51
|
Nimodipine but Not Nifedipine Promotes Expression of Fatty Acid 2-Hydroxylase in a Surgical Stress Model Based on Neuro2a Cells. Int J Mol Sci 2017; 18:ijms18050964. [PMID: 28467360 PMCID: PMC5454877 DOI: 10.3390/ijms18050964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 11/18/2022] Open
Abstract
Nimodipine is well characterized for the management of aneurysmal subarachnoid hemorrhage and has been shown to promote a better outcome and less delayed ischemic neurological deficits. Animal and clinical trials show neuroprotective efficacy following nerve injuries. We showed a neuroprotective effect on Neuro2a cells. Subsequent microarray analysis revealed—among others—fatty acid 2-hydroxylase (FA2H) upregulated by nimodipine in vitro, which is a component of myelin synthesis. Differentiated Neuro2a cells were analyzed for nimodipine-mediated survival considering stress treatment in comparison to nifedipine-treatment. Cell survival was determined by measurement of LDH activity in the culture medium. Nimodipine decreased surgery-like stress-induced cell death of differentiated Neuro2a cells. Neuro2a cell culture was analyzed for changes in FA2H expression induced by nimodipine or nifedipine in surgery-like stress conditions. We analyzed expression levels of FA2H mRNA and protein by qPCR using fa2h specific primers or a FA2H-specific antibody in nimodipine or nifedipine non- and pre-treated Neuro2a cell culture, respectively. Nimodipine but not nifedipine increases FA2H protein levels and also significantly increases mRNA levels of FA2H in both undifferentiated and differentiated Neuro2a cells. Our findings indicate that higher expression of FA2H induced by nimodipine may cause higher survival of Neuro2a cells stressed with surgery-like stressors.
Collapse
|
52
|
Eleuteri C, Olla S, Veroni C, Umeton R, Mechelli R, Romano S, Buscarinu MC, Ferrari F, Calò G, Ristori G, Salvetti M, Agresti C. A staged screening of registered drugs highlights remyelinating drug candidates for clinical trials. Sci Rep 2017; 7:45780. [PMID: 28387380 PMCID: PMC5384285 DOI: 10.1038/srep45780] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/01/2017] [Indexed: 12/13/2022] Open
Abstract
There is no treatment for the myelin loss in multiple sclerosis, ultimately resulting in the axonal degeneration that leads to the progressive phase of the disease. We established a multi-tiered platform for the sequential screening of drugs that could be repurposed as remyelinating agents. We screened a library of 2,000 compounds (mainly Food and Drug Administration (FDA)-approved compounds and natural products) for cellular metabolic activity on mouse oligodendrocyte precursors (OPC), identifying 42 molecules with significant stimulating effects. We then characterized the effects of these compounds on OPC proliferation and differentiation in mouse glial cultures, and on myelination and remyelination in organotypic cultures. Three molecules, edaravone, 5-methyl-7-methoxyisoflavone and lovastatin, gave positive results in all screening tiers. We validated the results by retesting independent stocks of the compounds, analyzing their purity, and performing dose-response curves. To identify the chemical features that may be modified to enhance the compounds' activity, we tested chemical analogs and identified, for edaravone, the functional groups that may be essential for its activity. Among the selected remyelinating candidates, edaravone appears to be of strong interest, also considering that this drug has been approved as a neuroprotective agent for acute ischemic stroke and amyotrophic lateral sclerosis in Japan.
Collapse
Affiliation(s)
- C. Eleuteri
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - S. Olla
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy
| | - C. Veroni
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - R. Umeton
- Center for Experimental Neurological Therapies, Sant’Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - R. Mechelli
- Center for Experimental Neurological Therapies, Sant’Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - S. Romano
- Center for Experimental Neurological Therapies, Sant’Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - MC. Buscarinu
- Center for Experimental Neurological Therapies, Sant’Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - F. Ferrari
- Department of Medical Science, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| | - G. Calò
- Department of Medical Science, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| | - G. Ristori
- Center for Experimental Neurological Therapies, Sant’Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - M. Salvetti
- Center for Experimental Neurological Therapies, Sant’Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| | - C. Agresti
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
53
|
Ferrara SJ, Meinig JM, Placzek AT, Banerji T, McTigue P, Hartley MD, Sanford-Crane HS, Banerji T, Bourdette D, Scanlan TS. Ester-to-amide rearrangement of ethanolamine-derived prodrugs of sobetirome with increased blood-brain barrier penetration. Bioorg Med Chem 2017; 25:2743-2753. [PMID: 28385597 DOI: 10.1016/j.bmc.2017.03.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 02/05/2023]
Abstract
Current therapeutic options for treating demyelinating disorders such as multiple sclerosis (MS) do not stimulate myelin repair, thus creating a clinical need for therapeutic agents that address axonal remyelination. Thyroid hormone is known to play an important role in promoting developmental myelination and repair, and CNS permeable thyromimetic agents could offer an increased therapeutic index compared to endogenous thyroid hormone. Sobetirome is a clinical stage thyromimetic that has been shown to have promising activity in preclinical models related to MS and X-linked adrenoleukodystrophy (X-ALD), a genetic disease that involves demyelination. Here we report a new series of sobetirome prodrugs containing ethanolamine-based promoieties that were found to undergo an intramolecular O,N acyl migration to form the pharmacologically relevant amide species. Several of these systemically administered prodrugs deliver more sobetirome to the brain compared to unmodified sobetirome. Pharmacokinetic properties of the parent drug sobetirome and amidoalcohol prodrug 3 are described and prodrug 3 was found to be more potent than sobetirome in target engagement in the brain from systemic dosing.
Collapse
Affiliation(s)
- Skylar J Ferrara
- Program in Chemical Biology, Department of Physiology & Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - J Matthew Meinig
- Program in Chemical Biology, Department of Physiology & Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Andrew T Placzek
- Program in Chemical Biology, Department of Physiology & Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Tapasree Banerji
- Program in Chemical Biology, Department of Physiology & Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Peter McTigue
- Program in Chemical Biology, Department of Physiology & Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Meredith D Hartley
- Program in Chemical Biology, Department of Physiology & Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Hannah S Sanford-Crane
- Program in Chemical Biology, Department of Physiology & Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Tania Banerji
- Program in Chemical Biology, Department of Physiology & Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Dennis Bourdette
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Thomas S Scanlan
- Program in Chemical Biology, Department of Physiology & Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States.
| |
Collapse
|
54
|
Cerdán S. Twenty-seven Years of Cerebral Pyruvate Recycling. Neurochem Res 2017; 42:1621-1628. [PMID: 28101749 DOI: 10.1007/s11064-017-2173-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/02/2017] [Accepted: 01/02/2017] [Indexed: 10/20/2022]
Abstract
Cerebral pyruvate recycling is a metabolic pathway deriving carbon skeletons and reducing equivalents from mitochondrial oxaloacetate and malate, to the synthesis of mitochondrial and cytosolic pyruvate, lactate and alanine. The pathway allows both, to provide the tricarboxylic acid cycle with pyruvate molecules produced from alternative substrates to glucose and, to generate reducing equivalents necessary for the operation of NADPH requiring processes. At the cellular level, pyruvate recycling involves the activity of malic enzyme, or the combined activities of phosphoenolpyruvate carboxykinase and pyruvate kinase, as well as of those transporters of the inner mitochondrial membrane exchanging the corresponding intermediates. Its cellular localization between the neuronal or astrocytic compartments of the in vivo brain has been controversial, with evidences favoring either a primarily neuronal or glial localizations, more recently accepted to occur in both environments. This review provides a brief history on the detection and characterization of the pathway, its relations with the early developments of cerebral high resolution 13C NMR, and its potential neuroprotective functions under hypoglycemic conditions or ischemic redox stress.
Collapse
Affiliation(s)
- Sebastián Cerdán
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC/UAM, c/ Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|
55
|
Zhu K, Sun J, Kang Z, Zou Z, Wu G, Wang J. Electroacupuncture Promotes Remyelination after Cuprizone Treatment by Enhancing Myelin Debris Clearance. Front Neurosci 2017; 10:613. [PMID: 28119561 PMCID: PMC5222794 DOI: 10.3389/fnins.2016.00613] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022] Open
Abstract
Promoting remyelination is crucial for patients with demyelinating diseases including multiple sclerosis. However, it is still a circuitous conundrum finding a practical remyelinating therapy. Electroacupuncture (EA), originating from traditional Chinese medicine (TCM), has been widely used to treat CNS diseases all over the world, but the role of EA in demyelinating diseases is barely known. In this study, we examined the remyelinating properties and mechanisms of EA in cuprizone-induced demyelinating model, a CNS demyelinating murine model of multiple sclerosis. By feeding C57BL/6 mice with chow containing 0.2% cuprizone for 5 weeks, we successfully induce demyelination as proved by weight change, beam test, pole test, histomorphology, and Western Blot. EA treatment significantly improves the neurobehavioral performance at week 7 (2 weeks after withdrawing cuprizone chow). RNA-seq and RT-PCR results reveal up-regulated expression of myelin-related genes, and the expression of myelin associated protein (MBP, CNPase, and O4) are also increased after EA treatment, indicating therapeutic effect of EA on cuprizone model. It is widely acknowledged that microglia exert phagocytic effect on degraded myelin debris and clear these detrimental debris, which is a necessary process for subsequent remyelination. We found the remyelinating effect of EA is associated with enhanced clearance of degraded myelin debris as detected by dMBP staining and red oil O staining. Our further studies suggest that more microglia assemble in demyelinating area (corpus callosum) during the process of EA treatment, and cells inside corpus callosum are mostly in a plump, ameboid, and phagocytic shape, quite different from the ramified cells outside corpus callosum. RNA-seq result also unravels that most genes relating to positive regulation of phagocytosis (GO:0050766) are up-regulated, indicating enhanced phagocytic process after EA treatment. During the process of myelin debris clearance, microglia tend to change their phenotype toward M2 phenotype. Thus, we also probed into the phenotype of microglia in our study. Immuno-staining results show increased expression of CD206 and Arg1, and the ratio of CD206/CD16/32 are also higher in EA group. In conclusion, these results demonstrate for the first time that EA enhances myelin debris removal from activated microglia after demyelination, and promotes remyelination.
Collapse
Affiliation(s)
- Keying Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| | - Jingxian Sun
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| | - Zheng Kang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| | - Zaofeng Zou
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| | - Gencheng Wu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| | - Jun Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| |
Collapse
|
56
|
Gajofatto A, Turatti M, Benedetti MD. Primary progressive multiple sclerosis: current therapeutic strategies and future perspectives. Expert Rev Neurother 2016; 17:393-406. [PMID: 27813441 DOI: 10.1080/14737175.2017.1257385] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory condition of the central nervous system with heterogeneous features. Primary progressive (PP) MS is a rare disease subtype characterized by continuous disability worsening from onset. No disease-modifying therapy is currently approved for PP MS due to the negative or inconsistent results of clinical trials conducted on a wide range of interventions, which are reviewed in the present paper. Areas covered: The features and results of randomized trials of disease-modifying treatments for PP MS are discussed, including immunosuppressants, immunomodulators, monoclonal antibodies, and putative neuroprotective agents. Expert commentary: The recent encouraging results of the ocrelizumab trial in PP MS, the first to reach the primary disability endpoint, indicate B cells as a promising therapeutic target to prevent disease progression. Other emerging treatment strategies include cell metabolism modulation and inflammatory pathways inhibition, which are being investigated in several ongoing phase II and III placebo-controlled trials. Future PP MS trials will need to systematically include efficacy endpoints other than physical disability alone, such as cognition, quality of life, advanced MRI measures and molecular biomarkers.
Collapse
Affiliation(s)
- Alberto Gajofatto
- a Department of Neuroscience, Biomedicine and Movement Sciences , University of Verona , Verona , Italy
| | - Marco Turatti
- b Department of Neuroscience , Azienda Ospedaliera Universitaria Integrata Verona , Verona , Italy
| | - Maria Donata Benedetti
- b Department of Neuroscience , Azienda Ospedaliera Universitaria Integrata Verona , Verona , Italy
| |
Collapse
|
57
|
Coclitu C, Constantinescu CS, Tanasescu R. The future of multiple sclerosis treatments. Expert Rev Neurother 2016; 16:1341-1356. [DOI: 10.1080/14737175.2016.1243056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
58
|
De Leener B, Lévy S, Dupont SM, Fonov VS, Stikov N, Louis Collins D, Callot V, Cohen-Adad J. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage 2016; 145:24-43. [PMID: 27720818 DOI: 10.1016/j.neuroimage.2016.10.009] [Citation(s) in RCA: 355] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 11/17/2022] Open
Abstract
For the past 25 years, the field of neuroimaging has witnessed the development of several software packages for processing multi-parametric magnetic resonance imaging (mpMRI) to study the brain. These software packages are now routinely used by researchers and clinicians, and have contributed to important breakthroughs for the understanding of brain anatomy and function. However, no software package exists to process mpMRI data of the spinal cord. Despite the numerous clinical needs for such advanced mpMRI protocols (multiple sclerosis, spinal cord injury, cervical spondylotic myelopathy, etc.), researchers have been developing specific tools that, while necessary, do not provide an integrative framework that is compatible with most usages and that is capable of reaching the community at large. This hinders cross-validation and the possibility to perform multi-center studies. In this study we introduce the Spinal Cord Toolbox (SCT), a comprehensive software dedicated to the processing of spinal cord MRI data. SCT builds on previously-validated methods and includes state-of-the-art MRI templates and atlases of the spinal cord, algorithms to segment and register new data to the templates, and motion correction methods for diffusion and functional time series. SCT is tailored towards standardization and automation of the processing pipeline, versatility, modularity, and it follows guidelines of software development and distribution. Preliminary applications of SCT cover a variety of studies, from cross-sectional area measures in large databases of patients, to the precise quantification of mpMRI metrics in specific spinal pathways. We anticipate that SCT will bring together the spinal cord neuroimaging community by establishing standard templates and analysis procedures.
Collapse
Affiliation(s)
- Benjamin De Leener
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Simon Lévy
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
| | - Sara M Dupont
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Vladimir S Fonov
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Nikola Stikov
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - D Louis Collins
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Virginie Callot
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France; AP-HM, Hopital de la Timone, Pôle d'imagerie médicale, CEMEREM, Marseille, France
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
59
|
Yao X, Su T, Verkman AS. Clobetasol promotes remyelination in a mouse model of neuromyelitis optica. Acta Neuropathol Commun 2016; 4:42. [PMID: 27117475 PMCID: PMC4845317 DOI: 10.1186/s40478-016-0309-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 12/14/2022] Open
Abstract
Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system that can produce marked neurological deficit. Current NMO therapies include immunosuppressants, plasma exchange and B-cell depletion. Here, we evaluated 14 potential remyelinating drugs emerging from prior small molecule screens done to identify drugs for repurposing in multiple sclerosis and other demyelinating neurological diseases. Compounds were initially evaluated in oligodendrocyte precursor cell (OPC) and cerebellar slice cultures, and then in a mouse model of NMO produced by intracerebral injection of anti-AQP4 autoantibody (AQP4-IgG) and human complement characterized by demyelination with minimal axonal damage. The FDA-approved drug clobetasol promoted differentiation in OPC cultures and remyelination in cerebellar slice cultures and in mice. Intraperitoneal administration of 2 mg/kg/day clobetasol reduced myelin loss by ~60 %, even when clobetasol was administered after demyelination occurred. Clobetasol increased the number of mature oligodendrocytes within lesions without significantly altering initial astrocyte damage or inflammation. These results provide proof-of-concept for the potential utility of a remyelinating approach in the treatment of NMO.
Collapse
|