51
|
Loss CM, Teodoro L, Rodrigues GD, Moreira LR, Peres FF, Zuardi AW, Crippa JA, Hallak JEC, Abílio VC. Is Cannabidiol During Neurodevelopment a Promising Therapy for Schizophrenia and Autism Spectrum Disorders? Front Pharmacol 2021; 11:635763. [PMID: 33613289 PMCID: PMC7890086 DOI: 10.3389/fphar.2020.635763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/24/2020] [Indexed: 01/22/2023] Open
Abstract
Schizophrenia and autism spectrum disorders (ASD) are psychiatric neurodevelopmental disorders that cause high levels of functional disabilities. Also, the currently available therapies for these disorders are limited. Therefore, the search for treatments that could be beneficial for the altered course of the neurodevelopment associated with these disorders is paramount. Preclinical and clinical evidence points to cannabidiol (CBD) as a promising strategy. In this review, we discuss clinical and preclinical studies on schizophrenia and ASD investigating the behavioral, molecular, and functional effects of chronic treatment with CBD (and with cannabidivarin for ASD) during neurodevelopment. In summary, the results point to CBD's beneficial potential for the progression of these disorders supporting further investigations to strengthen its use.
Collapse
Affiliation(s)
- Cássio Morais Loss
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| | - Lucas Teodoro
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriela Doná Rodrigues
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lucas Roberto Moreira
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Fiel Peres
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| | - Antonio Waldo Zuardi
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - José Alexandre Crippa
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Jaime Eduardo Cecilio Hallak
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Costhek Abílio
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| |
Collapse
|
52
|
Aran A, Harel M, Cassuto H, Polyansky L, Schnapp A, Wattad N, Shmueli D, Golan D, Castellanos FX. Cannabinoid treatment for autism: a proof-of-concept randomized trial. Mol Autism 2021; 12:6. [PMID: 33536055 PMCID: PMC7860205 DOI: 10.1186/s13229-021-00420-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/27/2021] [Indexed: 12/27/2022] Open
Abstract
Background Endocannabinoid dysfunction in animal models of autism spectrum disorder (ASD) and accumulating, albeit anecdotal, evidence for efficacy in humans motivated this placebo-controlled double-blind comparison of two oral cannabinoid solutions in 150 participants (age 5–21 years) with ASD. Methods We tested (1) BOL-DP-O-01-W, a whole-plant cannabis extract containing cannabidiol and Δ9-tetrahydrocannabinol at a 20:1 ratio and (2) BOL-DP-O-01, purified cannabidiol and Δ9-tetrahydrocannabinol at the same ratio. Participants (N = 150) received either placebo or cannabinoids for 12-weeks (testing efficacy) followed by a 4-week washout and predetermined cross-over for another 12 weeks to further assess tolerability. Registered primary efficacy outcome measures were improvement in behavioral problems (differences between whole-plant extract and placebo) on the Home Situation Questionnaire-ASD (HSQ-ASD) and the Clinical Global Impression-Improvement scale with disruptive behavior anchor points (CGI-I). Secondary measures were Social Responsiveness Scale (SRS-2) and Autism Parenting Stress Index (APSI). Results Changes in Total Scores of HSQ-ASD (primary-outcome) and APSI (secondary-outcome) did not differ among groups. Disruptive behavior on the CGI-I (co-primary outcome) was either much or very much improved in 49% on whole-plant extract (n = 45) versus 21% on placebo (n = 47; p = 0.005). Median SRS Total Score (secondary-outcome) improved by 14.9 on whole-plant extract (n = 34) versus 3.6 points after placebo (n = 36); p = 0.009). There were no treatment-related serious adverse events. Common adverse events included somnolence and decreased appetite, reported for 28% and 25% on whole-plant extract, respectively (n = 95); 23% and 21% on pure-cannabinoids (n = 93), and 8% and 15% on placebo (n = 94). Limitations Lack of pharmacokinetic data and a wide range of ages and functional levels among participants warrant caution when interpreting the results. Conclusions This interventional study provides evidence that BOL-DP-O-01-W and BOL-DP-O-01, administrated for 3 months, are well tolerated. Evidence for efficacy of these interventions are mixed and insufficient. Further testing of cannabinoids in ASD is recommended. Trial registration ClinicalTrials.gov: NCT02956226. Registered 06 November 2016, https://clinicaltrials.gov/ct2/show/NCT02956226
Collapse
Affiliation(s)
- Adi Aran
- Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031, Jerusalem, Israel.
| | - Moria Harel
- Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031, Jerusalem, Israel
| | - Hanoch Cassuto
- Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031, Jerusalem, Israel
| | - Lola Polyansky
- Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031, Jerusalem, Israel
| | - Aviad Schnapp
- Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031, Jerusalem, Israel
| | - Nadia Wattad
- Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031, Jerusalem, Israel
| | - Dorit Shmueli
- Child Development Centers, Clalit Health Services, Tel Aviv-Yafo, Israel
| | - Daphna Golan
- Child Development Centers, Maccabi Health Services, Jerusalem, Israel
| | - F Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
53
|
Metternich B, Wagner K, Geiger MJ, Hirsch M, Schulze-Bonhage A, Klotz KA. Cognitive and behavioral effects of cannabidiol in patients with treatment-resistant epilepsy. Epilepsy Behav 2021; 114:107558. [PMID: 33246899 DOI: 10.1016/j.yebeh.2020.107558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/16/2020] [Accepted: 10/09/2020] [Indexed: 01/12/2023]
Abstract
PURPOSE Therapeutic use of cannabidiol (CBD) in intractable epilepsies has increased considerably over the last ten years. As more evidence for the potentially beneficial effects of CBD on different epilepsy types is emerging, it is important to monitor potential cognitive and behavioral side effects. So far, studies including standardized neuropsychological data in the context of treatment with CBD in epilepsy patients are sparse. The present open-label study examines cognitive and behavioral effects of CBD in children and adults with treatment resistant epilepsy. METHOD Thirty-nine patients with treatment-resistant epilepsy completed the study protocol, i.e. they were tested at baseline (T0) and after three months of CBD treatment (T1). Patients completed standardized neuropsychological tests on memory, executive functions and attention if they were capable. For cognitively impaired patients who could not complete cognitive tests, caregiver interviews were conducted and caregiver questionnaires completed. RESULTS Significant cognitive decline from T0 to T1 was observed on none of the included measures. There was a significant improvement on a measure of selective attention and on a caregiver-rated behavioral measure. More than 89% of all individual test results remained stable or showed reliable improvement from T0 to T1. Cognitive and behavioral changes from T0 to T1 were not significantly correlated with CBD dose. Improvements in short-term/working memory were significantly related to better therapy response. CONCLUSION No adverse group-level effects of CBD treatment were detected. On an individual level, most test results remained stable or were improved. Cognitive change was not related to CBD dose. The present results show that, from a cognitive and behavioral point of view, CBD seems to have an encouraging side-effect profile. The results need to be replicated with larger samples.
Collapse
Affiliation(s)
- Birgitta Metternich
- Epilepsy Center, Medical Center-University of Freiburg, Faculty of Medicine University of Freiburg Germany, Breisacher Straße 64, 79106 Freiburg, Germany.
| | - Kathrin Wagner
- Epilepsy Center, Medical Center-University of Freiburg, Faculty of Medicine University of Freiburg Germany, Breisacher Straße 64, 79106 Freiburg, Germany
| | - Maximilian J Geiger
- Epilepsy Center, Medical Center-University of Freiburg, Faculty of Medicine University of Freiburg Germany, Breisacher Straße 64, 79106 Freiburg, Germany
| | - Martin Hirsch
- Epilepsy Center, Medical Center-University of Freiburg, Faculty of Medicine University of Freiburg Germany, Breisacher Straße 64, 79106 Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center-University of Freiburg, Faculty of Medicine University of Freiburg Germany, Breisacher Straße 64, 79106 Freiburg, Germany
| | - Kerstin A Klotz
- Epilepsy Center, Medical Center-University of Freiburg, Faculty of Medicine University of Freiburg Germany, Breisacher Straße 64, 79106 Freiburg, Germany; Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Faculty of Medicine University of Freiburg, Mathildenstraße 1, 79106 Freiburg, Germany; Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
54
|
Huang S, Kirkwood A. Endocannabinoid Signaling Contributes to Experience-Induced Increase of Synaptic Release Sites From Parvalbumin Interneurons in Mouse Visual Cortex. Front Cell Neurosci 2020; 14:571133. [PMID: 33192316 PMCID: PMC7556304 DOI: 10.3389/fncel.2020.571133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
During postnatal development of the visual cortex between eye-opening to puberty, visual experience promotes a gradual increase in the strength of inhibitory synaptic connections from parvalbumin-positive interneurons (PV-INs) onto layer 2/3 pyramidal cells. However, the detailed connectivity properties and molecular mechanisms underlying these developmental changes are not well understood. Using dual-patch clamp in brain slices from G42 mice, we revealed that both connection probability and the number of synaptic release sites contributed to the enhancement of synaptic strength. The increase of release site number was hindered by dark rearing from eye-opening and rescued by 3-days re-exposure to the normal visual environment. The effect of light re-exposure on restoring synaptic release sites in dark reared mice was mimicked by the agonist of cannabinoid-1 (CB1) receptors and blocked by an antagonist of these receptors, suggesting a role for endocannabinoid signaling in light-induced maturation of inhibitory connectivity from PV-INs to pyramidal cells during postnatal development.
Collapse
Affiliation(s)
- Shiyong Huang
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, United States.,The Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Alfredo Kirkwood
- The Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
55
|
Cannabinoids for People with ASD: A Systematic Review of Published and Ongoing Studies. Brain Sci 2020; 10:brainsci10090572. [PMID: 32825313 PMCID: PMC7563787 DOI: 10.3390/brainsci10090572] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
The etiopathogenesis of autism spectrum disorder (ASD) remains largely unclear. Among other biological hypotheses, researchers have evidenced an imbalance in the endocannabinoid (eCB) system, which regulates some functions typically impaired in ASD, such as emotional responses and social interaction. Additionally, cannabidiol (CBD), the non-intoxicating component of Cannabis sativa, was recently approved for treatment-resistant epilepsy. Epilepsy represents a common medical condition in people with ASD. Additionally, the two conditions share some neuropathological mechanisms, particularly GABAergic dysfunctions. Hence, it was hypothesized that cannabinoids could be useful in improving ASD symptoms. Our systematic review was conducted according to the PRISMA guidelines and aimed to summarize the literature regarding the use of cannabinoids in ASD. After searching in Web of KnowledgeTM, PsycINFO, and Embase, we included ten studies (eight papers and two abstracts). Four ongoing trials were retrieved in ClinicalTrials.gov. The findings were promising, as cannabinoids appeared to improve some ASD-associated symptoms, such as problem behaviors, sleep problems, and hyperactivity, with limited cardiac and metabolic side effects. Conversely, the knowledge of their effects on ASD core symptoms is scarce. Interestingly, cannabinoids generally allowed to reduce the number of prescribed medications and decreased the frequency of seizures in patients with comorbid epilepsy. Mechanisms of action could be linked to the excitatory/inhibitory imbalance found in people with ASD. However, further trials with better characterization and homogenization of samples, and well-defined outcomes should be implemented.
Collapse
|
56
|
Abstract
The use of medical cannabis in children is rapidly growing. While robust evidence currently exists only for pure cannabidiol (CBD) to treat specific types of refractory epilepsy, in most cases, artisanal strains of CBD-rich medical cannabis are being used to treat children with various types of refractory epilepsy or irritability associated with autism spectrum disorder (ASD). Other common pediatric disorders that are being considered for cannabis treatment are Tourette syndrome and spasticity. As recreational cannabis use during youth is associated with serious adverse events and medical cannabis use is believed to have a relatively high placebo effect, decisions to use medical cannabis during childhood and adolescence should be made with caution and based on evidence. This review summarizes the current evidence for safety, tolerability, and efficacy of medical cannabis in children with epilepsy and in children with ASD. The main risks associated with use of Δ9-tetrahydrocannabinol (THC) and CBD in the pediatric population are described, as well as the debate regarding the use of whole-plant extract to retain a possible "entourage effect" as opposed to pure cannabinoids that are more standardized and reproducible.
Collapse
Affiliation(s)
- Adi Aran
- To whom correspondence should be addressed. E-mail:
| | | |
Collapse
|