52
|
Bosch C, Martínez A, Masachs N, Teixeira CM, Fernaud I, Ulloa F, Pérez-Martínez E, Lois C, Comella JX, DeFelipe J, Merchán-Pérez A, Soriano E. Corrigendum: FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons. Front Neuroanat 2016; 10:100. [PMID: 27766074 PMCID: PMC5067301 DOI: 10.3389/fnana.2016.00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/30/2016] [Indexed: 11/13/2022] Open
Abstract
[This corrects the article on p. 60 in vol. 9, PMID: 26052271.].
Collapse
Affiliation(s)
- Carles Bosch
- Developmental Neurobiology and Regeneration Unit, Department of Cell Biology, Immunology and Neurosciences and Barcelona Science Park, University of BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadrid, Spain; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR)Barcelona, Spain
| | - Albert Martínez
- Developmental Neurobiology and Regeneration Unit, Department of Cell Biology, Immunology and Neurosciences and Barcelona Science Park, University of Barcelona Barcelona, Spain
| | - Nuria Masachs
- Developmental Neurobiology and Regeneration Unit, Department of Cell Biology, Immunology and Neurosciences and Barcelona Science Park, University of BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadrid, Spain
| | - Cátia M Teixeira
- Developmental Neurobiology and Regeneration Unit, Department of Cell Biology, Immunology and Neurosciences and Barcelona Science Park, University of BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadrid, Spain
| | - Isabel Fernaud
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadrid, Spain; Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus de MontegancedoMadrid, Spain; Instituto Cajal (Consejo Superior de Investigaciones Científicas)Madrid, Spain
| | - Fausto Ulloa
- Developmental Neurobiology and Regeneration Unit, Department of Cell Biology, Immunology and Neurosciences and Barcelona Science Park, University of BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadrid, Spain
| | - Esther Pérez-Martínez
- Developmental Neurobiology and Regeneration Unit, Department of Cell Biology, Immunology and Neurosciences and Barcelona Science Park, University of BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadrid, Spain
| | - Carlos Lois
- Department of Neurobiology, University of Massachusetts Medical School Worcester, MA, USA
| | - Joan X Comella
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadrid, Spain; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR)Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de BarcelonaBellaterra, Spain
| | - Javier DeFelipe
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadrid, Spain; Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus de MontegancedoMadrid, Spain; Instituto Cajal (Consejo Superior de Investigaciones Científicas)Madrid, Spain
| | - Angel Merchán-Pérez
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadrid, Spain; Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus de MontegancedoMadrid, Spain; Departamento de Arquitectura y Tecnología de Sistemas Informáticos, Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de MadridMadrid, Spain
| | - Eduardo Soriano
- Developmental Neurobiology and Regeneration Unit, Department of Cell Biology, Immunology and Neurosciences and Barcelona Science Park, University of BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadrid, Spain; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR)Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats AcademiaBarcelona, Spain
| |
Collapse
|
53
|
Lu J, Zuo Y. Clustered structural and functional plasticity of dendritic spines. Brain Res Bull 2016; 129:18-22. [PMID: 27637453 DOI: 10.1016/j.brainresbull.2016.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/29/2016] [Accepted: 09/13/2016] [Indexed: 11/26/2022]
Abstract
The configuration of synaptic circuits underlies their ability to process and store information. Research on dendritic spines has revealed that their structural and functional alterations are clustered along the parent dendrite. Here we review the evidence supporting such notion of clustered synaptic plasticity, discuss its functional implications and possible contributing factors, and suggest potential strategies to deal with open challenges.
Collapse
Affiliation(s)
- Ju Lu
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| |
Collapse
|
54
|
Begemann I, Galic M. Correlative Light Electron Microscopy: Connecting Synaptic Structure and Function. Front Synaptic Neurosci 2016; 8:28. [PMID: 27601992 PMCID: PMC4993758 DOI: 10.3389/fnsyn.2016.00028] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/12/2016] [Indexed: 11/20/2022] Open
Abstract
Many core paradigms of contemporary neuroscience are based on information obtained by electron or light microscopy. Intriguingly, these two imaging techniques are often viewed as complementary, yet separate entities. Recent technological advancements in microscopy techniques, labeling tools, and fixation or preparation procedures have fueled the development of a series of hybrid approaches that allow correlating functional fluorescence microscopy data and ultrastructural information from electron micrographs from a singular biological event. As correlative light electron microscopy (CLEM) approaches become increasingly accessible, long-standing neurobiological questions regarding structure-function relation are being revisited. In this review, we will survey what developments in electron and light microscopy have spurred the advent of correlative approaches, highlight the most relevant CLEM techniques that are currently available, and discuss its potential and limitations with respect to neuronal and synapse-specific applications.
Collapse
Affiliation(s)
- Isabell Begemann
- DFG Cluster of Excellence 'Cells in Motion', (EXC 1003), University of Muenster, MuensterGermany; Institute of Medical Physics and Biophysics, University Hospital Münster, University of Muenster, MuensterGermany
| | - Milos Galic
- DFG Cluster of Excellence 'Cells in Motion', (EXC 1003), University of Muenster, MuensterGermany; Institute of Medical Physics and Biophysics, University Hospital Münster, University of Muenster, MuensterGermany
| |
Collapse
|
55
|
Kitahara Y, Ohta K, Hasuo H, Shuto T, Kuroiwa M, Sotogaku N, Togo A, Nakamura KI, Nishi A. Chronic Fluoxetine Induces the Enlargement of Perforant Path-Granule Cell Synapses in the Mouse Dentate Gyrus. PLoS One 2016; 11:e0147307. [PMID: 26788851 PMCID: PMC4720354 DOI: 10.1371/journal.pone.0147307] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/01/2016] [Indexed: 12/27/2022] Open
Abstract
A selective serotonin reuptake inhibitor is the most commonly prescribed antidepressant for the treatment of major depression. However, the mechanisms underlying the actions of selective serotonin reuptake inhibitors are not fully understood. In the dentate gyrus, chronic fluoxetine treatment induces increased excitability of mature granule cells (GCs) as well as neurogenesis. The major input to the dentate gyrus is the perforant path axons (boutons) from the entorhinal cortex (layer II). Through voltage-sensitive dye imaging, we found that the excitatory neurotransmission of the perforant path synapse onto the GCs in the middle molecular layer of the mouse dentate gyrus (perforant path-GC synapse) is enhanced after chronic fluoxetine treatment (15 mg/kg/day, 14 days). Therefore, we further examined whether chronic fluoxetine treatment affects the morphology of the perforant path-GC synapse, using FIB/SEM (focused ion beam/scanning electron microscopy). A three-dimensional reconstruction of dendritic spines revealed the appearance of extremely large-sized spines after chronic fluoxetine treatment. The large-sized spines had a postsynaptic density with a large volume. However, chronic fluoxetine treatment did not affect spine density. The presynaptic boutons that were in contact with the large-sized spines were large in volume, and the volumes of the mitochondria and synaptic vesicles inside the boutons were correlated with the size of the boutons. Thus, the large-sized perforant path-GC synapse induced by chronic fluoxetine treatment contains synaptic components that correlate with the synapse size and that may be involved in enhanced glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Yosuke Kitahara
- Department of Pharmacology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830–0011, Japan
| | - Keisuke Ohta
- Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830–0011, Japan
| | - Hiroshi Hasuo
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830–0011, Japan
| | - Takahide Shuto
- Department of Pharmacology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830–0011, Japan
| | - Mahomi Kuroiwa
- Department of Pharmacology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830–0011, Japan
| | - Naoki Sotogaku
- Department of Pharmacology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830–0011, Japan
| | - Akinobu Togo
- Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830–0011, Japan
| | - Kei-ichiro Nakamura
- Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830–0011, Japan
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830–0011, Japan
- * E-mail:
| |
Collapse
|