect of HYP was studied in mice induced by chronic restraint stress (CRS). The effects of HYP on behavior, inflammation, neurotransmitters, gut microbiota, and short-chain fatty acids (SCFAs) were studied in CRS mice. RESULTS HYP improved depressive-like behavior in mice induced by CRS. Nissl staining analysis showed that HYP improved neuronal damage in CRS mice. Western blot (WB) analysis showed that HYP increased the expression levels of BDNF and PSD95 in the hippocampus of CRS mice. The results of ELISA showed that HYP down-regulated the expression levels of IL-6, IL-1β, TNF-α, and CORT in the hippocampus, blood, and intestinal tissues of mice and up-regulated the expression levels of 5-HT and BDNF. Hematoxylin and eosin (HE) staining results indicate that HYP can improve the intestinal histopathological injury of CRS mice. The results of 16S rRNA demonstrated that HYP attenuated the dysbiosis of the gut microbiota of depressed mice, along with altering the concentration of SCFAs. LIMITATIONS In the present study, direct evidence that HYP improves depressive behaviors via gut microbiota and SCFAs is lacking, and only female mice were evaluated, which limits the understanding of the effects of HYP on both sexes. CONCLUSIONS HYP can improve CRS-induced depressive-like behaviors in mice, which is associated with regulating the gut microbiota and SCFAs concentration.
Collapse
Affiliation(s)
- Aoqi Song
- Department of Pharmacy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Ru Cheng
- Department of Pharmacy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jingjing Jiang
- Department of Pharmacy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Han Qu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Feng Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shuyu Shen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Liwen Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyu Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Zhao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China..
| | - Yuefen Lou
- Department of Pharmacy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai 200434, China.
| |
Collapse
|
74
|
Nasreen S, Ali S, Andleeb S, Summer M, Hussain T, Imdad K, Ara C, Tahir HM. Mechanisms of medicinal, pharmaceutical, and immunomodulatory action of probiotics bacteria and their secondary metabolites against disease management: an overview. Folia Microbiol (Praha) 2024; 69:549-565. [PMID: 38532057 DOI: 10.1007/s12223-024-01155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
Probiotics or bacteriotherapy is today's hot issue for public entities (Food and Agriculture Organization, and World Health Organization) as well as health and food industries since Metchnikoff and his colleagues hypothesized the correlation between probiotic consumption and human's health. They contribute to the newest and highly efficient arena of promising biotherapeutics. These are usually attractive in biomedical applications such as gut-related diseases like irritable bowel disease, diarrhea, gastrointestinal disorders, fungal infections, various allergies, parasitic and bacterial infections, viral diseases, and intestinal inflammation, and are also worth immunomodulation. The useful impact of probiotics is not limited to gut-related diseases alone. Still, these have proven benefits in various acute and chronic infectious diseases, like cancer, human immunodeficiency virus (HIV) diseases, and high serum cholesterol. Recently, different researchers have paid special attention to investigating biomedical applications of probiotics, but consolidated data regarding bacteriotherapy with a detailed mechanistically applied approach is scarce and controversial. The present article reviews the bio-interface of probiotic strains, mainly (i) why the demand for probiotics?, (ii) the current status of probiotics, (iii) an alternative to antibiotics, (iv) the potential applications towards disease management, (v) probiotics and industrialization, and (vi) futuristic approach.
Collapse
Affiliation(s)
- Sundas Nasreen
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Saiqa Andleeb
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Summer
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Tauqeer Hussain
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Kaleem Imdad
- Department of Bioscience, COMSATS Institute of Information Technology (CIIT), Islamabad, 45550, Pakistan
| | - Chaman Ara
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
75
|
Lin S, Zhou Z, Qi Y, Chen J, Xu G, Shi Y, Yu Z, Li M, Chai K. Depression promotes breast cancer progression by regulating amino acid neurotransmitter metabolism and gut microbial disturbance. Clin Transl Oncol 2024; 26:1407-1418. [PMID: 38194019 DOI: 10.1007/s12094-023-03367-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
INTRODUCTION Breast cancer (BC) is the most prevalent type of cancer and has the highest mortality among women worldwide. BC patients have a high risk of depression, which has been recognized as an independent factor in the progression of BC. However, the potential mechanism has not been clearly demonstrated. METHODS To explore the correlation and mechanism between depression and BC progression, we induced depression and tumor in BC mouse models. Depression was induced via chronic unpredictable mild stress (CUMS) and chronic restraint stress (CRS). Amino acid (AA) neurotransmitter-targeted metabonomics and gut microbiota 16S rDNA gene sequencing were employed in the mouse model after evaluation with behavioral tests and pathological analysis. RESULTS The tumors in cancer-depression (CD) mice grew faster than those in cancer (CA) mice, and lung metastasis was observed in CD mice. Metabonomics revealed that the neurotransmitters and plasma AAs in CD mice were dysregulated, namely the tyrosine and tryptophan pathways and monoamine neurotransmitters in the brain. Gut microbiota analysis displayed an increased ratio of Firmicutes/Bacteroides. In detail, the abundance of f_Lachnospiraceae and s_Lachnospiraceae increased, whereas the abundance of o_Bacteroidales and s_Bacteroides_caecimuris decreased. Moreover, the gut microbiota was more closely associated with AA neurotransmitters than with plasma AA. CONCLUSION Depression promoted the progression of BC by modulating the abundance of s_Lachnospiraceae and s_Bacteroides_caecimuris, which affected the metabolism of monoamine neurotransmitters in the brain and AA in the blood.
Collapse
Affiliation(s)
- Sisi Lin
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Zhe Zhou
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Yiming Qi
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Jiabing Chen
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Guoshu Xu
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Yunfu Shi
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Zhihong Yu
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Mingqian Li
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China.
| | - Kequn Chai
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China.
| |
Collapse
|
76
|
Wang X, Wen X, Yuan S, Zhang J. Gut-brain axis in the pathogenesis of sepsis-associated encephalopathy. Neurobiol Dis 2024; 195:106499. [PMID: 38588753 DOI: 10.1016/j.nbd.2024.106499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
The gut-brain axis is a bidirectional communication network linking the gut and the brain, overseeing digestive functions, emotional responses, body immunity, brain development, and overall health. Substantial research highlights a connection between disruptions of the gut-brain axis and various psychiatric and neurological conditions, including depression and Alzheimer's disease. Given the impact of the gut-brain axis on behavior, cognition, and brain diseases, some studies have started to pay attention to the role of the axis in sepsis-associated encephalopathy (SAE), where cognitive impairment is the primary manifestation. SAE emerges as the primary and earliest form of organ dysfunction following sepsis, potentially leading to acute cognitive impairment and long-term cognitive decline in patients. Notably, the neuronal damage in SAE does not stem directly from the central nervous system (CNS) infection but rather from an infection occurring outside the brain. The gut-brain axis is posited as a pivotal factor in this process. This review will delve into the gut-brain axis, exploring four crucial pathways through which inflammatory signals are transmitted and elevate the incidence of SAE. These pathways encompass the vagus nerve pathway, the neuroendocrine pathway involving the hypothalamic-pituitary-adrenal (HPA) axis and serotonin (5-HT) regulation, the neuroimmune pathway, and the microbial regulation. These pathways can operate independently or collaboratively on the CNS to modulate brain activity. Understanding how the gut affects and regulates the CNS could offer the potential to identify novel targets for preventing and treating this condition, ultimately enhancing the prognosis for individuals with SAE.
Collapse
Affiliation(s)
- Xin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xiaoyue Wen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
77
|
Zhou GQ, Wang X, Gao P, Qin TZ, Guo L, Zhang ZW, Huang ZF, Lin JJ, Jing YT, Wang HN, Wang CP, Ding GR. Intestinal microbiota via NLRP3 inflammasome dependent neuronal pyroptosis mediates anxiety-like behaviour in mice exposed to 3.5 GHz radiofrequency radiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172391. [PMID: 38608899 DOI: 10.1016/j.scitotenv.2024.172391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
The rapid development of 5G communication technology has increased public concern about the potential adverse effects on human health. Till now, the impacts of radiofrequency radiation (RFR) from 5G communication on the central nervous system and gut-brain axis are still unclear. Therefore, we investigated the effects of 3.5 GHz (a frequency commonly used in 5G communication) RFR on neurobehavior, gut microbiota, and gut-brain axis metabolites in mice. The results showed that exposure to 3.5 GHz RFR at 50 W/m2 for 1 h over 35 d induced anxiety-like behaviour in mice, accompanied by NLRP3-dependent neuronal pyroptosis in CA3 region of the dorsal hippocampus. In addition, the microbial composition was widely divergent between the sham and RFR groups. 3.5 GHz RFR also caused changes in metabolites of feces, serum, and brain. The differential metabolites were mainly enriched in glycerophospholipid metabolism, tryptophan metabolism, and arginine biosynthesis. Further correlation analysis showed that gut microbiota dysbiosis was associated with differential metabolites. Based on the above results, we speculate that dysfunctional intestinal flora and metabolites may be involved in RFR-induced anxiety-like behaviour in mice through neuronal pyroptosis in the brain. The findings provide novel insights into the mechanism of 5G RFR-induced neurotoxicity.
Collapse
Affiliation(s)
- Gui-Qiang Zhou
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; School of Public Health, Shandong Second Medical University, Weifang, China
| | - Xing Wang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Peng Gao
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Tong-Zhou Qin
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Ling Guo
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Zhao-Wen Zhang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Zhi-Fei Huang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; School of Public Health, Shandong Second Medical University, Weifang, China
| | - Jia-Jin Lin
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Yun-Tao Jing
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Hao-Nan Wang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Chun-Ping Wang
- School of Public Health, Shandong Second Medical University, Weifang, China.
| | - Gui-Rong Ding
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| |
Collapse
|
78
|
Schumacher SM, Doyle WJ, Hill K, Ochoa-Repáraz J. Gut microbiota in multiple sclerosis and animal models. FEBS J 2024:10.1111/febs.17161. [PMID: 38817090 PMCID: PMC11607183 DOI: 10.1111/febs.17161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
Multiple sclerosis (MS) is a chronic central nervous system (CNS) neurodegenerative and neuroinflammatory disease marked by a host immune reaction that targets and destroys the neuronal myelin sheath. MS and correlating animal disease models show comorbidities, including intestinal barrier disruption and alterations of the commensal microbiome. It is accepted that diet plays a crucial role in shaping the microbiota composition and overall gastrointestinal (GI) tract health, suggesting an interplay between nutrition and neuroinflammation via the gut-brain axis. Unfortunately, poor host health and diet lead to microbiota modifications that could lead to significant responses in the host, including inflammation and neurobehavioral changes. Beneficial microbial metabolites are essential for host homeostasis and inflammation control. This review will highlight the importance of the gut microbiota in the context of host inflammatory responses in MS and MS animal models. Additionally, microbial community restoration and how it affects MS and GI barrier integrity will be discussed.
Collapse
Affiliation(s)
| | | | - Kristina Hill
- Department of Biological Sciences, Boise State University, Boise, ID 83725
| | | |
Collapse
|
79
|
Shang Z, Pai L, Patil S. Unveiling the dynamics of gut microbial interactions: a review of dietary impact and precision nutrition in gastrointestinal health. Front Nutr 2024; 11:1395664. [PMID: 38873568 PMCID: PMC11169903 DOI: 10.3389/fnut.2024.1395664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
The human microbiome, a dynamic ecosystem within the gastrointestinal tract, plays a pivotal role in shaping overall health. This review delves into six interconnected sections, unraveling the intricate relationship between diet, gut microbiota, and their profound impact on human health. The dance of nutrients in the gut orchestrates a complex symphony, influencing digestive processes and susceptibility to gastrointestinal disorders. Emphasizing the bidirectional communication between the gut and the brain, the Brain-Gut Axis section highlights the crucial role of dietary choices in physical, mental, and emotional well-being. Autoimmune diseases, particularly those manifesting in the gastrointestinal tract, reveal the delicate balance disrupted by gut microbiome imbalances. Strategies for reconciling gut microbes through diets, precision nutrition, and clinical indications showcase promising avenues for managing gastrointestinal distress and revolutionizing healthcare. From the Low-FODMAP diet to neuro-gut interventions, these strategies provide a holistic understanding of the gut's dynamic world. Precision nutrition, as a groundbreaking discipline, holds transformative potential by tailoring dietary recommendations to individual gut microbiota compositions, reshaping the landscape of gastrointestinal health. Recent advancements in clinical indications, including exact probiotics, fecal microbiota transplantation, and neuro-gut interventions, signify a new era where the gut microbiome actively participates in therapeutic strategies. As the microbiome takes center stage in healthcare, a paradigm shift toward personalized and effective treatments for gastrointestinal disorders emerges, reflecting the symbiotic relationship between the human body and its microbial companions.
Collapse
Affiliation(s)
- Zifang Shang
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| | - Liu Pai
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
80
|
He G, Zhang B, Yi K, Chen T, Shen C, Cao M, Wang N, Zong J, Wang Y, Liu K, Chang F, Chen X, Chen L, Luo Y, Meng Y, Li C, Zhou X. Heat stress-induced dysbiosis of the gut microbiota impairs spermatogenesis by regulating secondary bile acid metabolism in the gut. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173305. [PMID: 38777056 DOI: 10.1016/j.scitotenv.2024.173305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Heat stress (HS) poses a substantial challenge to livestock. Studies have demonstrated that HS reduces fertility and leads to gut microbiota dysbiosis in bulls. However, the impact of the gut microbiota on fertility in bulls during HS is still unclear. Our research revealed that HS exposure decreased semen quality in bulls, and fecal microbiota transplantation (FMT) from heat-stressed bulls to recipient mice resulted in a significant decrease in number of testicular germ cells and epididymal sperm. Untargeted metabolomics methodology and 16S rDNA sequencing conjoint analysis revealed that Akkermansia muciniphila (A. muciniphila) seemed to be a key bacterial regulator of spermatogenesis after HS exposure. Moreover, the research indicated that A. muciniphila regulated secondary bile acid metabolism by promoting the colonization of bile salt hydrolase (BSH)-metabolizing bacteria, leading to increase of retinol absorption in the host gut and subsequently elevation of testicular retinoic acid level, thereby improving spermatogenesis. This study sheds light on the relationship between HS-induced microbiota dysbiosis and spermatogenesis, offering a potential therapeutic approach for addressing bull spermatogenic dysfunction triggered by HS exposure.
Collapse
Affiliation(s)
- Guitian He
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Boqi Zhang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Kangle Yi
- Grassland and Herbivore Research Laboratory, Hunan Animal Husbandry and Veterinary Research Institute, Changsha, China
| | - Tong Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Caomeihui Shen
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Nan Wang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jinxin Zong
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yueying Wang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Kening Liu
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Fuqiang Chang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Xue Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yuxin Luo
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yang Meng
- Jilin Province Product Quality Supervision and Inspection Institute, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, Jilin, China.
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
81
|
Láng L, McArthur S, Lazar AS, Pourtau L, Gaudout D, Pontifex MG, Müller M, Vauzour D. Dietary (Poly)phenols and the Gut-Brain Axis in Ageing. Nutrients 2024; 16:1500. [PMID: 38794738 PMCID: PMC11124177 DOI: 10.3390/nu16101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
As the population ages, the incidence of age-related neurodegenerative diseases is rapidly increasing, and novel approaches to mitigate this soaring prevalence are sorely needed. Recent studies have highlighted the importance of gut microbial homeostasis and its impact on brain functions, commonly referred to as the gut-brain axis, in maintaining overall health and wellbeing. Nonetheless, the mechanisms by which this system acts remains poorly defined. In this review, we will explore how (poly)phenols, a class of natural compounds found in many plant-based foods and beverages, can modulate the gut-brain axis, and thereby promote neural health. While evidence indicates a beneficial role of (poly)phenol consumption as part of a balanced diet, human studies are scarce and mechanistic insight is still lacking. In this regard, we make the case that dietary (poly)phenols should be further explored to establish their therapeutic efficacy on brain health through modulation of the gut-brain axis, with much greater emphasis on carefully designed human interventions.
Collapse
Affiliation(s)
- Léonie Láng
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK; (L.L.); (M.M.)
| | - Simon McArthur
- Faculty of Medicine & Dentistry, Queen Mary, University of London, Blizard Institute, London E1 2AT, UK;
| | - Alpar S. Lazar
- Faculty of Medicine and Health Sciences, The Queen’s Building, University of East Anglia, Norwich NR4 7TJ, UK; (A.S.L.); (M.G.P.)
| | - Line Pourtau
- Activ’Inside, 33750 Beychac et Caillau, France; (L.P.); (D.G.)
| | - David Gaudout
- Activ’Inside, 33750 Beychac et Caillau, France; (L.P.); (D.G.)
| | - Matthew G. Pontifex
- Faculty of Medicine and Health Sciences, The Queen’s Building, University of East Anglia, Norwich NR4 7TJ, UK; (A.S.L.); (M.G.P.)
| | - Michael Müller
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK; (L.L.); (M.M.)
| | - David Vauzour
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK; (L.L.); (M.M.)
| |
Collapse
|
82
|
Sarchi PV, Gomez Cuautle D, Rossi A, Ramos AJ. Participation of the spleen in the neuroinflammation after pilocarpine-induced status epilepticus: implications for epileptogenesis and epilepsy. Clin Sci (Lond) 2024; 138:555-572. [PMID: 38602323 DOI: 10.1042/cs20231621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/12/2024]
Abstract
Epilepsy, a chronic neurological disorder characterized by recurrent seizures, affects millions of individuals worldwide. Despite extensive research, the underlying mechanisms leading to epileptogenesis, the process by which a normal brain develops epilepsy, remain elusive. We, here, explored the immune system and spleen responses triggered by pilocarpine-induced status epilepticus (SE) focusing on their role in the epileptogenesis that follows SE. Initial examination of spleen histopathology revealed transient disorganization of white pulp, in animals subjected to SE. This disorganization, attributed to immune activation, peaked at 1-day post-SE (1DPSE) but returned to control levels at 3DPSE. Alterations in peripheral blood lymphocyte populations, demonstrated a decrease following SE, accompanied by a reduction in CD3+ T-lymphocytes. Further investigations uncovered an increased abundance of T-lymphocytes in the piriform cortex and choroid plexus at 3DPSE, suggesting a specific mobilization toward the Central Nervous System. Notably, splenectomy mitigated brain reactive astrogliosis, neuroinflammation, and macrophage infiltration post-SE, particularly in the hippocampus and piriform cortex. Additionally, splenectomized animals exhibited reduced lymphatic follicle size in the deep cervical lymph nodes. Most significantly, splenectomy correlated with improved neuronal survival, substantiated by decreased neuronal loss and reduced degenerating neurons in the piriform cortex and hippocampal CA2-3 post-SE. Overall, these findings underscore the pivotal role of the spleen in orchestrating immune responses and neuroinflammation following pilocarpine-induced SE, implicating the peripheral immune system as a potential therapeutic target for mitigating neuronal degeneration in epilepsy.
Collapse
Affiliation(s)
- Paula Virginia Sarchi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155 3er piso (1121) Ciudad de Buenos Aires, Argentina
| | - Dante Gomez Cuautle
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155 3er piso (1121) Ciudad de Buenos Aires, Argentina
| | - Alicia Rossi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155 3er piso (1121) Ciudad de Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155 3er piso (1121) Ciudad de Buenos Aires, Argentina
| |
Collapse
|
83
|
Feng H, Hu X, Lin Y, Xiao J, Dai C, Hu Z, Feng H, Qin J, Chen L. Dexmedetomidine attenuates acute stress-impaired learning and memory in mice by maintaining the homeostasis of intestinal flora. Eur J Med Res 2024; 29:271. [PMID: 38711117 DOI: 10.1186/s40001-024-01832-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/05/2024] [Indexed: 05/08/2024] Open
Abstract
Dexmedetomidine (Dex) has been used in surgery to improve patients' postoperative cognitive function. However, the role of Dex in stress-induced anxiety-like behaviors and cognitive impairment is still unclear. In this study, we tested the role of Dex in anxiety-like behavior and cognitive impairment induced by acute restrictive stress and analyzed the alterations of the intestinal flora to explore the possible mechanism. Behavioral and cognitive tests, including open field test, elevated plus-maze test, novel object recognition test, and Barnes maze test, were performed. Intestinal gut Microbe 16S rRNA sequencing was analyzed. We found that intraperitoneal injection of Dex significantly improved acute restrictive stress-induced anxiety-like behavior, recognition, and memory impairment. After habituation in the environment, mice (male, 8 weeks, 18-23 g) were randomly divided into a control group (control, N = 10), dexmedetomidine group (Dex, N = 10), AS with normal saline group (AS + NS, N = 10) and AS with dexmedetomidine group (AS + Dex, N = 10). By the analysis of intestinal flora, we found that acute stress caused intestinal flora disorder in mice. Dex intervention changed the composition of the intestinal flora of acute stress mice, stabilized the ecology of the intestinal flora, and significantly increased the levels of Blautia (A genus of anaerobic bacteria) and Coprobacillus. These findings suggest that Dex attenuates acute stress-impaired learning and memory in mice by maintaining the homeostasis of intestinal flora.
Collapse
Affiliation(s)
- Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410000, People's Republic of China
| | - Xing Hu
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410000, People's Republic of China
| | - Yizi Lin
- Department of Radiology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325200, People's Republic of China
| | - Jingni Xiao
- Department of Nephrology, Hengyang Medical School, University of South China Affiliated Changsha Central Hospital, No. 161 Shaoshan South Road, Changsha, Hunan, 410004, People's Republic of China
| | - Chao Dai
- Department of Nephrology, Hengyang Medical School, University of South China Affiliated Changsha Central Hospital, No. 161 Shaoshan South Road, Changsha, Hunan, 410004, People's Republic of China
| | - Zhaolan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, 139 Ren-Min Central Road, Changsha City, Hunan, 410011, People's Republic of China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Jiao Qin
- Department of Nephrology, Hengyang Medical School, University of South China Affiliated Changsha Central Hospital, No. 161 Shaoshan South Road, Changsha, Hunan, 410004, People's Republic of China.
| | - Li Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, Wenzhou, Zhejiang, 325200, People's Republic of China.
| |
Collapse
|
84
|
Ferrari S, Mulè S, Parini F, Galla R, Ruga S, Rosso G, Brovero A, Molinari C, Uberti F. The influence of the gut-brain axis on anxiety and depression: A review of the literature on the use of probiotics. J Tradit Complement Med 2024; 14:237-255. [PMID: 38707924 PMCID: PMC11069002 DOI: 10.1016/j.jtcme.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 05/07/2024] Open
Abstract
This review aims to argue how using probiotics can improve anxiety and depressive behaviour without adverse effects, also exploring the impact of postbiotics on it. Specifically, probiotics have drawn more attention as effective alternative treatments, considering the rising cost of antidepressant and anti-anxiety drugs and the high risk of side effects. Depression and anxiety disorders are among the most common mental illnesses in the world's population, characterised by low mood, poor general interest, and cognitive or motor dysfunction. Thus, this study analysed published literature on anxiety, depression, and probiotic supplementation from PubMed and Scopus, focusing on the last twenty years. This study focused on the effect of probiotics on mental health as they have drawn more attention because of their extensive clinical applications and positive impact on various diseases. Numerous studies have demonstrated how the gut microbiota might be critical for mood regulation and how probiotics can affect host health by regulating the gut-brain axis. By comparing the different works analysed, it was possible to identify a strategy by which they are selected and employed and, at the same time, to assess how the effect of probiotics can be optimised using postbiotics, an innovation to improve mental well-being in humans.
Collapse
Affiliation(s)
- Sara Ferrari
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Simone Mulè
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Francesca Parini
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Rebecca Galla
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
- Noivita srls, spin Off, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Sara Ruga
- Noivita srls, spin Off, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Giorgia Rosso
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Arianna Brovero
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Claudio Molinari
- Department for Sustainable Development and Ecological Transition, Italy
| | - Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| |
Collapse
|
85
|
McCoubrey LE, Ferraro F, Seegobin N, Verin J, Alfassam HA, Awad A, Marzorati M, Verstrepen L, Ghyselinck J, De Munck J, De Medts J, Steppe E, De Vleeschhauwer V, De Rocker G, Droesbeke A, De Rijck M, Vanthoor S, Moens F, Siepmann J, Siepmann F, Gaisford S, Orlu M, Basit AW. Poly(D,l-lactide-co-glycolide) particles are metabolised by the gut microbiome and elevate short chain fatty acids. J Control Release 2024; 369:163-178. [PMID: 38521168 DOI: 10.1016/j.jconrel.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/17/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
The production of short chain fatty acids (SCFAs) by the colonic microbiome has numerous benefits for human health, including maintenance of epithelial barrier function, suppression of colitis, and protection against carcinogenesis. Despite the therapeutic potential, there is currently no optimal approach for elevating the colonic microbiome's synthesis of SCFAs. In this study, poly(D,l-lactide-co-glycolide) (PLGA) was investigated for this application, as it was hypothesised that the colonic microbiota would metabolise PLGA to its lactate monomers, which would promote the resident microbiota's synthesis of SCFAs. Two grades of spray dried PLGA, alongside a lactate bolus control, were screened in an advanced model of the human colon, known as the M-SHIME® system. Whilst the high molecular weight (Mw) grade of PLGA was stable in the presence of the microbiota sourced from three healthy humans, the low Mw PLGA (PLGA 2) was found to be metabolised. This microbial degradation led to sustained release of lactate over 48 h and increased concentrations of the SCFAs propionate and butyrate. Further, microbial synthesis of harmful ammonium was significantly reduced compared to untreated controls. Interestingly, both types of PLGA were found to influence the composition of the luminal and mucosal microbiota in a donor-specific manner. An in vitro model of an inflamed colonic epithelium also showed the polymer to affect the expression of pro- and anti-inflammatory markers, such as interleukins 8 and 10. The findings of this study reveal PLGA's sensitivity to enzymatic metabolism in the gut, which could be harnessed for therapeutic elevation of colonic SCFAs.
Collapse
Affiliation(s)
- Laura E McCoubrey
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Fabiana Ferraro
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - Nidhi Seegobin
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Jérémy Verin
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - Haya A Alfassam
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom; Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), 114422 Riyadh, Saudi Arabia
| | - Atheer Awad
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom; Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | | | | | | | | | | | - Evi Steppe
- ProDigest BVB, Technologiepark 73, 9052 Ghent, Belgium
| | | | | | | | | | - Sara Vanthoor
- ProDigest BVB, Technologiepark 73, 9052 Ghent, Belgium
| | | | | | | | - Simon Gaisford
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Mine Orlu
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
86
|
Iban-Arias R, Yang EJ, Griggs E, Soares Dias Portela A, Osman A, Trageser KJ, Shahed M, Maria Pasinetti G. Ad-derived bone marrow transplant induces proinflammatory immune peripheral mechanisms accompanied by decreased neuroplasticity and reduced gut microbiome diversity affecting AD-like phenotype in the absence of Aβ neuropathology. Brain Behav Immun 2024; 118:252-272. [PMID: 38461954 DOI: 10.1016/j.bbi.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Immune system dysfunction is increasingly recognized as a significant feature that contributes to Alzheimer's disease (AD) pathogenesis, reflected by alterations in central and peripheral responses leading to detrimental mechanisms that can contribute to the worsening of the disease. The damaging alterations in the peripheral immune system may disrupt the peripheral-central immune crosstalk, implicating the gut microbiota in this complex interaction. The central hypothesis posits that the immune signature inherently harbored in bone marrow (BM) cells can be transferred through allogeneic transplantation, influencing the recipient's immune system and modulating peripheral, gut, and brain immune responses. Employing a genetically modified mouse model to develop AD-type pathology we found that recipient wild-type (WT) mice engrafted with AD-derived BM, recapitulated the peripheral immune inflammatory donor phenotype, associated with a significant acceleration of cognitive deterioration in the absence of any overt change in AD-type amyloid neuropathology. Moreover, transcriptomic and phylogenetic 16S microbiome analysis evidence on these animals revealed a significantly impaired expression of genes associated with synaptic plasticity and neurotransmission in the brain and reduced bacteria diversity, respectively, compared to mice engrafted with WT BM. This investigation sheds light on the pivotal role of the peripheral immune system in the brain-gut-periphery axis and its profound potential to shape the trajectory of AD. In summary, this study advances our understanding of the complex interplay among the peripheral immune system, brain functionality, and the gut microbiome, which collectively influence AD onset and progression.
Collapse
Affiliation(s)
- Ruth Iban-Arias
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elizabeth Griggs
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Aya Osman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kyle J Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahadi Shahed
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Molecular Integrative Neuroresilience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Geriatrics Research, Education and Clinical Center, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA.
| |
Collapse
|
87
|
Lin Y, Xie Z, Li Z, Yuan C, Zhang C, Li Y, Xie K, Wang K. The microbiota-gut-brain axis: A crucial immunomodulatory pathway for Bifidobacterium animalis subsp. lactis' resilience against LPS treatment in neonatal rats. Int J Biol Macromol 2024; 266:131255. [PMID: 38556221 DOI: 10.1016/j.ijbiomac.2024.131255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
An imbalanced gut microflora may contribute to immune disorders in neonates due to an immature gut barrier. Bacterial toxins, particularly, can trigger the immune system, potentially resulting in uncontrolled gut and systemic inflammation. Previous research has revealed that Bifidobacterium animalis subsp. lactis (B. lactis) could protect against early-life pathogen infections by enhancing the gut barrier. However, the effects of B. lactis on a compromised immune system remain uncertain. Hence, this study concentrated on the immunomodulatory effects and mechanisms of B. lactis in neonatal rats intraperitoneally injected with lipopolysaccharide (LPS), a bacterial toxin and inflammatory mediator. First, B. lactis significantly alleviated the adverse effects induced by LPS on the growth, development, and body temperature of neonatal rats. Second, B. lactis significantly reduced the immune responses and damage induced by LPS, affecting both systemic and local immune responses in the peripheral blood, gut, and brain. Notably, B. lactis exhibited extra potent neuroprotective and neurorepair effects. Our research found that pre-treatment with B. lactis shaped the diverse gut microecology by altering both microbial populations and metabolic biomolecules, closely linked to immunomodulation. Overall, this study elucidated the multifaceted roles of B. lactis in neonatal hosts against pathogenic infection and immune disorder, revealing the existence of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Yugui Lin
- Microbiology Laboratory, Zhongshan Bo'ai Hospital, 528400 Zhongshan, China; Department of Microbiology, Guangxi Medical University, 530021 Nanning, China.
| | - Zhong Xie
- Department of Microbiology, Guangxi Medical University, 530021 Nanning, China
| | - Zhouyi Li
- Department of Microbiology, Guangxi Medical University, 530021 Nanning, China
| | - Chunlei Yuan
- Microbiology Laboratory, Zhongshan Bo'ai Hospital, 528400 Zhongshan, China
| | - Chilun Zhang
- Microbiology Laboratory, Zhongshan Bo'ai Hospital, 528400 Zhongshan, China
| | - Yanfen Li
- Microbiology Laboratory, Zhongshan Bo'ai Hospital, 528400 Zhongshan, China
| | - Kunke Xie
- Immunology Laboratory, Zhongshan Bo'ai Hospital, 528400 Zhongshan, China
| | - Ke Wang
- Immunology Laboratory, Zhongshan Bo'ai Hospital, 528400 Zhongshan, China
| |
Collapse
|
88
|
Zhang Y, Wei S, Zhang H, Jo Y, Kang JS, Ha KT, Joo J, Lee HJ, Ryu D. Gut microbiota-generated metabolites: missing puzzles to hosts' health, diseases, and aging. BMB Rep 2024; 57:207-215. [PMID: 38627947 PMCID: PMC11139682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/25/2024] Open
Abstract
The gut microbiota, an intricate community of bacteria residing in the gastrointestinal system, assumes a pivotal role in various physiological processes. Beyond its function in food breakdown and nutrient absorption, gut microbiota exerts a profound influence on immune and metabolic modulation by producing diverse gut microbiota-generated metabolites (GMGMs). These small molecules hold potential to impact host health via multiple pathways, which exhibit remarkable diversity, and have gained increasing attention in recent studies. Here, we elucidate the intricate implications and significant impacts of four specific metabolites, Urolithin A (UA), equol, Trimethylamine N-oxide (TMAO), and imidazole propionate, in shaping human health. Meanwhile, we also look into the advanced research on GMGMs, which demonstrate promising curative effects and hold great potential for further clinical therapies. Notably, the emergence of positive outcomes from clinical trials involving GMGMs, typified by UA, emphasizes their promising prospects in the pursuit of improved health and longevity. Collectively, the multifaceted impacts of GMGMs present intriguing avenues for future research and therapeutic interventions. [BMB Reports 2024; 57(5): 207-215].
Collapse
Affiliation(s)
- Yan Zhang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea, Busan 49241, Korea
| | - Hang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, China, Busan 49241, Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea, Busan 49241, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jongkil Joo
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan 49241, Korea
| | - Hyun Joo Lee
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan 49241, Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea, Busan 49241, Korea
| |
Collapse
|
89
|
Park D, Kim HS, Kim JH. Effect of Pre-Antibiotic Use Before First Stroke Incidence on Recurrence and Mortality: A Longitudinal Study Using the Korean National Health Insurance Service Database. Int J Gen Med 2024; 17:1625-1633. [PMID: 38706744 PMCID: PMC11068048 DOI: 10.2147/ijgm.s456925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Purpose Clinical studies on dysbiosis and stroke outcomes has been insufficient to establish clear evidence. This study aimed to investigate the effects of pre-antibiotic use before a stroke event on secondary outcomes using a longitudinal population-level database. Patients and Methods This retrospective cohort study included adults aged 55 years or older diagnosed with acute ischemic stroke (AIS) and acute hemorrhagic stroke (AHS) between 2004 and 2007. Patients were followed-up until the end of 2019, and the target outcomes were secondary AIS, AHS, and all-cause mortality. Multivariable Cox regression analyses were applied, and we adjusted covariates such as age, sex, socioeconomic status, hypertension, diabetes, and dyslipidemia. Pre-antibiotic use was identified from 7 days to 1 year before the acute stroke event. Results We included 159,181 patients with AIS (AIS group) and 49,077 patients with AHS (AHS group). Pre-antibiotic use significantly increased the risk of secondary AIS in the AIS group (adjusted hazard ratio [aHR], 1.03; 95% confidence interval [CI], 1.01-1.05; p = 0.009) and secondary AHS in the AHS group (aHR, 1.08; 95% CI, 1.03-1.12; p <0.001). Furthermore, pre-antibiotic use in the AIS group was associated with a lower risk of mortality (aHR, 0.95; 95% CI, 0.94-0.96; p <0.001). Conclusion Our population-based longitudinal study revealed that pre-antibiotic use was associated with a higher risk of secondary stroke and a lower risk of mortality in the AIS and AHS groups. Further studies are needed to understand the relationship between dysbiosis and stroke outcomes.
Collapse
Affiliation(s)
- Dougho Park
- Medical Research Institute, Pohang Stroke and Spine Hospital, Pohang, Republic of Korea
- Department of Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyoung Seop Kim
- Department of Physical Medicine and Rehabilitation, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Jong Hun Kim
- Department of Neurology, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| |
Collapse
|
90
|
Burtscher J, Strasser B, Pepe G, Burtscher M, Kopp M, Di Pardo A, Maglione V, Khamoui AV. Brain-Periphery Interactions in Huntington's Disease: Mediators and Lifestyle Interventions. Int J Mol Sci 2024; 25:4696. [PMID: 38731912 PMCID: PMC11083237 DOI: 10.3390/ijms25094696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Prominent pathological features of Huntington's disease (HD) are aggregations of mutated Huntingtin protein (mHtt) in the brain and neurodegeneration, which causes characteristic motor (such as chorea and dystonia) and non-motor symptoms. However, the numerous systemic and peripheral deficits in HD have gained increasing attention recently, since those factors likely modulate disease progression, including brain pathology. While whole-body metabolic abnormalities and organ-specific pathologies in HD have been relatively well described, the potential mediators of compromised inter-organ communication in HD have been insufficiently characterized. Therefore, we applied an exploratory literature search to identify such mediators. Unsurprisingly, dysregulation of inflammatory factors, circulating mHtt, and many other messenger molecules (hormones, lipids, RNAs) were found that suggest impaired inter-organ communication, including of the gut-brain and muscle-brain axis. Based on these findings, we aimed to assess the risks and potentials of lifestyle interventions that are thought to improve communication across these axes: dietary strategies and exercise. We conclude that appropriate lifestyle interventions have great potential to reduce symptoms and potentially modify disease progression (possibly via improving inter-organ signaling) in HD. However, impaired systemic metabolism and peripheral symptoms warrant particular care in the design of dietary and exercise programs for people with HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, 1100 Vienna, Austria;
- Faculty of Medicine, Sigmund Freud Private University, 1020 Vienna, Austria
| | - Giuseppe Pepe
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.P.); (A.D.P.); (V.M.)
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (M.K.)
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (M.K.)
| | - Alba Di Pardo
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.P.); (A.D.P.); (V.M.)
| | | | - Andy V. Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33458, USA;
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
91
|
Guo C, Bai Y, Li P, He K. The emerging roles of microbiota-derived extracellular vesicles in psychiatric disorders. Front Microbiol 2024; 15:1383199. [PMID: 38650872 PMCID: PMC11033316 DOI: 10.3389/fmicb.2024.1383199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Major depressive disorder, schizophrenia, and bipolar disorder are three major psychiatric disorders that significantly impact the well-being and overall health of patients. Some researches indicate that abnormalities in the gut microbiota can trigger certain psychiatric diseases. Microbiota-derived extracellular vesicles have the ability to transfer bioactive compounds into host cells, altering signaling and biological processes, ultimately influencing the mental health and illness of the host. This review aims to investigate the emerging roles of microbiota-derived extracellular vesicles in these three major psychiatric disorders and discusses their roles as diagnostic biomarkers and therapies for these psychiatric disorders.
Collapse
Affiliation(s)
- Chuang Guo
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Yulong Bai
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Pengfei Li
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Kuanjun He
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
92
|
Chang M, Chang KT, Chang F. Just a gut feeling: Faecal microbiota transplant for treatment of depression - A mini-review. J Psychopharmacol 2024; 38:353-361. [PMID: 38532577 DOI: 10.1177/02698811241240308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
BACKGROUND The microbiota-gut-brain axis (MGBA) allows bidirectional crosstalk between the brain and gut microbiota (GM) and is believed to contribute to regulating mood/cognition/behaviour/metabolism/health and homeostasis. Manipulation of GM through faecal microbiota transplant (FMT) is a new, exciting and promising treatment for major depressive disorder (MDD). AIMS This mini-review examines current research into GM and FMT as a therapy for depression. METHODS Original research articles published in Medline/Cochrane Library/PubMed/EMBASE/PsycINFO databases/National Institute of Health website Clinicaltrials.gov/controlled-trials.com were searched. Full articles included in reference lists were evaluated. We summarise current data on GM and depression and discuss communication through the MGBA and the interaction of antidepressants and GM through this. We review compositions of dysbiosis in depressed cohorts, focusing on future directions in the treatment of MDD. RESULTS Studies have demonstrated significant gut dysbiosis in depressed patients compared to healthy cohorts, with overgrowth of pro-inflammatory microbiota, reduction in anti-inflammatory species and reduced overall stability and taxonomic richness. FMT allows the introduction of healthy microbiota into the gastrointestinal tract, facilitating the restoration of eubiosis. CONCLUSION The GM plays an integral role in human health and disease through its communication with the rest of the body via the MGBA. FMT may provide a means to transfer the healthy phenotype into the recipient and this concept in humans is attracting enormous attention as a prospective treatment for psychopathologies, such as MDD, in the future. It may be possible to manipulate the GM in a number of ways, but further research is needed to determine the exact likelihood and profiles involved in the development and amelioration of MDD in humans, as well as the long-term effects and potential risks of this procedure.
Collapse
Affiliation(s)
- Minna Chang
- Epsom and St Helier Hospital University and Hospital Trust, Sutton, Carshalton, UK
| | | | - Fuju Chang
- King's College London, Gastrointestinal Research Group, School of Cancer and Pharmaceutical Sciences, Strand, London, UK
| |
Collapse
|
93
|
Aljarrah D, Chalour N, Zorgani A, Nissan T, Pranjol MZI. Exploring the gut microbiota and its potential as a biomarker in gliomas. Biomed Pharmacother 2024; 173:116420. [PMID: 38471271 DOI: 10.1016/j.biopha.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
Gut microbiome alterations are associated with various cancers including brain tumours such as glioma and glioblastoma. The gut communicates with the brain via a bidirectional pathway known as the gut-brain axis (GBA) which is essential for maintaining homeostasis. The gut microbiota produces many metabolites including short chain fatty acids (SCFAs) and essential amino acids such as glutamate, glutamine, arginine and tryptophan. Through the modulation of these metabolites the gut microbiome is able to regulate several functions of brain cells, immune cells and tumour cells including DNA methylation, mitochondrial function, the aryl hydrocarbon receptor (AhR), T-cell proliferation, autophagy and even apoptosis. Here, we summarise current findings on gut microbiome with respect to brain cancers, an area of research that is widely overlooked. Several studies investigated the relationship between gut microbiota and brain tumours. However, it remains unclear whether the gut microbiome variation is a cause or product of cancer. Subsequently, a biomarker panel was constructed for use as a predictive, prognostic and diagnostic tool with respect to multiple cancers including glioma and glioblastoma multiforme (GBM). This review further presents the intratumoural microbiome, a fascinating microenvironment within the tumour as a possible treatment target that can be manipulated to maximise effectiveness of treatment via personalised therapy. Studies utilising the microbiome as a biomarker and therapeutic strategy are necessary to accurately assess the effectiveness of the gut microbiome as a clinical tool with respect to brain cancers.
Collapse
Affiliation(s)
- Dana Aljarrah
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK.
| | - Naima Chalour
- Cognitive and Behavioural Neuroscience laboratory, Houari Boumediene University of Science and Technology, Bab Ezzouar, Algiers, Algeria; Faculty of Biological Sciences, Houari Boumediene University of Science and Technology, Bab Ezzouar, Algiers, Algeria.
| | - Amine Zorgani
- The Microbiome Mavericks, 60 rue Christian Lacouture, Bron 69500, France.
| | - Tracy Nissan
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Md Zahidul I Pranjol
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
94
|
Yang K, Zhang Z, Zhang Q, Zhang H, Liu X, Jia Z, Ying Z, Liu W. Potential diagnostic markers and therapeutic targets for periodontitis and Alzheimer's disease based on bioinformatics analysis. J Periodontal Res 2024; 59:366-380. [PMID: 38189472 DOI: 10.1111/jre.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND AND OBJECTIVE As a chronic inflammatory disease, periodontitis threatens oral health and is a risk factor for Alzheimer's disease (AD). There is growing evidence that these two diseases are closely related. However, current research is still incomplete in understanding the common genes and common mechanisms between periodontitis and AD. In this study, we aimed to identify common genes in periodontitis and AD and analyze the relationship between crucial genes and immune cells to provide new therapeutic targets for clinical treatment. MATERIALS AND METHODS We evaluated differentially expressed genes (DEGs) specific to periodontitis and AD. Co-expressed genes were identified by obtaining gene expression profile data from the Gene Expression Omnibus (GEO) database. Using the STRING database, protein-protein interaction (PPI) networks were constructed, and essential genes were identified. We also used four algorithms to identify critical genes and constructed regulatory networks. The association of crucial genes with immune cells and potential therapeutic effects was also assessed. RESULTS PDGFRB, VCAN, TIMP1, CHL1, EFEMP2, and IGFBP5 were obtained as crucial common genes. Immune infiltration analysis showed that Natural killer cells and Myeloid-derived suppressor cells were significantly differentially expressed in patients with PD and AD compared with the normal group. FOXC1 and GATA2 are important TFs for PD and AD. MiR-23a, miR-23b, miR-23a, and miR-23b were associated with AD and PD. Finally, the hub genes retrieved from the DSigDB database indicate multiple drug molecule and drug-target interactions. CONCLUSION This study reveals commonalities in common hub genes and immune infiltration between periodontitis and AD, and the analysis of six hub genes and immune cells may provide new insights into potential therapeutic directions for the pathogenesis of periodontitis complicated by AD.
Collapse
Affiliation(s)
- Kai Yang
- Acupuncture and Moxibustion Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaoqi Zhang
- The First Clinical Medical College of Shandong University of Chinese Medicine, Jinan, China
| | - Qingyuan Zhang
- The First Clinical Medical College of Shandong University of Chinese Medicine, Jinan, China
| | - Hongyu Zhang
- Rehabilitation Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoju Liu
- The First Clinical Medical College of Shandong University of Chinese Medicine, Jinan, China
| | - Zhicheng Jia
- The First Clinical Medical College of Shandong University of Chinese Medicine, Jinan, China
| | - Zhenhao Ying
- Rehabilitation Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Liu
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
95
|
Jahnke K, Staufer O. Membranes on the move: The functional role of the extracellular vesicle membrane for contact-dependent cellular signalling. J Extracell Vesicles 2024; 13:e12436. [PMID: 38649339 PMCID: PMC11035383 DOI: 10.1002/jev2.12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Extracellular vesicles (EVs), lipid-enclosed structures released by virtually all life forms, have gained significant attention due to their role in intercellular and interorganismal communication. Despite their recognized importance in disease processes and therapeutic applications, fundamental questions about their primary function remain. Here, we propose a different perspective on the primary function of EVs, arguing that they serve as essential elements providing membrane area for long-distance, contact-dependent cellular communication based on protein-protein interaction. While EVs have been recognized as carriers of genetic information, additional unique advantages that they could provide for cellular communication remain unclear. Here, we introduce the concept that the substantial membrane area provided by EVs allows for membrane contact-dependent interactions that could be central to their function. This membrane area enables the lateral diffusion and sorting of membrane ligands like proteins, polysaccharides or lipids in two dimensions, promoting avidity-driven effects and assembly of co-stimulatory architectures at the EV-cell interface. The concept of vesicle-induced receptor sequestration (VIRS), for example, describes how EVs confine and focus receptors at the EV contact site, promoting a dense local concentration of receptors into signalosomes. This process can increase the signalling strength of EV-presented ligands by 10-1000-fold compared to their soluble counterparts. The speculations in this perspective advance our understanding of EV-biology and have critical implications for EV-based applications and therapeutics. We suggest a shift in perspective from viewing EVs merely as transporters of relevant nucleic acids and proteins to considering their unique biophysical properties as presentation platforms for long-distance, contact-dependent signalling. We therefore highlight the functional role of the EV membrane rather than their content. We further discuss how this signalling mechanism might be exploited by virus-transformed or cancer cells to enhance immune-evasive mechanisms.
Collapse
Affiliation(s)
- Kevin Jahnke
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Oskar Staufer
- INM – Leibniz Institute for New MaterialsSaarbrückenGermany
- Helmholtz Institute for Pharmaceutical ResearchSaarbrückenGermany
- Center for BiophysicsSaarland UniversitySaarbrückenGermany
- Max Planck‐Bristol Center for Minimal BiologyUniversity of BristolBristolUK
| |
Collapse
|
96
|
Shi W, Li Z, Wang W, Liu X, Wu H, Chen X, Zhou X, Zhang S. Dynamic gut microbiome-metabolome in cationic bovine serum albumin induced experimental immune-complex glomerulonephritis and effect of losartan and mycophenolate mofetil on microbiota modulation. J Pharm Anal 2024; 14:100931. [PMID: 38655401 PMCID: PMC11035364 DOI: 10.1016/j.jpha.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 04/26/2024] Open
Abstract
Dynamic changes in gut dysbiosis and metabolomic dysregulation are associated with immune-complex glomerulonephritis (ICGN). However, an in-depth study on this topic is currently lacking. Herein, we report an ICGN model to address this gap. ICGN was induced via the intravenous injection of cationized bovine serum albumin (c-BSA) into Sprague-Dawley (SD) rats for two weeks, after which mycophenolate mofetil (MMF) and losartan were administered orally. Two and six weeks after ICGN establishment, fecal samples were collected and 16S ribosomal DNA (rDNA) sequencing and untargeted metabolomic were conducted. Fecal microbiota transplantation (FMT) was conducted to determine whether gut normalization caused by MMF and losartan contributed to their renal protective effects. A gradual decline in microbial diversity and richness was accompanied by a loss of renal function. Approximately 18 genera were found to have significantly different relative abundances between the early and later stages, and Marvinbryantia and Allobaculum were markedly upregulated in both stages. Untargeted metabolomics indicated that the tryptophan metabolism was enhanced in ICGN, characterized by the overproduction of indole and kynurenic acid, while the serotonin pathway was reduced. Administration of losartan and MMF ameliorated microbial dysbiosis and reduced the accumulation of indoxyl conjugates in feces. FMT using feces from animals administered MMF and losartan improved gut dysbiosis by decreasing the Firmicutes/Bacteroidetes (F/B) ratio but did not improve renal function. These findings indicate that ICGN induces serous gut dysbiosis, wherein an altered tryptophan metabolism may contribute to its progression. MMF and losartan significantly reversed the gut microbial and metabolomic dysbiosis, which partially contributed to their renoprotective effects.
Collapse
Affiliation(s)
- Wenying Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Zhaojun Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institute, Stockholm, 17176, Sweden
| | - Weida Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xikun Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Haijie Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xunrong Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
97
|
Chen H, Wang Z, Gong L, Chen J, Huang Y, Guo W, Zhang Q, Li Y, Bao G, Li D, Chen Y. Attenuation effect of a polysaccharide from large leaf yellow tea by activating autophagy. Int J Biol Macromol 2024; 265:130697. [PMID: 38490395 DOI: 10.1016/j.ijbiomac.2024.130697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Chemotherapy, the most common class of anticancer drugs, is considerably limited owing to its adverse side effects. In this study, we aimed to evaluate the protective effect and mechanism of action of large-leaf yellow tea polysaccharides (ULYTP-1, 1.29 × 104 Da) against chemotherapeutic 5-fluorouracil (5-Fu). Structural characterisation revealed that ULYTP-1 was a β-galactopyranouronic acid. Furthermore, ULYTP-1 promoted autolysosome formation, activating autophagy and reducing the oxidative stress and inflammation caused by 5-Fu. Our in vivo study of 4 T1 tumour-bearing mice revealed that ULYTP-1 also attenuated 5-Fu toxicity through modulation of the gut microbiota. Moreover, ULYTP-1 effectively protected immune organs and the liver from 5-Fu toxicity, while promoting its tumour-inhibitory properties. The current findings provide a new strategy for optimising chemotherapy regimens in the clinic.
Collapse
Affiliation(s)
- Hao Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Zhuang Wang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Lei Gong
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jielin Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yuzhe Huang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Wenqiang Guo
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Qiang Zhang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yong Li
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Guanhu Bao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Yan Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
98
|
Bali P, Lal P, Sivapuram MS, Kutikuppala LVS, Avti P, Chanana A, Kumar S, Anand A. Mind over Microbes: Investigating the Interplay between Lifestyle Factors, Gut Microbiota, and Brain Health. Neuroepidemiology 2024; 58:426-448. [PMID: 38531341 DOI: 10.1159/000538416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The gut microbiota (GM) of the human body comprises several species of microorganisms. This microorganism plays a significant role in the physiological and pathophysiological processes of various human diseases. METHODS The literature review includes studies that describe causative factors that influence GM. The GM is sensitive to various factors like circadian rhythms, environmental agents, physical activity, nutrition, and hygiene that together impact the functioning and composition of the gut microbiome. This affects the health of the host, including the psycho-neural aspects, due to the interconnectivity between the brain and the gut. Hence, this paper examines the relationship of GM with neurodegenerative disorders in the context of these aforesaid factors. CONCLUSION Future studies that identify the regulatory pathways associated with gut microbes can provide a causal link between brain degeneration and the gut at a molecular level. Together, this review could be helpful in designing preventive and treatment strategies aimed at GM, so that neurodegenerative diseases can be treated.
Collapse
Affiliation(s)
- Parul Bali
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Parth Lal
- Advance Pediatric Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhava Sai Sivapuram
- Department of General Medicine, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Peda Avutapalli, India
| | | | - Pramod Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Saurabh Kumar
- CCRYN-Collaborative Centre for Mind Body Intervention through Yoga, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Akshay Anand
- CCRYN-Collaborative Centre for Mind Body Intervention through Yoga, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Centre for Cognitive Science and Phenomenology, Panjab University, Chandigarh, India
| |
Collapse
|
99
|
Thu MS, Pongpirul K, Vongsaisuwon M, Vinayanuwattikun C, Banchuen K, Ondee T, Payungporn S, Phutrakool P, Nootim P, Chariyavilaskul P, Cherdchom S, Wanaratna K, Hirankarn N. Efficacy and mechanisms of cannabis oil for alleviating side effects of breast cancer chemotherapy (CBC2): protocol for randomized controlled trial. BMC Complement Med Ther 2024; 24:130. [PMID: 38521934 PMCID: PMC10960413 DOI: 10.1186/s12906-024-04426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/04/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND In a pilot study using both cannabidiol (CBD) and tetrahydrocannabinol (THC) as single agents in advanced cancer patients undergoing palliative care in Thailand, the doses were generally well tolerated, and the outcome measure of total symptom distress scores showed overall symptom benefit. The current study aims to determine the intensity of the symptoms experienced by breast cancer patients, to explore the microbiome profile, cytokines, and bacterial metabolites before and after the treatment with cannabis oil or no cannabis oil, and to study the pharmacokinetics parameters and pharmacogenetics profile of the doses. METHODS A randomized, double-blinded, placebo-controlled trial will be conducted on the breast cancer cases who were diagnosed with breast cancer and currently receiving chemotherapy at King Chulalongkorn Memorial Hospital (KCMH), Bangkok, Thailand. Block randomization will be used to allocate the patients into three groups: Ganja Oil (THC 2 mg/ml; THC 0.08 mg/drop, and CBD 0.02 mg/drop), Metta Osot (THC 81 mg/ml; THC 3 mg/drop), and placebo oil. The Edmonton Symptom Assessment System (ESAS), Food Frequency Questionnaires (FFQ), microbiome profile, cytokines, and bacterial metabolites will be assessed before and after the interventions, along with pharmacokinetic and pharmacogenetic profile of the treatment during the intervention. TRIAL REGISTRATION TCTR20220809001.
Collapse
Affiliation(s)
- May Soe Thu
- Joint Chulalongkorn University-University of Liverpool PhD Programme in Biomedical Sciences and Biotechnology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Infection Biology & Microbiomes, University of Liverpool, Liverpool, UK
| | - Krit Pongpirul
- Department of Infection Biology & Microbiomes, University of Liverpool, Liverpool, UK.
- Center of Excellence in Preventive and Integrative Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Bumrungrad International Hospital, Bangkok, Thailand.
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Mawin Vongsaisuwon
- Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chanida Vinayanuwattikun
- King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Department of Medicine, Faculty of Medicine, Division of Medical Oncology, Chulalongkorn University, Bangkok, Thailand
| | - Kamonwan Banchuen
- Center of Excellence in Preventive and Integrative Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Nonthaburi, Thailand
| | - Thunnicha Ondee
- Department of Infection Biology & Microbiomes, University of Liverpool, Liverpool, UK
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Center of Excellence in Systems Microbiology,, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Phanupong Phutrakool
- Center of Excellence in Preventive and Integrative Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Chula Data Management Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Preecha Nootim
- Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Nonthaburi, Thailand
| | - Pajaree Chariyavilaskul
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sarocha Cherdchom
- Center of Excellence in Preventive and Integrative Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kulthanit Wanaratna
- Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Nonthaburi, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
100
|
Godos J, Lanza G, Ferri R, Caraci F, Cano SS, Elio I, Micek A, Castellano S, Grosso G. Relation between dietary inflammatory potential and sleep features: Systematic review of observational studies. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2024; 17:1-14. [DOI: 10.3233/mnm-240008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
BACKGROUND: Diet and sleep represent key behavioral risk factors for major non-communicable diseases. Dietary factors may modulate systemic inflammation and potentially affect the human brain functionality, finally affecting the sleep-wake cycle. In this context, the Dietary Inflammatory Index (DII) has been studied as a tool to investigate the dietary inflammatory potential and its relationship with a variety of health conditions. OBJECTIVE: The aim of this study was to perform a systematic revision of observational studies on the inflammatory potential of the diet assessed through the DII and sleep features. METHODS: A systematic search of observational studies on DII and sleep features was conducted on Pubmed and EMBASE electronic databases. The Meta-analyses Of Observational Studies in Epidemiology (MOOSE) guidelines were used to plan the methodology. Studies identified through the search were selected according to inclusion/exclusion criteria. RESULTS: The systematic search and review led to the selection of 13 studies. Most studies including the general population reported an association between higher inflammatory potential of the diet and worse sleep quality and suboptimal sleep duration. Some studies also reported an association with daytime sleepiness and sleep apnea. However, some studies including younger individuals (i.e., college students or young employees) reported null findings. Four studies conducted in individuals with a variety of health conditions also showed some relation between DII and sleep features, although results were not fully consistent. CONCLUSIONS: Data published so far suggests an association between DII and sleep features. However, lack of randomized clinical trials and better designed observational studies, imply that further research on this matter is warranted to understand whether a causal relation could explain current findings.
Collapse
Affiliation(s)
- Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute-IRCCS, Troina, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, Universityof Catania, Catania, Italy
- Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Sandra Sumalla Cano
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, Santander, Spain
- Universidad Internacional Iberoamericana, Campeche, México
- Universidad de La Romana, LaRomana, República Dominicana
| | - Iñaki Elio
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, Santander, Spain
- Universidad Internacional Iberoamericana, Campeche, México
- Fundación Universitaria Internacional de Colombia, Bogotá, Colombia
| | - Agnieszka Micek
- Statistical Laboratory, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, Catania, Italy
| |
Collapse
|