51
|
Hogg DW, Pamenter ME, Dukoff DJ, Buck LT. Decreases in mitochondrial reactive oxygen species initiate GABA(A) receptor-mediated electrical suppression in anoxia-tolerant turtle neurons. J Physiol 2015; 593:2311-26. [PMID: 25781154 DOI: 10.1113/jp270474] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 03/12/2015] [Indexed: 12/16/2022] Open
Abstract
Anoxia induces hyper-excitability and cell death in mammalian brain but in the anoxia-tolerant western painted turtle (Chrysemys picta bellii) neuronal electrical activity is suppressed (i.e. spike arrest), adenosine triphosphate (ATP) consumption is reduced, and cell death does not occur. Electrical suppression is primarily the result of enhanced γ-aminobutyric acid (GABA) transmission; however, the underlying mechanism responsible for initiating oxygen-sensitive GABAergic spike arrest is unknown. In turtle cortical pyramidal neurons there are three types of GABA(A) receptor-mediated currents: spontaneous inhibitory postsynaptic currents (IPSCs), giant IPSCs and tonic currents. The aim of this study was to assess the effects of reactive oxygen species (ROS) scavenging on these three currents since ROS levels naturally decrease with anoxia and may serve as a redox signal to initiate spike arrest. We found that anoxia, pharmacological ROS scavenging, or inhibition of mitochondrial ROS generation enhanced all three types of GABA currents, with tonic currents comprising ∼50% of the total current. Application of hydrogen peroxide inhibited all three GABA currents, demonstrating a reversible redox-sensitive signalling mechanism. We conclude that anoxia-mediated decreases in mitochondrial ROS production are sufficient to initiate a redox-sensitive inhibitory GABA signalling cascade that suppresses electrical activity when oxygen is limited. This unique strategy for reducing neuronal ATP consumption during anoxia represents a natural mechanism in which to explore therapies to protect mammalian brain from low-oxygen insults.
Collapse
Affiliation(s)
- David W Hogg
- Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3G5
| | - Matthew E Pamenter
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - David J Dukoff
- Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3G5
| | - Leslie T Buck
- Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3G5.,Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3G5
| |
Collapse
|
52
|
Functional consequences of neurite orientation dispersion and density in humans across the adult lifespan. J Neurosci 2015; 35:1753-62. [PMID: 25632148 DOI: 10.1523/jneurosci.3979-14.2015] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As humans age, a characteristic pattern of widespread neocortical dendritic disruption coupled with compensatory effects in hippocampus and other subcortical structures is shown in postmortem investigations. It is now possible to address age-related effects on gray matter (GM) neuritic organization and density in humans using multishell diffusion-weighted MRI and the neurite-orientation dispersion and density imaging (NODDI) model. In 45 healthy individuals across the adult lifespan (21-84 years), we used a multishell diffusion imaging and the NODDI model to assess the intraneurite volume fraction and neurite orientation-dispersion index (ODI) in GM tissues. We also determined the functional correlates of variations in GM microstructure by obtaining resting-state fMRI and behavioral data. We found a significant age-related deficit in neocortical ODI (most prominently in frontoparietal regions), whereas increased ODI was observed in hippocampus and cerebellum with advancing age. Neocortical ODI outperformed cortical thickness and white matter fractional anisotropy for the prediction of chronological age in the same individuals. Higher GM ODI sampled from resting-state networks with known age-related susceptibility (default mode and visual association networks) was associated with increased functional connectivity of these networks, whereas the task-positive networks tended to show no association or even decreased connectivity. Frontal pole ODI mediated the negative relationship of age with executive function, whereas hippocampal ODI mediated the positive relationship of age with executive function. Our in vivo findings align very closely with the postmortem data and provide evidence for vulnerability and compensatory neural mechanisms of aging in GM microstructure that have functional and cognitive impact in vivo.
Collapse
|
53
|
Vaughan DN, Jackson GD. The piriform cortex and human focal epilepsy. Front Neurol 2014; 5:259. [PMID: 25538678 PMCID: PMC4259123 DOI: 10.3389/fneur.2014.00259] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 11/22/2014] [Indexed: 11/28/2022] Open
Abstract
It is surprising that the piriform cortex, when compared to the hippocampus, has been given relatively little significance in human epilepsy. Like the hippocampus, it has a phylogenetically preserved three-layered cortex that is vulnerable to excitotoxic injury, has broad connections to both limbic and cortical areas, and is highly epileptogenic – being critical to the kindling process. The well-known phenomenon of early olfactory auras in temporal lobe epilepsy highlights its clinical relevance in human beings. Perhaps because it is anatomically indistinct and difficult to approach surgically, as it clasps the middle cerebral artery, it has, until now, been understandably neglected. In this review, we emphasize how its unique anatomical and functional properties, as primary olfactory cortex, predispose it to involvement in focal epilepsy. From recent convergent findings in human neuroimaging, clinical epileptology, and experimental animal models, we make the case that the piriform cortex is likely to play a facilitating and amplifying role in human focal epileptogenesis, and may influence progression to epileptic intractability.
Collapse
Affiliation(s)
- David N Vaughan
- Florey Institute of Neuroscience and Mental Health , Heidelberg, VIC , Australia ; Department of Neurology, Austin Health , Heidelberg, VIC , Australia
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health , Heidelberg, VIC , Australia ; Department of Neurology, Austin Health , Heidelberg, VIC , Australia ; Department of Medicine, University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
54
|
Looking for the roots of cortical sensory computation in three-layered cortices. Curr Opin Neurobiol 2014; 31:119-26. [PMID: 25291080 DOI: 10.1016/j.conb.2014.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 02/03/2023]
Abstract
Despite considerable effort over a century and the benefit of remarkable technical advances in the past few decades, we are still far from understanding mammalian cerebral neocortex. With its six layers, modular architecture, canonical circuits, innumerable cell types, and computational complexity, isocortex remains a challenging mystery. In this review, we argue that identifying the structural and functional similarities between mammalian piriform cortex and reptilian dorsal cortex could help reveal common organizational and computational principles and by extension, some of the most primordial computations carried out in cortical networks.
Collapse
|
55
|
Džaja D, Hladnik A, Bičanić I, Baković M, Petanjek Z. Neocortical calretinin neurons in primates: increase in proportion and microcircuitry structure. Front Neuroanat 2014; 8:103. [PMID: 25309344 PMCID: PMC4174738 DOI: 10.3389/fnana.2014.00103] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/07/2014] [Indexed: 12/04/2022] Open
Abstract
In this article we first point at the expansion of associative cortical areas in primates, as well as at the intrinsic changes in the structure of the cortical column. There is a huge increase in proportion of glutamatergic cortical projecting neurons located in the upper cortical layers (II/III). Inside this group, a novel class of associative neurons becomes recognized for its growing necessity in both inter-areal and intra-areal columnar integration. Equally important to the changes in glutamatergic population, we found that literature data suggest a 50% increase in the proportion of neocortical GABAergic neurons between primates and rodents. This seems to be a result of increase in proportion of calretinin interneurons in layers II/III, population which in associative areas represents 15% of all neurons forming those layers. Evaluating data about functional properties of their connectivity we hypothesize that such an increase in proportion of calretinin interneurons might lead to supra-linear growth in memory capacity of the associative neocortical network. An open question is whether there are some new calretinin interneuron subtypes, which might substantially change micro-circuitry structure of the primate cerebral cortex.
Collapse
Affiliation(s)
- Domagoj Džaja
- Laboratory for Neuromorphometry, Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb Zagreb, Croatia
| | - Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb Zagreb, Croatia
| | - Ivana Bičanić
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb Zagreb, Croatia
| | - Marija Baković
- Institute of Forensic Medicine and Criminalistics, School of Medicine, University of Zagreb Zagreb, Croatia
| | - Zdravko Petanjek
- Laboratory for Neuromorphometry, Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb Zagreb, Croatia ; Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb Zagreb, Croatia
| |
Collapse
|
56
|
Jara JH, Genç B, Klessner JL, Ozdinler PH. Retrograde labeling, transduction, and genetic targeting allow cellular analysis of corticospinal motor neurons: implications in health and disease. Front Neuroanat 2014; 8:16. [PMID: 24723858 PMCID: PMC3972458 DOI: 10.3389/fnana.2014.00016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/10/2014] [Indexed: 12/11/2022] Open
Abstract
Corticospinal motor neurons (CSMN) have a unique ability to receive, integrate, translate, and transmit the cerebral cortex's input toward spinal cord targets and therefore act as a “spokesperson” for the initiation and modulation of voluntary movements that require cortical input. CSMN degeneration has an immense impact on motor neuron circuitry and is one of the underlying causes of numerous neurodegenerative diseases, such as primary lateral sclerosis (PLS), hereditary spastic paraplegia (HSP), and amyotrophic lateral sclerosis (ALS). In addition, CSMN death results in long-term paralysis in spinal cord injury patients. Detailed cellular analyses are crucial to gain a better understanding of the pathologies underlying CSMN degeneration. However, visualizing and identifying these vulnerable neuron populations in the complex and heterogeneous environment of the cerebral cortex have proved challenging. Here, we will review recent developments and current applications of novel strategies that reveal the cellular and molecular basis of CSMN health and vulnerability. Such studies hold promise for building long-term effective treatment solutions in the near future.
Collapse
Affiliation(s)
- Javier H Jara
- Davee Department of Neurology and Clinical Neurological Sciences, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - Barış Genç
- Davee Department of Neurology and Clinical Neurological Sciences, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - Jodi L Klessner
- Davee Department of Neurology and Clinical Neurological Sciences, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - P Hande Ozdinler
- Davee Department of Neurology and Clinical Neurological Sciences, Feinberg School of Medicine, Northwestern University Chicago, IL, USA ; Robert H. Lurie Cancer Center, Feinberg School of Medicine, Northwestern University Chicago, IL, USA ; Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University Chicago IL, USA
| |
Collapse
|
57
|
Suzuki N, Tang CSM, Bekkers JM. Persistent barrage firing in cortical interneurons can be induced in vivo and may be important for the suppression of epileptiform activity. Front Cell Neurosci 2014; 8:76. [PMID: 24659955 PMCID: PMC3952511 DOI: 10.3389/fncel.2014.00076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/21/2014] [Indexed: 11/13/2022] Open
Abstract
Neural circuits are typically maintained in a state of dynamic equilibrium by balanced synaptic excitation and inhibition. However, brain regions that are particularly susceptible to epilepsy may have evolved additional specialized mechanisms for inhibiting over-excitation. Here we identify one such possible mechanism in the cerebral cortex and hippocampus of mice. Recently it was reported that some types of GABAergic interneurons can slowly integrate excitatory inputs until eventually they fire persistently in the absence of the original stimulus. This property, called persistent firing or retroaxonal barrage firing (BF), is of unknown physiological importance. We show that two common types of interneurons in cortical regions, neurogliaform (NG) cells and fast-spiking (FS) cells, are unique in exhibiting BF in acute slices (~85 and ~23% success rate for induction, respectively). BF can also be induced in vivo, although the success rate for induction is lower (~60% in NG cells). In slices, BF could reliably be triggered by trains of excitatory synaptic input, as well as by exposure to proconvulsant bath solutions (elevated extracellular K(+), blockade of GABAA receptors). Using pair recordings in slices, we confirmed that barrage-firing NG cells can produce synaptic inhibition of nearby pyramidal neurons, and that this inhibition outlasts the original excitation. The ubiquity of NG and FS cells, together with their ability to fire persistently following excessive excitation, suggests that these interneurons may function as cortical sentinels, imposing an activity-dependent brake on undesirable neuronal hyperexcitability.
Collapse
Affiliation(s)
- Norimitsu Suzuki
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| | - Clara S-M Tang
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| | - John M Bekkers
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| |
Collapse
|
58
|
Domoic acid epileptic disease. Mar Drugs 2014; 12:1185-207. [PMID: 24663110 PMCID: PMC3967204 DOI: 10.3390/md12031185] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/08/2014] [Accepted: 02/08/2014] [Indexed: 12/23/2022] Open
Abstract
Domoic acid epileptic disease is characterized by spontaneous recurrent seizures weeks to months after domoic acid exposure. The potential for this disease was first recognized in a human case study of temporal lobe epilepsy after the 1987 amnesic shellfish-poisoning event in Quebec, and was characterized as a chronic epileptic syndrome in California sea lions through investigation of a series of domoic acid poisoning cases between 1998 and 2006. The sea lion study provided a breadth of insight into clinical presentations, unusual behaviors, brain pathology, and epidemiology. A rat model that replicates key observations of the chronic epileptic syndrome in sea lions has been applied to identify the progression of the epileptic disease state, its relationship to behavioral manifestations, and to define the neural systems involved in these behavioral disorders. Here, we present the concept of domoic acid epileptic disease as a delayed manifestation of domoic acid poisoning and review the state of knowledge for this disease state in affected humans and sea lions. We discuss causative mechanisms and neural underpinnings of disease maturation revealed by the rat model to present the concept for olfactory origin of an epileptic disease; triggered in dendodendritic synapases of the olfactory bulb and maturing in the olfactory cortex. We conclude with updated information on populations at risk, medical diagnosis, treatment, and prognosis.
Collapse
|
59
|
Abstract
Sequential motor behavior requires a progression of discrete preparation and execution states. However, the organization of state-dependent activity in neuronal ensembles of motor cortex is poorly understood. Here, we recorded neuronal spiking and local field potential activity from rat motor cortex during reward-motivated movement and observed robust behavioral state-dependent coordination between neuronal spiking, γ oscillations, and θ oscillations. Slow and fast γ oscillations appeared during distinct movement states and entrained neuronal firing. γ oscillations, in turn, were coupled to θ oscillations, and neurons encoding different behavioral states fired at distinct phases of θ in a highly layer-dependent manner. These findings indicate that θ and nested dual band γ oscillations serve as the temporal structure for the selection of a conserved set of functional channels in motor cortical layer activity during animal movement. Furthermore, these results also suggest that cross-frequency couplings between oscillatory neuronal ensemble activities are part of the general coding mechanism in cortex.
Collapse
|
60
|
Aboitiz F, Zamorano F. Neural progenitors, patterning and ecology in neocortical origins. Front Neuroanat 2013; 7:38. [PMID: 24273496 PMCID: PMC3824149 DOI: 10.3389/fnana.2013.00038] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/21/2013] [Indexed: 01/13/2023] Open
Abstract
The anatomical organization of the mammalian neocortex stands out among vertebrates for its laminar and columnar arrangement, featuring vertically oriented, excitatory pyramidal neurons. The evolutionary origin of this structure is discussed here in relation to the brain organization of other amniotes, i.e., the sauropsids (reptiles and birds). Specifically, we address the developmental modifications that had to take place to generate the neocortex, and to what extent these modifications were shared by other amniote lineages or can be considered unique to mammals. In this article, we propose a hypothesis that combines the control of proliferation in neural progenitor pools with the specification of regional morphogenetic gradients, yielding different anatomical results by virtue of the differential modulation of these processes in each lineage. Thus, there is a highly conserved genetic and developmental battery that becomes modulated in different directions according to specific selective pressures. In the case of early mammals, ecological conditions like nocturnal habits and reproductive strategies are considered to have played a key role in the selection of the particular brain patterning mechanisms that led to the origin of the neocortex.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría, Facultad de Medicina y Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile Santiago, Chile
| | | |
Collapse
|
61
|
Attention influences single unit and local field potential response latencies in visual cortical area V4. J Neurosci 2013; 32:16040-50. [PMID: 23136440 DOI: 10.1523/jneurosci.0489-12.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many previous studies have demonstrated that changes in selective attention can alter the response magnitude of visual cortical neurons, but there has been little evidence for attention affecting response latency. Small latency differences, though hard to detect, can potentially be of functional importance, and may also give insight into the mechanisms of neuronal computation. We therefore reexamined the effect of attention on the response latency of both single units and the local field potential (LFP) in primate visual cortical area V4. We find that attention does produce small (1-2 ms) but significant reductions in the latency of both the spiking and LFP responses. Though attention, like contrast elevation, reduces response latencies, we find that the two have different effects on the magnitude of the LFP. Contrast elevations increase and attention decreases the magnitude of the initial deflection of the stimulus-evoked LFP. Both contrast elevation and attention increase the magnitude of the spiking response. We speculate that latencies may be reduced at higher contrast because stronger stimulus inputs drive neurons more rapidly to spiking threshold, while attention may reduce latencies by placing neurons in a more depolarized state closer to threshold before stimulus onset.
Collapse
|
62
|
Kaas JH. The evolution of brains from early mammals to humans. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2012; 4:33-45. [PMID: 23529256 DOI: 10.1002/wcs.1206] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The large size and complex organization of the human brain makes it unique among primate brains. In particular, the neocortex constitutes about 80% of the brain, and this cortex is subdivided into a large number of functionally specialized regions, the cortical areas. Such a brain mediates accomplishments and abilities unmatched by any other species. How did such a brain evolve? Answers come from comparative studies of the brains of present-day mammals and other vertebrates in conjunction with information about brain sizes and shapes from the fossil record, studies of brain development, and principles derived from studies of scaling and optimal design. Early mammals were small, with small brains, an emphasis on olfaction, and little neocortex. Neocortex was transformed from the single layer of output pyramidal neurons of the dorsal cortex of earlier ancestors to the six layers of all present-day mammals. This small cap of neocortex was divided into 20-25 cortical areas, including primary and some of the secondary sensory areas that characterize neocortex in nearly all mammals today. Early placental mammals had a corpus callosum connecting the neocortex of the two hemispheres, a primary motor area, M1, and perhaps one or more premotor areas. One line of evolution, Euarchontoglires, led to present-day primates, tree shrews, flying lemurs, rodents, and rabbits. Early primates evolved from small-brained, nocturnal, insect-eating mammals with an expanded region of temporal visual cortex. These early nocturnal primates were adapted to the fine branch niche of the tropical rainforest by having an even more expanded visual system that mediated visually guided reaching and grasping of insects, small vertebrates, and fruits. Neocortex was greatly expanded and included an array of cortical areas that characterize neocortex of all living primates. Specializations of the visual system included new visual areas that contributed to a dorsal stream of visuomotor processing in a greatly enlarged region of posterior parietal cortex and an expanded motor system and the addition of a ventral premotor area. Higher visual areas in a large temporal lobe facilitated object recognition, and frontal cortex included granular prefrontal cortex. Auditory cortex included the primary and secondary auditory areas that characterize prosimian and anthropoid primates today. As anthropoids emerged as diurnal primates, the visual system specialized for detailed foveal vision. Other adaptations included an expansion of prefrontal cortex and insular cortex. The human and chimpanzee-bonobo lineages diverged some 6-8 million years ago with brains that were about one third the size of modern humans. Over the last 2 million years, the brains of our more recent ancestors increased greatly in size, especially in the prefrontal, posterior parietal, lateral temporal, and insular regions. Specialization of the two cerebral hemispheres for related, but different functions became pronounced, and language and other impressive cognitive abilities emerged. WIREs Cogn Sci 2013, 4:33-45. doi: 10.1002/wcs.1206 This article is categorized under: Neuroscience > Anatomy.
Collapse
Affiliation(s)
- Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
63
|
Agnati LF, Guidolin D, Cortelli P, Genedani S, Cela-Conde C, Fuxe K. Neuronal correlates to consciousness. The "Hall of Mirrors" metaphor describing consciousness as an epiphenomenon of multiple dynamic mosaics of cortical functional modules. Brain Res 2012; 1476:3-21. [PMID: 22322150 DOI: 10.1016/j.brainres.2012.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/02/2012] [Accepted: 01/04/2012] [Indexed: 12/20/2022]
Abstract
Humans share the common intuition of a self that has access to an inner 'theater of mind' (Baars, 2003). The problem is how this internal theater is formed. Moving from Cook's view (Cook, 2008), we propose that the 'sentience' present in single excitable cells is integrated into units of neurons and glial cells transiently assembled into "functional modules" (FMs) organized as systems of encased networks (from cell networks to molecular networks). In line with Hebb's proposal of 'cell assemblies', FMs can be linked to form higher-order mosaics by means of reverberating circuits. Brain-level subjective awareness results from the binding phenomenon that coordinates several FM mosaics. Thus, consciousness may be thought as the global result of integrative processes taking place at different levels of miniaturization in plastic mosaics. On the basis of these neurobiological data and speculations and of the evidence of 'mirror neurons' the 'Hall of Mirrors' is proposed as a significant metaphor of consciousness. This article is part of a Special Issue entitled: Brain Integration.
Collapse
|