51
|
Ilyasov AA, Milligan CE, Pharr EP, Howlett AC. The Endocannabinoid System and Oligodendrocytes in Health and Disease. Front Neurosci 2018; 12:733. [PMID: 30416422 PMCID: PMC6214135 DOI: 10.3389/fnins.2018.00733] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022] Open
Abstract
Cannabinoid-based interventions are being explored for central nervous system (CNS) pathologies such as neurodegeneration, demyelination, epilepsy, stroke, and trauma. As these disease states involve dysregulation of myelin integrity and/or remyelination, it is important to consider effects of the endocannabinoid system on oligodendrocytes and their precursors. In this review, we examine research reports on the effects of the endocannabinoid system (ECS) components on oligodendrocytes and their precursors, with a focus on therapeutic implications. Cannabinoid ligands and modulators of the endocannabinoid system promote cell signaling in oligodendrocyte precursor survival, proliferation, migration and differentiation, and mature oligodendrocyte survival and myelination. Agonist stimulation of oligodendrocyte precursor cells (OPCs) at both CB1 and CB2 receptors counter apoptotic processes via Akt/PI3K, and promote proliferation via Akt/mTOR and ERK pathways. CB1 receptors in radial glia promote proliferation and conversion to progenitors fated to become oligodendroglia, whereas CB2 receptors promote OPC migration in neonatal development. OPCs produce 2-arachidonoylglycerol (2-AG), stimulating cannabinoid receptor-mediated ERK pathways responsible for differentiation to arborized, myelin basic protein (MBP)-producing oligodendrocytes. In cell culture models of excitotoxicity, increased reactive oxygen species, and depolarization-dependent calcium influx, CB1 agonists improved viability of oligodendrocytes. In transient and permanent middle cerebral artery occlusion models of anoxic stroke, WIN55212-2 increased OPC proliferation and maturation to oligodendroglia, thereby reducing cerebral tissue damage. In several models of rodent encephalomyelitis, chronic treatment with cannabinoid agonists ameliorated the damage by promoting OPC survival and oligodendrocyte function. Pharmacotherapeutic strategies based upon ECS and oligodendrocyte production and survival should be considered.
Collapse
Affiliation(s)
- Alexander A Ilyasov
- Graduate Program in Neuroscience, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Physiology and Pharmacology and Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Carolanne E Milligan
- Graduate Program in Neuroscience, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Emily P Pharr
- Graduate Program in Neuroscience, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Neurology and Comprehensive Multiple Sclerosis Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Allyn C Howlett
- Graduate Program in Neuroscience, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Physiology and Pharmacology and Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
52
|
Andres Benito P, Dominguez Gonzalez M, Ferrer I. Altered gene transcription linked to astrocytes and oligodendrocytes in frontal cortex in Creutzfeldt-Jakob disease. Prion 2018; 12:216-225. [PMID: 30009661 DOI: 10.1080/19336896.2018.1500076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Targeted expression of genes coding for proteins specific to astrocytes, oligodendrocytes and myelin was performed in frontal cortex area 8 of Creutzfeldt-Jakob disease methionine/methionine and valine/valine (CJD MM1 and VV2, respectively) compared with controls. GFAP (glial fibrillary acidic protein) mRNA was up-regulated whereas SLC1A2 (solute carrier family 1 member 2, coding for glutamate transporter 1: GLT1), AQ4 (aquaporin 4), MPC1 (mitochondrial pyruvate carrier 1) and UCP5 (mitochondrial uncoupled protein 5) mRNAs were significantly down-regulated in CJD MM1 and CJD VV2, and GJA1 (connexin 43) in CJD VV2. OLIG1 and OLIG2 (oligodendocyte transcription factor 1 and 2, respectively), SOX10 (SRY-Box10) and oligodendroglial precursor cell (OPC) marker NG2 (neuronal/glial antigen) 2 were preserved, but GALC (coding for galactosylceramidase), SLC2A1 (solute carrier family 2 member 1: glucose transporter member 1: GLUT1) and MCT1 (monocarboxylic acid transporter 1) mRNA expression levels were significantly reduced in CJD MM1 and CJD VV2. Expression levels of most genes linked to myelin were not altered in the cerebral cortex in CJD. Immunohistochemistry to selected proteins disclosed individual variations but GFAP, Olig-2, AQ4 and GLUT1 correlated with mRNA levels, whereas GLT1 was subjected to individual variations. However, MPC1, UCP5 and MCT1 decrease was more closely related to the respective reduced neuronal immunostaining. These observations support the idea that molecular deficits linked to energy metabolism and solute transport in astrocytes and oligodendrocytes, in addition to neurons, are relevant in the pathogenesis of cortical lesions in CJD.
Collapse
Affiliation(s)
- Pol Andres Benito
- a Department of Pathology and Experimental Therapeutics , University of Barcelona
| | | | - Isidro Ferrer
- a Department of Pathology and Experimental Therapeutics , University of Barcelona.,b Biomedical Research Centre of Neurodegenerative Diseases (CIBERNED) , Institute of Health Carlos III, Ministry of Economy, Innovation and Competitiveness , Hospitalet de Llobregat.,c Senior consultant, Service of Pathologic Anatomy , Bellvitge University Hospital (IDIBELL).,d Institute of Neurosciences , University of Barcelona , Barcelona , Spain
| |
Collapse
|
53
|
Skaper SD, Facci L, Zusso M, Giusti P. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron. Front Cell Neurosci 2018; 12:72. [PMID: 29618972 PMCID: PMC5871676 DOI: 10.3389/fncel.2018.00072] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/27/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a complex biological response fundamental to how the body deals with injury and infection to eliminate the initial cause of cell injury and effect repair. Unlike a normally beneficial acute inflammatory response, chronic inflammation can lead to tissue damage and ultimately its destruction, and often results from an inappropriate immune response. Inflammation in the nervous system (“neuroinflammation”), especially when prolonged, can be particularly injurious. While inflammation per se may not cause disease, it contributes importantly to disease pathogenesis across both the peripheral (neuropathic pain, fibromyalgia) and central [e.g., Alzheimer disease, Parkinson disease, multiple sclerosis, motor neuron disease, ischemia and traumatic brain injury, depression, and autism spectrum disorder] nervous systems. The existence of extensive lines of communication between the nervous system and immune system represents a fundamental principle underlying neuroinflammation. Immune cell-derived inflammatory molecules are critical for regulation of host responses to inflammation. Although these mediators can originate from various non-neuronal cells, important sources in the above neuropathologies appear to be microglia and mast cells, together with astrocytes and possibly also oligodendrocytes. Understanding neuroinflammation also requires an appreciation that non-neuronal cell—cell interactions, between both glia and mast cells and glia themselves, are an integral part of the inflammation process. Within this context the mast cell occupies a key niche in orchestrating the inflammatory process, from initiation to prolongation. This review will describe the current state of knowledge concerning the biology of neuroinflammation, emphasizing mast cell-glia and glia-glia interactions, then conclude with a consideration of how a cell's endogenous mechanisms might be leveraged to provide a therapeutic strategy to target neuroinflammation.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
54
|
S Cassoli J, Brandão-Teles C, G Santana A, H M F Souza G, Martins-de-Souza D. Ion Mobility-Enhanced Data-Independent Acquisitions Enable a Deep Proteomic Landscape of Oligodendrocytes. Proteomics 2017; 17. [PMID: 28861932 DOI: 10.1002/pmic.201700209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/05/2017] [Indexed: 12/15/2022]
Abstract
Oligodendrocytes are a type of neuroglia that provide trophic support and insulation to axons in the central nervous system. The genesis and maturation of oligodendrocytes are essential processes for myelination and the course of CNS development. Using ion mobility-enhanced, data-independent acquisitions and 2D-nanoUPLC fractionation operating at nanoscale flow rates, we established a comprehensive data set of proteins expressed by the human oligodendroglia cell line MO3.13. The final dataset incorporating all fractions comprised 223 531 identified peptides assigned to 10 390 protein hits, an improvement of 4.5 times on identified proteins described previously by our group using the same cell line. Identified proteins play pivotal roles in many biological processes such as cell growth and development and energy metabolism, providing a rich resource for future studies on oligodendrocyte development, myelination, axonal support, and the regulation of such process. Our results can help further studies that use MO3.13 cells as a tool of investigation, not only in relation to oligodendrocyte maturation, but also to diseases that have oligodendrocytes as key players. All MS data have been deposited in the ProteomeXchange with identifier PXD004696.
Collapse
Affiliation(s)
- Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Aline G Santana
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Gustavo H M F Souza
- Mass Spectrometry Research and Development Laboratory, Health Sciences Department, Waters Corporation, São Paulo, SP, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Brazil
| |
Collapse
|
55
|
Newville J, Jantzie LL, Cunningham LA. Embracing oligodendrocyte diversity in the context of perinatal injury. Neural Regen Res 2017; 12:1575-1585. [PMID: 29171412 PMCID: PMC5696828 DOI: 10.4103/1673-5374.217320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence is fueling a new appreciation of oligodendrocyte diversity that is overturning the traditional view that oligodendrocytes are a homogenous cell population. Oligodendrocytes of distinct origins, maturational stages, and regional locations may differ in their functional capacity or susceptibility to injury. One of the most unique qualities of the oligodendrocyte is its ability to produce myelin. Myelin abnormalities have been ascribed to a remarkable array of perinatal brain injuries, with concomitant oligodendrocyte dysregulation. Within this review, we discuss new insights into the diversity of the oligodendrocyte lineage and highlight their relevance in paradigms of perinatal brain injury. Future therapeutic development will be informed by comprehensive knowledge of oligodendrocyte pathophysiology that considers the particular facets of heterogeneity that this lineage exhibits.
Collapse
Affiliation(s)
- Jessie Newville
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Lauren L. Jantzie
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Lee Anna Cunningham
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
56
|
Ziemka-Nalecz M, Janowska J, Strojek L, Jaworska J, Zalewska T, Frontczak-Baniewicz M, Sypecka J. Impact of neonatal hypoxia-ischaemia on oligodendrocyte survival, maturation and myelinating potential. J Cell Mol Med 2017; 22:207-222. [PMID: 28782169 PMCID: PMC5742723 DOI: 10.1111/jcmm.13309] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/15/2017] [Indexed: 02/06/2023] Open
Abstract
Hypoxic-ischaemic episodes experienced at the perinatal period commonly lead to a development of neurological disabilities and cognitive impairments in neonates or later in childhood. Clinical symptoms often are associated with the observed alterations in white matter in the brains of diseased children, suggesting contribution of triggered oligodendrocyte/myelin pathology to the resulting disorders. To date, the processes initiated by perinatal asphyxia remain unclear, hampering the ability to develop preventions. To address the issue, the effects of temporal hypoxia-ischaemia on survival, proliferation and the myelinating potential of oligodendrocytes were evaluated ex vivo using cultures of hippocampal organotypic slices and in vivo in rat model of perinatal asphyxia. The potential engagement of gelatinases in oligodendrocyte maturation was assessed as well. The results pointed to a significant decrease in the number of oligodendrocyte progenitor cells (OPCs), which is compensated for to a certain extent by the increased rate of OPC proliferation. Oligodendrocyte maturation seemed however to be significantly altered. An ultrastructural examination of selected brain regions performed several weeks after the insult showed however that the process of developing central nervous system myelination proceeds efficiently resulting in enwrapping the majority of axons in compact myelin. The increased angiogenesis in response to neonatal hypoxic-ischaemic insult was also noticed. In conclusion, the study shows that hypoxic-ischaemic episodes experienced during the most active period of nervous system development might be efficiently compensated for by the oligodendroglial cell response triggered by the insult. The main obstacle seems to be the inflammatory process modulating the local microenvironment.
Collapse
Affiliation(s)
- Malgorzata Ziemka-Nalecz
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Justyna Janowska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Lukasz Strojek
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Jaworska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
57
|
Zhang Y, Hoxha E, Zhao T, Zhou X, Alvarez-Bolado G. Foxb1 Regulates Negatively the Proliferation of Oligodendrocyte Progenitors. Front Neuroanat 2017; 11:53. [PMID: 28725186 PMCID: PMC5496944 DOI: 10.3389/fnana.2017.00053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/19/2017] [Indexed: 11/24/2022] Open
Abstract
Oligodendrocyte precursor cells (OPC), neurons and astrocytes share a neural progenitor cell (NPC) in the early ventricular zone (VZ) of the embryonic neuroepithelium. Both switch to produce either of the three cell types and the generation of the right number of them undergo complex genetic regulation. The components of these regulatory cascades vary between brain regions giving rise to the unique morphological and functional heterogeneity of this organ. Forkhead b1 (Foxb1) is a transcription factor gene expressed by NPCs in specific regions of the embryonic neuroepithelium. We used the mutant mouse line Foxb1-Cre to analyze the cell types derived from Fobx1-expressing NPCs (the Foxb1 cell lineage) from two restricted regions, the medulla oblongata (MO; hindbrain) and the thalamus (forebrain), of normal and Foxb1-deficient mice. Foxb1 cell lineage derivatives appear as clusters in restricted regions, including the MO (hindbrain) and the thalamus (forebrain). Foxb1-expressing NPCs produce mostly oligodendrocytes (OL), some neurons and few astrocytes. Foxb1-deficient NPCs generate mostly OPC and immature OL to the detriment of neurons, astrocytes and mature OL. The axonal G-ratio however is not changed. We reveal Foxb1 as a novel modulator of neuronal and OL generation in certain restricted CNS regions. Foxb1 biases NPCs towards neuronal generation and inhibits OPC proliferation while promoting their differentiation.
Collapse
Affiliation(s)
- Yuanfeng Zhang
- Department of Neuroanatomy, University of HeidelbergHeidelberg, Germany.,Department of Urology, The 2nd Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Elti Hoxha
- Department of Neuroanatomy, University of HeidelbergHeidelberg, Germany
| | - Tianyu Zhao
- Key Laboratory of Oral Disease and Biomedical Sciences, Stomatological Hospital, Chongqing Medical UniversityChongqing, China
| | - Xunlei Zhou
- Department of Neuroanatomy, University of HeidelbergHeidelberg, Germany
| | | |
Collapse
|
58
|
Villa-Cedillo SA, Rodríguez-Rocha H, Zavala-Flores LM, Montes-de-Oca-Luna R, García-García A, Loera-Arias MDJ, Saucedo-Cárdenas O. Asn194Lys mutation in RVG29 peptide increases GFP transgene delivery by endocytosis to neuroblastoma and astrocyte cells. ACTA ACUST UNITED AC 2017. [PMID: 28643952 DOI: 10.1111/jphp.12766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVES A cell-penetrating peptide-based delivery system could target specific types of cells for therapeutic genes delivery. To increase the gene delivery efficiency into neuronal phenotype cells, we introduced an Asn194Lys mutation to RVG29 peptide derived from rabies virus glycoprotein and added a nuclear localization signal to enhance its nuclear import. METHODS Mutant RVG or wild-type RVG peptide, a karyophilic peptide (KP) and a plasmid encoding green fluorescent protein (pGL) were bound by electrostatic charges to form four different kinds of RVG complexes. Immunofluorescence was used to assess the gene transfection efficiency into astrocytes, oligodendrocyte precursor cells (OPCs), SH-SY5Y, HeLa and NIH/3T3 cells. The cellular uptake mechanism of RVG29 complexes was examined using endocytosis inhibitors. KEY FINDINGS The mRVG29 peptide has the ability to enhance the nuclear import of plasmids. The Asn194Lys mutation in RVG29 peptide of the pGL-mRVG29 complex and the addition of KP to the pGL-RVG29-KP complex increased the capacity to deliver DNA by endocytosis in astrocytes and SH-SY5Y cells. CONCLUSIONS The complexes pGL-mRVG29 and pGL-RVG29-KP have specificity for transfecting astrocytes and SH-SY5Y cells. The karyophilic capacity of this new mRVG peptide render it promising candidate to act as gene delivery vector into the brain cells.
Collapse
Affiliation(s)
| | - Humberto Rodríguez-Rocha
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Laura Mireya Zavala-Flores
- Departamento de Genética Molecular, Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica del Noreste, Monterrey, Mexico
| | | | - Aracely García-García
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | | - Odila Saucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico.,Departamento de Genética Molecular, Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica del Noreste, Monterrey, Mexico
| |
Collapse
|
59
|
Newville J, Valenzuela CF, Li L, Jantzie LL, Cunningham LA. Acute oligodendrocyte loss with persistent white matter injury in a third trimester equivalent mouse model of fetal alcohol spectrum disorder. Glia 2017; 65:1317-1332. [PMID: 28518477 DOI: 10.1002/glia.23164] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 04/03/2017] [Accepted: 04/20/2017] [Indexed: 12/12/2022]
Abstract
Alcohol exposure during central nervous system (CNS) development can lead to fetal alcohol spectrum disorder (FASD). Human imaging studies have revealed significant white matter (WM) abnormalities linked to cognitive impairment in children with FASD; however, the underlying mechanisms remain unknown. Here, we evaluated both the acute and long-term impacts of alcohol exposure on oligodendrocyte number and WM integrity in a third trimester-equivalent mouse model of FASD, in which mouse pups were exposed to alcohol during the first 2 weeks of postnatal development. Our results demonstrate a 58% decrease in the number of mature oligodendrocytes (OLs) and a 75% decrease in the number of proliferating oligodendrocyte progenitor cells (OPCs) within the corpus callosum of alcohol-exposed mice at postnatal day 16 (P16). Interestingly, neither mature OLs nor OPCs derived from the postnatal subventricular zone (SVZ) were numerically affected by alcohol exposure, indicating heterogeneity in susceptibility based on OL ontogenetic origin. Although mature OL and proliferating OPC numbers recovered by postnatal day 50 (P50), abnormalities in myelin protein expression and microstructure within the corpus callosum of alcohol-exposed subjects persisted, as assessed by western immunoblotting of myelin basic protein (MBP; decreased expression) and MRI diffusion tensor imaging (DTI; decreased fractional anisotropy). These results indicate that third trimester-equivalent alcohol exposure leads to an acute, albeit recoverable, decrease in OL lineage cell numbers, accompanied by enduring WM injury. Additionally, our finding of heterogeneity in alcohol susceptibility based on the developmental origin of OLs may have therapeutic implications in FASD and other disorders of WM development.
Collapse
Affiliation(s)
- Jessie Newville
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | | | - Lu Li
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Lauren L Jantzie
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.,Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Lee Anna Cunningham
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
60
|
Yang J, Cheng X, Shen J, Xie B, Zhao X, Zhang Z, Cao Q, Shen Y, Qiu M. A Novel Approach for Amplification and Purification of Mouse Oligodendrocyte Progenitor Cells. Front Cell Neurosci 2016; 10:203. [PMID: 27597818 PMCID: PMC4992724 DOI: 10.3389/fncel.2016.00203] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022] Open
Abstract
Although transgenic and knockout mice are widely used to study the specification and differentiation of oligodendrocyte precursor cells (OPCs), mouse primary OPCs are difficult to be purified and maintained, and many in vitro studies have to resort to rat OPCs as substitutes. In this study, we reported that mouse O4 negative early-stage OPCs can be obtained by culturing cortical tissue blocks, and the simultaneous treatment of OPCs with Platelet Derived Growth Factor-AA (PDGFaa), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF) is the key for the propagation of mouse OPCs in culture. EGF was found to be a potent mitogen for OPCs and cooperate with PDGFaa to extend cell division and inhibit their differentiation. EGF also collaborates with PDGFaa and bFGF to convert bipolar or tripolar OPCs to more vital fibroblast-like OPCs without compromising their oligodendrocyte differentiation potential. In addition, EGF promoted the survival and proliferation of glial progenitor cells (GPCs) derived from primary OPC cultures, and a mixture of GPCs and OPCs can be obtained and propagated in the presence of EGF, bFGF, and PDGFaa. Once EGF is withdrawn, GPC population decreased sharply and fibroblast-like OPCs changed into typical OPCs morphology, then homogeneous OPCs were obtained subsequently.
Collapse
Affiliation(s)
- Junlin Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, The Institute of Developmental and Regenerative Biology, College of Life and Environment Sciences, Hangzhou Normal University Hangzhou, China
| | - Xuejun Cheng
- Zhejiang Key Laboratory of Organ Development and Regeneration, The Institute of Developmental and Regenerative Biology, College of Life and Environment Sciences, Hangzhou Normal University Hangzhou, China
| | - Jiaxi Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, The Institute of Developmental and Regenerative Biology, College of Life and Environment Sciences, Hangzhou Normal University Hangzhou, China
| | - Binghua Xie
- Zhejiang Key Laboratory of Organ Development and Regeneration, The Institute of Developmental and Regenerative Biology, College of Life and Environment Sciences, Hangzhou Normal University Hangzhou, China
| | - Xiaofeng Zhao
- Zhejiang Key Laboratory of Organ Development and Regeneration, The Institute of Developmental and Regenerative Biology, College of Life and Environment Sciences, Hangzhou Normal University Hangzhou, China
| | - Zunyi Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, The Institute of Developmental and Regenerative Biology, College of Life and Environment Sciences, Hangzhou Normal University Hangzhou, China
| | - Qilin Cao
- The Vivian L Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston TX, USA
| | - Ying Shen
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine Hangzhou, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, The Institute of Developmental and Regenerative Biology, College of Life and Environment Sciences, Hangzhou Normal UniversityHangzhou, China; Department of Anatomical Sciences and Neurobiology, University of Louisville, LouisvilleKY, USA
| |
Collapse
|
61
|
Mironova YA, Lenk GM, Lin JP, Lee SJ, Twiss JL, Vaccari I, Bolino A, Havton LA, Min SH, Abrams CS, Shrager P, Meisler MH, Giger RJ. PI(3,5)P2 biosynthesis regulates oligodendrocyte differentiation by intrinsic and extrinsic mechanisms. eLife 2016; 5. [PMID: 27008179 PMCID: PMC4889328 DOI: 10.7554/elife.13023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/23/2016] [Indexed: 12/18/2022] Open
Abstract
Proper development of the CNS axon-glia unit requires bi-directional communication between axons and oligodendrocytes (OLs). We show that the signaling lipid phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2] is required in neurons and in OLs for normal CNS myelination. In mice, mutations of Fig4, Pikfyve or Vac14, encoding key components of the PI(3,5)P2 biosynthetic complex, each lead to impaired OL maturation, severe CNS hypomyelination and delayed propagation of compound action potentials. Primary OLs deficient in Fig4 accumulate large LAMP1+ and Rab7+ vesicular structures and exhibit reduced membrane sheet expansion. PI(3,5)P2 deficiency leads to accumulation of myelin-associated glycoprotein (MAG) in LAMP1+perinuclear vesicles that fail to migrate to the nascent myelin sheet. Live-cell imaging of OLs after genetic or pharmacological inhibition of PI(3,5)P2 synthesis revealed impaired trafficking of plasma membrane-derived MAG through the endolysosomal system in primary cells and brain tissue. Collectively, our studies identify PI(3,5)P2 as a key regulator of myelin membrane trafficking and myelinogenesis. DOI:http://dx.doi.org/10.7554/eLife.13023.001 Neurons communicate with each other through long cable-like extensions called axons. An insulating sheath called myelin (or white matter) surrounds each axon, and allows electrical impulses to travel more quickly. Cells in the brain called oligodendrocytes produce myelin. If the myelin sheath is not properly formed during development, or is damaged by injury or disease, the consequences can include paralysis, impaired thought, and loss of vision. Oligodendrocytes have complex shapes, and each can generate myelin for as many as 50 axons. Oligodendrocytes produce the building blocks of myelin inside their cell bodies, by following instructions encoded by genes within the nucleus. However, the signals that regulate the trafficking of these components to the myelin sheath are poorly understood. Mironova et al. set out to determine whether signaling molecules called phosphoinositides help oligodendrocytes to mature and move myelin building blocks from the cell bodies to remote contact points with axons. Genetic techniques were used to manipulate an enzyme complex in mice that controls the production and turnover of a phosphoinositide called PI(3,5)P2. Mironova et al. found that reducing the levels of PI(3,5)P2 in oligodendrocytes caused the trafficking of certain myelin building blocks to stall. Key myelin components instead accumulated inside bubble-like structures near the oligodendrocyte’s cell body. This showed that PI(3,5)P2 in oligodendrocytes is essential for generating myelin. Further experiments then revealed that reducing PI(3,5)P2 in the neurons themselves indirectly prevented the oligodendrocytes from maturing. This suggests that PI(3,5)P2 also takes part in communication between axons and oligodendrocytes during development of the myelin sheath. A key next step will be to identify the regulatory mechanisms that control the production of PI(3,5)P2 in oligodendrocytes and neurons. Future studies could also explore what PI(3,5)P2 acts upon inside the axons, and which signaling molecules support the maturation of oligodendrocytes. Finally, it remains unclear whether PI(3,5)P2signaling is also required for stabilizing mature myelin, and for repairing myelin after injury in the adult brain. Further work could therefore address these questions as well. DOI:http://dx.doi.org/10.7554/eLife.13023.002
Collapse
Affiliation(s)
- Yevgeniya A Mironova
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States.,Cellular and Molecular Biology Graduate Program, University of Michigan School of Medicine, Ann Arbor, United States
| | - Guy M Lenk
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, United States
| | - Jing-Ping Lin
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, United States
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, United States
| | - Ilaria Vaccari
- Human Inherited Neuropathies Unit, INSPE-Institute for Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Bolino
- Human Inherited Neuropathies Unit, INSPE-Institute for Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Leif A Havton
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, United States
| | - Sang H Min
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, United States
| | - Charles S Abrams
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, United States
| | - Peter Shrager
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, United States
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, United States.,Department of Neurology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States.,Department of Neurology, University of Michigan School of Medicine, Ann Arbor, United States
| |
Collapse
|