51
|
Santos MSC, Matos AM, Reis M, Martins F. Lipophilicity assessment of some isoniazid derivatives active against Mycobacterium tuberculosis. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
52
|
Rodrigues L, Cravo P, Viveiros M. Efflux pump inhibitors as a promising adjunct therapy against drug resistant tuberculosis: a new strategy to revisit mycobacterial targets and repurpose old drugs. Expert Rev Anti Infect Ther 2020; 18:741-757. [PMID: 32434397 DOI: 10.1080/14787210.2020.1760845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION In 2018, an estimated 377,000 people developed multidrug-resistant tuberculosis (MDR-TB), urging for new effective treatments. In the last years, it has been accepted that efflux pumps play an important role in the evolution of drug resistance. Strategies are required to mitigate the consequences of the activity of efflux pumps. AREAS COVERED Based upon the literature available in PubMed, up to February 2020, on the diversity of efflux pumps in Mycobacterium tuberculosis and their association with drug resistance, studies that identified efflux inhibitors and their effect on restoring the activity of antimicrobials subjected to efflux are reviewed. These support a new strategy for the development of anti-TB drugs, including efflux inhibitors, using in silico drug repurposing. EXPERT OPINION The current literature highlights the contribution of efflux pumps in drug resistance in M. tuberculosis and that efflux inhibitors may help to ensure the effectiveness of anti-TB drugs. However, despite the usefulness of efflux inhibitors in in vitro studies, in most cases their application in vivo is restricted due to toxicity. In a time when new drugs are needed to fight MDR-TB and extensively drug-resistant TB, cost-effective strategies to identify safer efflux inhibitors should be implemented in drug discovery programs.
Collapse
Affiliation(s)
- Liliana Rodrigues
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Lisboa, Portugal
| | - Pedro Cravo
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Lisboa, Portugal
| | - Miguel Viveiros
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Lisboa, Portugal
| |
Collapse
|
53
|
Agoni C, Olotu FA, Ramharack P, Soliman ME. Druggability and drug-likeness concepts in drug design: are biomodelling and predictive tools having their say? J Mol Model 2020; 26:120. [PMID: 32382800 DOI: 10.1007/s00894-020-04385-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/22/2020] [Indexed: 11/29/2022]
Abstract
The drug discovery process typically involves target identification and design of suitable drug molecules against these targets. Despite decades of experimental investigations in the drug discovery domain, about 96% overall failure rate has been recorded in drug development due to the "undruggability" of various identified disease targets, in addition to other challenges. Likewise, the high attrition rate of drug candidates in the drug discovery process has also become an enormous challenge for the pharmaceutical industry. To alleviate this negative outlook, new trends in drug discovery have emerged. By drifting away from experimental research methods, computational tools and big data are becoming valuable in the prediction of biological target druggability and the drug-likeness of potential therapeutic agents. These tools have proven to be useful in saving time and reducing research costs. As with any emerging technique, however, controversial opinions have been presented regarding the validation of predictive computational tools. To address the challenges associated with these varying opinions, this review attempts to highlight the principles of druggability and drug-likeness and their recent advancements in the drug discovery field. Herein, we present the different computational tools and their reliability of predictive analysis in the drug discovery domain. We believe that this report would serve as a comprehensive guide towards computational-oriented drug discovery research. Graphical abstract Highlights of methods for assessing the druggability of biological targets.
Collapse
Affiliation(s)
- Clement Agoni
- Molecular Bio-Computation & Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Fisayo A Olotu
- Molecular Bio-Computation & Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Pritika Ramharack
- Molecular Bio-Computation & Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Mahmoud E Soliman
- Molecular Bio-Computation & Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa.
| |
Collapse
|
54
|
Stenger-Smith J, Kamariza M, Chakraborty I, Ouattara R, Bertozzi CR, Mascharak PK. Enhanced Bactericidal Effects of Pyrazinamide Toward Mycobacterium smegmatis and Mycobacterium tuberculosis upon Conjugation to a {Au(I)-triphenylphosphine} + Moiety. ACS OMEGA 2020; 5:6826-6833. [PMID: 32258918 PMCID: PMC7114878 DOI: 10.1021/acsomega.0c00071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/09/2020] [Indexed: 05/05/2023]
Abstract
As part of the quest for new gold drugs, we have explored the efficacy of three gold complexes derived from the tuberculosis drug pyrazinamide (PZA), namely, the gold(I) complex [Au(PPh3)(PZA)]OTf (1, OTf = trifluoromethanesulfonate) and two gold(III) complexes [Au(PZA)Cl2] (2) and [Au(PZO)Cl2] (3, PZO = pyrazinoic acid, the metabolic product of PZA) against two mycobacteria, Mycobacterium tuberculosis and Mycobacterium smegmatis. Only complex 1 with the {Au(PPh3)}+ moiety exhibits significant bactericidal activity against both strains. In the presence of thiols, 1 gives rise to free PZA and {Au(PPh3)}-thiol polymeric species. A combination of PZA and the {Au(PPh3)}-thiol polymeric species appears to lead to enhanced efficacy of 1 against M. tuberculosis.
Collapse
Affiliation(s)
- Jenny Stenger-Smith
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Mireille Kamariza
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Indranil Chakraborty
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Ramatoulaye Ouattara
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Carolyn R. Bertozzi
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Pradip K. Mascharak
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| |
Collapse
|
55
|
Abstract
The control of tuberculosis (TB) is hampered by the emergence of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) strains, defined as resistant to at least isoniazid and rifampin, the two bactericidal drugs essential for the treatment of the disease. Due to the worldwide estimate of almost half a million incident cases of MDR/rifampin-resistant TB, it is important to continuously update the knowledge on the mechanisms involved in the development of this phenomenon. Clinical, biological and microbiological reasons account for the generation of resistance, including: (i) nonadherence of patients to their therapy, and/or errors of physicians in therapy management, (ii) complexity and poor vascularization of granulomatous lesions, which obstruct drug distribution to some sites, resulting in resistance development, (iii) intrinsic drug resistance of tubercle bacilli, (iv) formation of non-replicating, drug-tolerant bacilli inside the granulomas, (v) development of mutations in Mtb genes, which are the most important molecular mechanisms of resistance. This review provides a comprehensive overview of these issues, and releases up-dated information on the therapeutic strategies recently endorsed and recommended by the World Health Organization to facilitate the clinical and microbiological management of drug-resistant TB at the global level, with attention also to the most recent diagnostic methods.
Collapse
|
56
|
Khara JS, Mojsoska B, Mukherjee D, Langford PR, Robertson BD, Jenssen H, Ee PLR, Newton SM. Ultra-Short Antimicrobial Peptoids Show Propensity for Membrane Activity Against Multi-Drug Resistant Mycobacterium tuberculosis. Front Microbiol 2020; 11:417. [PMID: 32256474 PMCID: PMC7089965 DOI: 10.3389/fmicb.2020.00417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/27/2020] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) results in both morbidity and mortality on a global scale. With drug resistance on the increase, there is an urgent need to develop novel anti-mycobacterials. Thus, we assessed the anti-mycobacterial potency of three novel synthetic peptoids against drug-susceptible and multi-drug resistant (MDR) Mycobacterium tuberculosis in vitro using Minimum Inhibitory Concentration, killing efficacy and intracellular growth inhibition assays, and in vivo against mycobacteria infected BALB/c mice. In addition, we verified cell selectivity using mammalian cells to assess peptoid toxicity. The mechanism of action was determined using flow cytometric analysis, and microfluidic live-cell imaging with time-lapse microscopy and uptake of propidium iodide. Peptoid BM 2 demonstrated anti-mycobacterial activity against both drug sensitive and MDR M. tuberculosis together with an acceptable toxicity profile that showed selectivity between bacterial and mammalian membranes. The peptoid was able to efficiently kill mycobacteria both in vitro and intracellularly in murine RAW 264.7 macrophages, and significantly reduced bacterial load in the lungs of infected mice. Flow cytometric and time lapse fluorescence microscopy indicate mycobacterial membrane damage as the likely mechanism of action. These data demonstrate that peptoids are a novel class of antimicrobial which warrant further investigation and development as therapeutics against TB.
Collapse
Affiliation(s)
- Jasmeet Singh Khara
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Biljana Mojsoska
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Devika Mukherjee
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Paul R. Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Brian D. Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Pui Lai Rachel Ee
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Sandra M. Newton
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
57
|
Meneguello JE, Arita GS, Silva JVDO, Ghiraldi-Lopes LD, Caleffi-Ferracioli KR, Siqueira VLD, Scodro RBDL, Pilau EJ, Campanerut-Sá PAZ, Cardoso RF. Insight about cell wall remodulation triggered by rifampicin in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2020; 120:101903. [PMID: 32090864 DOI: 10.1016/j.tube.2020.101903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/27/2019] [Accepted: 01/12/2020] [Indexed: 11/27/2022]
Abstract
Rifampicin plays an important role during the treatment of tuberculosis, which makes it to be recommended throughout the regimen. The molecular target for rifampicin activity and resistance is the bacterial RNA polymerase coded by rpoB. However, it has been observed that Mycobacterium tuberculosis could use different metabolic pathways contributing to drug activity/resistance. In this sense, Proteomics analysis has been a key aspect towards the understanding of the dynamic genome expression triggered by drugs and other M. tuberculosis hostile stimuli. Herein, we aimed to report the changes in the M. tuberculosis protein profile triggered by rifampicin. The M. tuberculosis H37Rv strain was submitted to 12, 24 and 48 h of rifampicin challenge, at the minimal inhibitory concentration (0.03 μg mL-1), and proteins were extracted. The protein identification was carried out by liquid chromatography coupled to mass spectrometry (LC-MS). Four proteins, Ino1 (Rv0046c), FabD (Rv2243), EsxK (Rv1197) and PPE60 (Rv3478) were statistically underexpressed over 48 h of rifampicin exposure, indicating that in addition to the known activity of rifampin in transcriptional machinery in M. tuberculosis, processes related to disturbance in cell wall synthesis and lipid metabolism in the bacillus are also triggered by rifampicin contributing to bacillus death.
Collapse
Affiliation(s)
- Jean Eduardo Meneguello
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil
| | - Gláucia Sayuri Arita
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil
| | - João Vitor de Oliveira Silva
- Postgraduate Program in Health Sciences, Center of Health Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Luciana Dias Ghiraldi-Lopes
- Postgraduate Program in Health Sciences, Center of Health Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Katiany Rizzieri Caleffi-Ferracioli
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil
| | - Vera Lucia Dias Siqueira
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil
| | - Regiane Bertin de Lima Scodro
- Postgraduate Program in Health Sciences, Center of Health Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Eduardo Jorge Pilau
- Postgraduate Program in Chemistry, Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
| | - Paula Aline Zannetti Campanerut-Sá
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil; Postgraduate Program in Health Sciences, Center of Health Sciences, State University of Maringá, Maringá, PR, Brazil.
| | - Rosilene Fressatti Cardoso
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil; Postgraduate Program in Health Sciences, Center of Health Sciences, State University of Maringá, Maringá, PR, Brazil
| |
Collapse
|
58
|
Identification of the Active Constituents and Significant Pathways of Cangfu Daotan Decoction for the Treatment of PCOS Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4086864. [PMID: 32148541 PMCID: PMC7057008 DOI: 10.1155/2020/4086864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/27/2020] [Indexed: 12/18/2022]
Abstract
Background Polycystic ovary syndrome (PCOS) is the most common female endocrine disease. Cangfu Daotan Decoction (CDD) can effectively relieve the clinical symptoms of PCOS patients. Methods To explore the active ingredients and related pathways of CDD for treating PCOS, a network pharmacology-based analysis was carried out. The active ingredients of CDD and their potential targets were obtained from the TCM system pharmacology analysis platform. The obtained PCOS-related genes from OMIM and GeneCards were imported to establish protein-protein interaction networks in STRING. Finally, GO analysis and significant pathway analysis were conducted with the RStudio (Bioconductor) database. Results A total of 111 active compounds were obtained from 1433 ingredients present in the CDD, related to 118 protein targets. In addition, 736 genes were found to be closely related to PCOS, of which 44 overlapped with CDD and were thus considered therapeutically relevant. Pathway enrichment analysis identified the AGE-RAGE signalling pathway in diabetic complications, endocrine resistance, the IL-17 signalling pathway, the prolactin signalling pathway, and the HIF-1 signalling pathway. Moreover, PI3K-Akt, insulin resistance, Toll-like receptor, MAPK, and AGE-RAGE were related to PCOS and treatment. Conclusions CDD can effectively improve the symptoms of PCOS, and our network pharmacological analysis lays the foundation for future clinical research.
Collapse
|
59
|
Roy KK, Wani MA. Emerging opportunities of exploiting mycobacterial electron transport chain pathway for drug-resistant tuberculosis drug discovery. Expert Opin Drug Discov 2019; 15:231-241. [PMID: 31774006 DOI: 10.1080/17460441.2020.1696771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Tuberculosis (TB) is a leading infectious disease worldwide whose chemotherapy is challenged by the continued rise of drug resistance. This epidemic urges the need to discover anti-TB drugs with novel modes of action.Areas covered: The mycobacterial electron transport chain (ETC) pathway represents a hub of anti-TB drug targets. Herein, the authors highlight the various targets within the mycobacterial ETC and highlight some of the promising ETC-targeted drugs and clinical candidates that have been discovered or repurposed. Furthermore, recent breakthroughs in the availability of X-ray and/or cryo-EM structures of some targets are discussed, and various opportunities of exploiting these structures for the discovery of new anti-TB drugs are emphasized.Expert opinion: The drug discovery efforts targeting the ETC pathway have led to the FDA approval of bedaquiline, a FOF1-ATP synthase inhibitor, and the discovery of Q203, a clinical candidate drug targeting the mycobacterial cytochrome bcc-aa3 supercomplex. Moreover, clofazimine, a proposed prodrug competing with menaquinone for its reduction by mycobacterial NADH dehydrogenase 2, has been repurposed for TB treatment. Recently available structures of the mycobacterial ATP synthase C9 rotary ring and the cytochrome bcc-aa3 supercomplex represent further opportunities for the structure-based drug design (SBDD) of the next-generation of inhibitors against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Kuldeep K Roy
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Mushtaq Ahmad Wani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| |
Collapse
|
60
|
|
61
|
Implementation of pharmacophore-based 3D QSAR model and scaffold analysis in order to excavate pristine ALK inhibitors. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02410-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
62
|
Opportunities for Overcoming Mycobacterium tuberculosis Drug Resistance: Emerging Mycobacterial Targets and Host-Directed Therapy. Int J Mol Sci 2019; 20:ijms20122868. [PMID: 31212777 PMCID: PMC6627145 DOI: 10.3390/ijms20122868] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 02/08/2023] Open
Abstract
The ever-increasing incidence of drug-resistant Mycobacterium tuberculosis infections has invigorated the focus on the discovery and development of novel treatment options. The discovery and investigation of essential mycobacterial targets is of utmost importance. In addition to the discovery of novel targets, focusing on non-lethal pathways and the use of host-directed therapies has gained interest. These adjunctive treatment options could not only lead to increased antibiotic susceptibility of Mycobacterium tuberculosis, but also have the potential to avoid the emergence of drug resistance. Host-directed therapies, on the other hand, can also reduce the associated lung pathology and improve disease outcome. This review will provide an outline of recent opportunities.
Collapse
|
63
|
Bisht D, Sharma D, Sharma D, Singh R, Gupta VK. Recent insights intoMycobacterium tuberculosisthrough proteomics and implications for the clinic. Expert Rev Proteomics 2019; 16:443-456. [DOI: 10.1080/14789450.2019.1608185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR), Agra, India
| | - Devesh Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR), Agra, India
| | - Divakar Sharma
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Rananjay Singh
- Department of Biochemistry, National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR), Agra, India
| | - Vivek Kumar Gupta
- Department of Biochemistry, National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR), Agra, India
| |
Collapse
|
64
|
Blaser A, Sutherland HS, Tong AST, Choi PJ, Conole D, Franzblau SG, Cooper CB, Upton AM, Lotlikar M, Denny WA, Palmer BD. Structure-activity relationships for unit C pyridyl analogues of the tuberculosis drug bedaquiline. Bioorg Med Chem 2019; 27:1283-1291. [PMID: 30792104 PMCID: PMC6467542 DOI: 10.1016/j.bmc.2019.02.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/30/2019] [Accepted: 02/14/2019] [Indexed: 11/30/2022]
Abstract
The ATP-synthase inhibitor bedaquiline is effective against drug-resistant tuberculosis but is extremely lipophilic (clogP 7.25) with a very long plasma half-life. Additionally, inhibition of potassium current through the cardiac hERG channel by bedaquiline, is associated with prolongation of the QT interval, necessitating cardiovascular monitoring. Analogues were prepared where the naphthalene C-unit was replaced with substituted pyridines to produce compounds with reduced lipophilicity, anticipating a reduction in half-life. While there was a direct correlation between in vitro inhibitory activity against M. tuberculosis (MIC90) and compound lipophilicity, potency only fell off sharply below a clogP of about 4.0, providing a useful lower bound for analogue design. The bulk of the compounds remained potent inhibitors of the hERG potassium channel, with notable exceptions where IC50 values were at least 5-fold higher than that of bedaquiline. Many of the compounds had desirably higher rates of clearance than bedaquiline, but this was associated with lower plasma exposures in mice, and similar or higher MICs resulted in lower AUC/MIC ratios than bedaquiline for most compounds. The two compounds with lower potency against hERG exhibited similar clearance to bedaquiline and excellent efficacy in vivo, suggesting further exploration of C-ring pyridyls is worthwhile.
Collapse
Affiliation(s)
- Adrian Blaser
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Hamish S Sutherland
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Amy S T Tong
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Peter J Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniel Conole
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | | | - Anna M Upton
- Global Alliance for TB Drug Development, 40 Wall Street, NY 10005, USA
| | - Manisha Lotlikar
- Global Alliance for TB Drug Development, 40 Wall Street, NY 10005, USA
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Brian D Palmer
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
65
|
Beteck RM, Seldon R, Jordaan A, Warner DF, Hoppe HC, Laming D, Legoabe LJ, Khanye SD. Quinolone-isoniazid hybrids: synthesis and preliminary in vitro cytotoxicity and anti-tuberculosis evaluation. MEDCHEMCOMM 2019; 10:326-331. [PMID: 30881619 DOI: 10.1039/c8md00480c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Abstract
Herein, we propose novel quinolones incorporating an INH moiety as potential drug templates against TB. The quinolone-based compounds bearing an INH moiety attached via a hydrazide-hydrazone bond were synthesised and evaluated against Mycobacterium tuberculosis H37Rv (MTB). The compounds were also evaluated for cytotoxicity against HeLa cell lines. These compounds showed significant activity (MIC90) against MTB in the range of 0.2-8 μM without any cytotoxic effects. Compounds 10 (MIC90; 0.9 μM), 11 (MIC90; 0.2 μM), 12 (MIC90; 0.8 μM) and compound 15 (MIC90; 0.8 μM), the most active compounds in this series, demonstrate activities on par with INH and superior to those reported for the fluoroquinolones. The SAR analysis suggests that the nature of substituents at positions -1 and -3 of the quinolone nucleus influences anti-MTB activity. Aqueous solubility evaluation and in vitro metabolic stability of compound 12 highlights favourable drug-like properties for this compound class.
Collapse
Affiliation(s)
- Richard M Beteck
- Faculty of Science , Department of Chemistry , Rhodes University , Grahamstown 6140 , South Africa .
| | - Ronnett Seldon
- Drug Discovery and Development Centre (H3-D) , Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit , Department of Pathology , University of Cape Town , Observatory , 7925 , South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit , Department of Pathology , University of Cape Town , Observatory , 7925 , South Africa.,Institute of Infectious Diseases and Molecular Medicine , University of Cape Town , Observatory , 7952 , South Africa.,Wellcome Centre for Clinical Infectious Diseases Research in Africa , University of Cape Town , Observatory , 7925 , South Africa
| | - Heinrich C Hoppe
- Faculty of Science , Department of Biochemistry and Microbiology , Rhodes University , Grahamstown 6140 , South Africa.,Centre for Chemico- and Biomedicinal Research , Rhodes University , Grahamstown 6140 , South Africa
| | - Dustin Laming
- Centre for Chemico- and Biomedicinal Research , Rhodes University , Grahamstown 6140 , South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Science , North-West University , Potchefstroom 2520 , South Africa
| | - Setshaba D Khanye
- Faculty of Science , Department of Chemistry , Rhodes University , Grahamstown 6140 , South Africa . .,Centre for Chemico- and Biomedicinal Research , Rhodes University , Grahamstown 6140 , South Africa.,Faculty of Pharmacy , Rhodes University , Grahamstown 6140 , South Africa
| |
Collapse
|
66
|
Bythrow GV, Mohandas P, Guney T, Standke LC, Germain GA, Lu X, Ji C, Levendosky K, Chavadi SS, Tan DS, Quadri LEN. Kinetic Analyses of the Siderophore Biosynthesis Inhibitor Salicyl-AMS and Analogues as MbtA Inhibitors and Antimycobacterial Agents. Biochemistry 2019; 58:833-847. [PMID: 30582694 DOI: 10.1021/acs.biochem.8b01153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is a paramount need for expanding the drug armamentarium to counter the growing problem of drug-resistant tuberculosis. Salicyl-AMS, an inhibitor of salicylic acid adenylation enzymes, is a first-in-class antibacterial lead compound for the development of tuberculosis drugs targeting the biosynthesis of salicylic-acid-derived siderophores. In this study, we determined the Ki of salicyl-AMS for inhibition of the salicylic acid adenylation enzyme MbtA from Mycobacterium tuberculosis (MbtAtb), designed and synthesized two new salicyl-AMS analogues to probe structure-activity relationships (SAR), and characterized these two analogues alongside salicyl-AMS and six previously reported analogues in biochemical and cell-based studies. The biochemical studies included determination of kinetic parameters ( Kiapp, konapp, koff, and tR) and analysis of the mechanism of inhibition. For these studies, we optimized production and purification of recombinant MbtAtb, for which Km and kcat values were determined, and used the enzyme in conjunction with an MbtAtb-optimized, continuous, spectrophotometric assay for MbtA activity and inhibition. The cell-based studies provided an assessment of the antimycobacterial activity and postantibiotic effect of the nine MbtAtb inhibitors. The antimycobacterial properties were evaluated using a strain of nonpathogenic, fast-growing Mycobacterium smegmatis that was genetically engineered for MbtAtb-dependent susceptibility to MbtA inhibitors. This convenient model system greatly facilitated the cell-based studies by bypassing the methodological complexities associated with the use of pathogenic, slow-growing M. tuberculosis. Collectively, these studies provide new information on the mechanism of inhibition of MbtAtb by salicyl-AMS and eight analogues, afford new SAR insights for these inhibitors, and highlight several suitable candidates for future preclinical evaluation.
Collapse
Affiliation(s)
- Glennon V Bythrow
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Biology Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Poornima Mohandas
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Biology Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Tezcan Guney
- Chemical Biology Program, Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States
| | - Lisa C Standke
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States
| | - Gabrielle A Germain
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Biology Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Xuequan Lu
- Chemical Biology Program, Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States
| | - Cheng Ji
- Chemical Biology Program, Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States
| | - Keith Levendosky
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Biology Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Sivagami Sundaram Chavadi
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States
| | - Derek S Tan
- Chemical Biology Program, Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States.,Pharmacology Program, Weill Cornell Graduate School of Medical Sciences , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States.,Tri-Institutional Research Program , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States
| | - Luis E N Quadri
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Biology Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States.,Biochemistry Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| |
Collapse
|