51
|
Sõmera M, Kvarnheden A, Desbiez C, Blystad DR, Sooväli P, Kundu JK, Gantsovski M, Nygren J, Lecoq H, Verdin E, Spetz C, Tamisier L, Truve E, Massart S. Sixty Years After the First Description: Genome Sequence and Biological Characterization of European Wheat Striate Mosaic Virus Infecting Cereal Crops. PHYTOPATHOLOGY 2020; 110:68-79. [PMID: 31631806 DOI: 10.1094/phyto-07-19-0258-fi] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-throughput sequencing technologies were used to identify plant viruses in cereal samples surveyed from 2012 to 2017. Fifteen genome sequences of a tenuivirus infecting wheat, oats, and spelt in Estonia, Norway, and Sweden were identified and characterized by their distances to other tenuivirus sequences. Like most tenuiviruses, the genome of this tenuivirus contains four genomic segments. The isolates found from different countries shared at least 92% nucleotide sequence identity at the genome level. The planthopper Javesella pellucida was identified as a vector of the virus. Laboratory transmission tests using this vector indicated that wheat, oats, barley, rye, and triticale, but none of the tested pasture grass species (Alopecurus pratensis, Dactylis glomerata, Festuca rubra, Lolium multiflorum, Phleum pratense, and Poa pratensis), are susceptible. Taking into account the vector and host range data, the tenuivirus we have found most probably represents European wheat striate mosaic virus first identified about 60 years ago. Interestingly, whereas we were not able to infect any of the tested cereal species mechanically, Nicotiana benthamiana was infected via mechanical inoculation in laboratory conditions, displaying symptoms of yellow spots and vein clearing evolving into necrosis, eventually leading to plant death. Surprisingly, one of the virus genome segments (RNA2) encoding both a putative host systemic movement enhancer protein and a putative vector transmission factor was not detected in N. benthamiana after several passages even though systemic infection was observed, raising fundamental questions about the role of this segment in the systemic spread in several hosts.
Collapse
Affiliation(s)
- Merike Sõmera
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 10618, Estonia
| | - Anders Kvarnheden
- Department of Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala 75651, Sweden
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Cécile Desbiez
- INRA, UR407, Unité de Pathologie Végétale, Montfavet 84140, France
| | - Dag-Ragnar Blystad
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Høgskolevegen 7, Ås 1433, Norway
| | - Pille Sooväli
- Division of Plant Protection, Estonian Crop Research Institute, Aamisepa 1, Jõgeva 48309, Estonia
| | - Jiban Kumar Kundu
- Division of Crop Protection and Plant Health, Crop Research Institute, Praha 16106, Czech Republic
| | - Mark Gantsovski
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 10618, Estonia
| | - Jim Nygren
- Department of Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala 75651, Sweden
| | - Hervé Lecoq
- INRA, UR407, Unité de Pathologie Végétale, Montfavet 84140, France
| | - Eric Verdin
- INRA, UR407, Unité de Pathologie Végétale, Montfavet 84140, France
| | - Carl Spetz
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Høgskolevegen 7, Ås 1433, Norway
| | - Lucie Tamisier
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech (GxABT), University of Liège, Passage des Déportés 2, Gembloux 5030, Belgium
| | - Erkki Truve
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 10618, Estonia
| | - Sébastien Massart
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech (GxABT), University of Liège, Passage des Déportés 2, Gembloux 5030, Belgium
| |
Collapse
|
52
|
Golyaev V, Candresse T, Rabenstein F, Pooggin MM. Plant virome reconstruction and antiviral RNAi characterization by deep sequencing of small RNAs from dried leaves. Sci Rep 2019; 9:19268. [PMID: 31848375 PMCID: PMC6917709 DOI: 10.1038/s41598-019-55547-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022] Open
Abstract
In plants, RNA interference (RNAi) generates small interfering (si)RNAs from entire genomes of viruses, satellites and viroids. Therefore, deep small (s)RNA sequencing is a universal approach for virome reconstruction and RNAi characterization. We tested this approach on dried barley leaves from field surveys. Illumina sequencing of sRNAs from 2 plant samples identified in both plants Hordeum vulgare endornavirus (HvEV) and barley yellow mosaic bymovirus (BaYMV) and, additionally in one plant, a novel strain of Japanese soil-borne wheat mosaic furovirus (JSBWMV). De novo and reference-based sRNA assembly yielded complete or near-complete genomic RNAs of these viruses. While plant sRNAs showed broad size distribution, viral sRNAs were predominantly 21 and 22 nucleotides long with 5′-terminal uridine or adenine, and were derived from both genomic strands. These bona fide siRNAs are presumably processed from double-stranded RNA precursors by Dicer-like (DCL) 4 and DCL2, respectively, and associated with Argonaute 1 and 2 proteins. For BaYMV (but not HvEV, or JSBWMV), 24-nucleotide sRNAs represented the third most abundant class, suggesting DCL3 contribution to anti-bymovirus defence. Thus, viral siRNAs are well preserved in dried leaf tissues and not contaminated by non-RNAi degradation products, enabling both complete virome reconstruction and inference of RNAi components mediating antiviral defense.
Collapse
Affiliation(s)
- Victor Golyaev
- BGPI, INRA Centre Occitanie, CIRAD, SupAgro, Université de Montpellier, Montpellier, 34984, France
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, CS20032, Villenave d'Ornon cedex, 33882, France
| | - Frank Rabenstein
- Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, Erwin-Baur-Straße 27, Quedlinburg, 06484, Germany
| | - Mikhail M Pooggin
- BGPI, INRA Centre Occitanie, CIRAD, SupAgro, Université de Montpellier, Montpellier, 34984, France.
| |
Collapse
|
53
|
Phytovirome Analysis of Wild Plant Populations: Comparison of Double-Stranded RNA and Virion-Associated Nucleic Acid Metagenomic Approaches. J Virol 2019; 94:JVI.01462-19. [PMID: 31597769 DOI: 10.1128/jvi.01462-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 12/29/2022] Open
Abstract
Metagenomic studies have indicated that the diversity of plant viruses was until recently far underestimated. As important components of ecosystems, there is a need to explore the diversity and richness of the viruses associated with plant populations and to understand the drivers shaping their diversity in space and time. Two viral sequence enrichment approaches, double-stranded RNA (dsRNA) and virion-associated nucleic acids (VANA), have been used and compared here for the description of the virome of complex plant pools representative of the most prevalent plant species in unmanaged and cultivated ecosystems. A novel bioinformatics strategy was used to assess viral richness not only at the family level but also by determining operational taxonomic units (OTU) following the clustering of conserved viral domains. A large viral diversity dominated by novel dsRNA viruses was detected in all sites, while a large between-site variability limited the ability to draw a clear conclusion on the impact of cultivation. A trend for a higher diversity of dsRNA viruses was nevertheless detected in unmanaged sites (118 versus 77 unique OTUs). The dsRNA-based approach consistently revealed a broader and more comprehensive diversity for RNA viruses than the VANA approach, whatever the assessment criterion. In addition, dissimilarity analyses indicated both approaches to be largely reproducible but not necessarily convergent. These findings illustrate features of phytoviromes in various ecosystems and a novel strategy for precise virus richness estimation. These results allow us to reason methodological choices in phytovirome studies and likely in other virome studies where RNA viruses are the focal taxa.IMPORTANCE There are today significant knowledge gaps on phytovirus populations and on the drivers impacting them but also on the comparative performance-methodological approaches for their study. We used and compared two viral sequence enrichment approaches, double-stranded RNAs (dsRNA) and virion-associated nucleic acids (VANA), for phytovirome description in complex pools representative of the most prevalent plant species in unmanaged and cultivated ecosystems. Viral richness was assessed by determining operational taxonomic units (OTU) following the clustering of conserved viral domains. There is some limited evidence of an impact of cultivation on viral populations. These results provide data allowing us to reason the methodological choices in virome studies. For researchers primarily interested in RNA viruses, the dsRNA approach is recommended because it consistently provided a more comprehensive description of the analyzed phytoviromes, but it understandably underrepresented DNA viruses and bacteriophages.
Collapse
|
54
|
Takahashi H, Fukuhara T, Kitazawa H, Kormelink R. Virus Latency and the Impact on Plants. Front Microbiol 2019; 10:2764. [PMID: 31866963 PMCID: PMC6908805 DOI: 10.3389/fmicb.2019.02764] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/12/2019] [Indexed: 11/15/2022] Open
Abstract
Plant viruses are thought to be essentially harmful to the lives of their cultivated crop hosts. In most cases studied, the interaction between viruses and cultivated crop plants negatively affects host morphology and physiology, thereby resulting in disease. Native wild/non-cultivated plants are often latently infected with viruses without any clear symptoms. Although seemingly non-harmful, these viruses pose a threat to cultivated crops because they can be transmitted by vectors and cause disease. Reports are accumulating on infections with latent plant viruses that do not cause disease but rather seem to be beneficial to the lives of wild host plants. In a few cases, viral latency involves the integration of full-length genome copies into the host genome that, in response to environmental stress or during certain developmental stages of host plants, can become activated to generate and replicate episomal copies, a transition from latency to reactivation and causation of disease development. The interaction between viruses and host plants may also lead to the integration of partial-length segments of viral DNA genomes or copy DNA of viral RNA genome sequences into the host genome. Transcripts derived from such integrated viral elements (EVEs) may be beneficial to host plants, for example, by conferring levels of virus resistance and/or causing persistence/latency of viral infections. Studies on viral latency in wild host plants might help us to understand and elucidate the underlying mechanisms of latency and provide insights into the raison d’être for viruses in the lives of plants.
Collapse
Affiliation(s)
- Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Plant Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Toshiyuki Fukuhara
- Department of Applied Biological Sciences and Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
55
|
Vivek AT, Zahra S, Kumar S. From current knowledge to best practice: A primer on viral diagnostics using deep sequencing of virus-derived small interfering RNAs (vsiRNAs) in infected plants. Methods 2019; 183:30-37. [PMID: 31669354 DOI: 10.1016/j.ymeth.2019.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023] Open
Abstract
Plants have evolved many defense strategies for combating viral infections. One major surveillance strategy adopted by them is manipulating viral sequences to generate distinct small RNA products via Dicer-like enzymes (DCL), and thereby restricting virus multiplication through the RNA interference (RNAi) mechanism. The power of high-throughput sequencing technologies, with diverse computational tools to handle small RNA sequencing (sRNA-Seq) data, bestows unprecedented opportunities to answer fundamental questions in plant virology. Here, we present some basic concepts of virus-derived, small interfering RNA (vsiRNA) biogenesis in plants, optimization strategies, caveats, and best practices for efficient discovery and diagnosis of known as well as novel plant viruses/viroids using deep sequencing of small RNA (sRNA) pools.
Collapse
Affiliation(s)
- A T Vivek
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shafaque Zahra
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailesh Kumar
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
56
|
Pechinger K, Chooi KM, MacDiarmid RM, Harper SJ, Ziebell H. A New Era for Mild Strain Cross-Protection. Viruses 2019; 11:E670. [PMID: 31340444 PMCID: PMC6669575 DOI: 10.3390/v11070670] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 11/18/2022] Open
Abstract
Societal and environmental pressures demand high-quality and resilient cropping plants and plant-based foods grown with the use of low or no synthetic chemical inputs. Mild strain cross-protection (MSCP), the pre-immunization of a plant using a mild strain of a virus to protect against subsequent infection by a severe strain of the virus, fits with future-proofing of production systems. New examples of MSCP use have occurred recently. New technologies are converging to support the discovery and mechanism(s) of action of MSCP strains thereby accelerating the popularity of their use.
Collapse
Affiliation(s)
- Katrin Pechinger
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Kar Mun Chooi
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Scott J Harper
- Department of Plant Pathology, Washington, State University, Prosser, WA 99350, USA
| | - Heiko Ziebell
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany.
| |
Collapse
|
57
|
High-Throughput Sequencing Analysis of Small RNAs Derived from Coleus Blumei Viroids. Viruses 2019; 11:v11070619. [PMID: 31284471 PMCID: PMC6669434 DOI: 10.3390/v11070619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 11/17/2022] Open
Abstract
Characterization of viroid-derived small RNAs (vd-sRNAs) is important to understand viroid–host interactions; however, vd-sRNAs belonging to the genus Coleviroid are yet to be identified and characterized. Herein, we used coleus plants singly infected with coleus blumei viroid (CbVd)-1, -5, or -6 and doubly infected with CbVd-1 and -5 to identify and analyze their vd-sRNAs. We found sense and antisense vd-sRNAs for CbVd-1, -5 and -6, and 22-nt vd-sRNAs were the most abundant; moreover, the 5′-terminal nucleotides (nts) of CbVd-1, -5, and -6 were biased toward U and C, and sRNAs derived from these three viroids were unevenly distributed along their genomes. We also noted that CbVd-5 and -6 share a fragment that forms the right half of the rod-like secondary structure of these viroids, which implied that they generated almost the same type of vd-sRNAs. This finding indicated that vd-sRNA biogenesis is mainly determined by the primary sequence of their substrates. More importantly, we found two complementary vd-sRNAs (22 nt) that were generated from the central conserved region (CCR) of these three viroids, suggesting an important role of CCR in vd-sRNA biogenesis. In conclusion, our results provide novel insight into the biogenesis of vd-sRNAs and the biological roles of CCR.
Collapse
|
58
|
Rodríguez-Negrete EA, Morales-Aguilar JJ, Domínguez-Duran G, Torres-Devora G, Camacho-Beltrán E, Leyva-López NE, Voloudakis AE, Bejarano ER, Méndez-Lozano J. High-Throughput Sequencing Reveals Differential Begomovirus Species Diversity in Non-Cultivated Plants in Northern-Pacific Mexico. Viruses 2019; 11:v11070594. [PMID: 31261973 PMCID: PMC6669537 DOI: 10.3390/v11070594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/28/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022] Open
Abstract
Plant DNA viruses of the genus Begomovirus have been documented as the most genetically diverse in the family Geminiviridae and present a serious threat for global horticultural production, especially considering climate change. It is important to characterize naturally existing begomoviruses, since viral genetic diversity in non-cultivated plants could lead to future disease epidemics in crops. In this study, high-throughput sequencing (HTS) was employed to determine viral diversity of samples collected in a survey performed during 2012–2016 in seven states of Northern-Pacific Mexico, areas of diverse climatic conditions where different vegetable crops are subject to intensive farming. In total, 132 plant species, belonging to 34 families, were identified and sampled in the natural ecosystems surrounding cultivated areas (agro-ecological interface). HTS analysis and subsequent de novo assembly revealed a number of geminivirus-related DNA signatures with 80 to 100% DNA similarity with begomoviral sequences present in the genome databank. The analysis revealed DNA signatures corresponding to 52 crop-infecting and 35 non-cultivated-infecting geminiviruses that, interestingly, were present in different plant species. Such an analysis deepens our knowledge of geminiviral diversity and could help detecting emerging viruses affecting crops in different agro-climatic regions.
Collapse
Affiliation(s)
- Edgar Antonio Rodríguez-Negrete
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Juan José Morales-Aguilar
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Gustavo Domínguez-Duran
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Gadiela Torres-Devora
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Erika Camacho-Beltrán
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Norma Elena Leyva-López
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Andreas E Voloudakis
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, 75 Iera Odos, Athens 11855, Greece
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain
| | - Jesús Méndez-Lozano
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico.
| |
Collapse
|
59
|
Maurel MC, Leclerc F, Vergne J, Zaccai G. RNA Back and Forth: Looking through Ribozyme and Viroid Motifs. Viruses 2019; 11:E283. [PMID: 30901893 PMCID: PMC6466107 DOI: 10.3390/v11030283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/28/2022] Open
Abstract
Current cellular facts allow us to follow the link from chemical to biochemical metabolites, from the ancient to the modern world. In this context, the "RNA world" hypothesis proposes that early in the evolution of life, the ribozyme was responsible for the storage and transfer of genetic information and for the catalysis of biochemical reactions. Accordingly, the hammerhead ribozyme (HHR) and the hairpin ribozyme belong to a family of endonucleolytic RNAs performing self-cleavage that might occur during replication. Furthermore, regarding the widespread occurrence of HHRs in several genomes of modern organisms (from mammals to small parasites and elsewhere), these small ribozymes have been regarded as living fossils of a primitive RNA world. They fold into 3D structures that generally require long-range intramolecular interactions to adopt the catalytically active conformation under specific physicochemical conditions. By studying viroids as plausible remains of ancient RNA, we recently demonstrated that they replicate in non-specific hosts, emphasizing their adaptability to different environments, which enhanced their survival probability over the ages. All these results exemplify ubiquitous features of life. Those are the structural and functional versatility of small RNAs, ribozymes, and viroids, as well as their diversity and adaptability to various extreme conditions. All these traits must have originated in early life to generate novel RNA populations.
Collapse
Affiliation(s)
- Marie-Christine Maurel
- Sorbonne Université, Museum National d'Histoire Naturelle, CNRS MNHN UMR 7205, Institut de Systématique, Evolution, Biodiversité, ISYEB, F-75005 Paris, France.
| | - Fabrice Leclerc
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, F-91198 Gif-sur-Yvette, France.
| | - Jacques Vergne
- Sorbonne Université, Museum National d'Histoire Naturelle, CNRS MNHN UMR 7205, Institut de Systématique, Evolution, Biodiversité, ISYEB, F-75005 Paris, France.
| | - Giuseppe Zaccai
- Institut de Biologie Structurale CNRS-CEA-UGA, F-380447 Grenoble, France, and Institut Laue Langevin, 71 Avenue des Martyrs, F-38042 Grenoble, France.
| |
Collapse
|
60
|
Eichmeier A, Kominkova M, Pecenka J, Kominek P. High-throughput small RNA sequencing for evaluation of grapevine sanitation efficacy. J Virol Methods 2019; 267:66-70. [PMID: 30851291 DOI: 10.1016/j.jviromet.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/21/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022]
Abstract
This study describes the application of high-throughput sequencing of small RNA analysis of the efficacy of using Ribavirin to eliminate Grapevine leafroll-associated virus 1, Grapevine fleck virus and Grapevine rupestris stem pitting-associated virus from Vitis vinifera cv. Riesling. The original plant used for sanitation by Ribavirin treatment was one naturally infected with all the viruses mentioned above as confirmed by RT-PCR. A tissue cultures of the plant were established and plantlets obtained were sanitized using Ribavirin. Three years after sanitation, a small RNA sequencing method for virus detection, targeting 21, 22 and 24 nt-long viral small RNAs (vsRNAs), was used to analyze both the mother plant and the sanitized plants. The results showed that the mother plant was infected by the three mentioned viruses and additionally by two viroids - Hop stunt viroid and Grapevine yellow speckle viroid 1. After Ribavirin treatment, the plants contained only the two viroids, with the complete elimination of all the viruses previously present.
Collapse
Affiliation(s)
- Ales Eichmeier
- Mendeleum - Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valticka 334, Lednice, 691 44, Czech Republic.
| | - Marcela Kominkova
- Crop Research Institute, Drnovska 507, Praha 6, Ruzyne, 161 06, Czech Republic
| | - Jakub Pecenka
- Mendeleum - Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valticka 334, Lednice, 691 44, Czech Republic
| | - Petr Kominek
- Crop Research Institute, Drnovska 507, Praha 6, Ruzyne, 161 06, Czech Republic
| |
Collapse
|
61
|
Shates TM, Sun P, Malmstrom CM, Dominguez C, Mauck KE. Addressing Research Needs in the Field of Plant Virus Ecology by Defining Knowledge Gaps and Developing Wild Dicot Study Systems. Front Microbiol 2019; 9:3305. [PMID: 30687284 PMCID: PMC6333650 DOI: 10.3389/fmicb.2018.03305] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/19/2018] [Indexed: 11/30/2022] Open
Abstract
Viruses are ubiquitous within all habitats that support cellular life and represent the most important emerging infectious diseases of plants. Despite this, it is only recently that we have begun to describe the ecological roles of plant viruses in unmanaged systems and the influence of ecosystem properties on virus evolution. We now know that wild plants frequently harbor infections by diverse virus species, but much remains to be learned about how viruses influence host traits and how hosts influence virus evolution and vector interactions. To identify knowledge gaps and suggest avenues for alleviating research deficits, we performed a quantitative synthesis of a representative sample of virus ecology literature, developed criteria for expanding the suite of pathosystems serving as models, and applied these criteria through a case study. We found significant gaps in the types of ecological systems studied, which merit more attention. In particular, there is a strong need for a greater diversity of logistically tractable, wild dicot perennial study systems suitable for experimental manipulations of infection status. Based on criteria developed from our quantitative synthesis, we evaluated three California native dicot perennials typically found in Mediterranean-climate plant communities as candidate models: Cucurbita foetidissima (buffalo gourd), Cucurbita palmata (coyote gourd), and Datura wrightii (sacred thorn-apple). We used Illumina sequencing and network analyses to characterize viromes and viral links among species, using samples taken from multiple individuals at two different reserves. We also compared our Illumina workflow with targeted RT-PCR detection assays of varying costs. To make this process accessible to ecologists looking to incorporate virology into existing studies, we describe our approach in detail and discuss advantages and challenges of different protocols. We also provide a bioinformatics workflow based on open-access tools with graphical user interfaces. Our study provides evidence that dicot perennials in xeric habitats support multiple, asymptomatic infections by viruses known to be pathogenic in related crop hosts. Quantifying the impacts of these interactions on plant performance and virus epidemiology in our logistically tractable host systems will provide fundamental information about plant virus ecology outside of crop environments.
Collapse
Affiliation(s)
- Tessa M. Shates
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Penglin Sun
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Carolyn M. Malmstrom
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Graduate Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, United States
| | - Chrysalyn Dominguez
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Kerry E. Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|