51
|
Edmunds KJ, Petersen H, Hassan M, Yassine S, Olivieri A, Barollo F, Friðriksdóttir R, Edmunds P, Gíslason MK, Fratini A, Gargiulo P. Cortical recruitment and functional dynamics in postural control adaptation and habituation during vibratory proprioceptive stimulation. J Neural Eng 2019; 16:026037. [PMID: 30754028 DOI: 10.1088/1741-2552/ab0678] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Maintaining upright posture is a complex task governed by the integration of afferent sensorimotor and visual information with compensatory neuromuscular reactions. The objective of the present work was to characterize the visual dependency and functional dynamics of cortical activation during postural control. APPROACH Proprioceptic vibratory stimulation of calf muscles at 85 Hz was performed to evoke postural perturbation in open-eye (OE) and closed-eye (CE) experimental trials, with pseudorandom binary stimulation phases divided into four segments of 16 stimuli. 64-channel EEG was recorded at 512 Hz, with perturbation epochs defined using bipolar electrodes placed proximal to each vibrator. Power spectra variation and linearity analysis was performed via fast Fourier transformation into six frequency bands (Δ, 0.5-3.5 Hz; θ, 3.5-7.5 Hz; α, 7.5-12.5 Hz; β, 12.5-30 Hz; [Formula: see text], 30-50 Hz; and [Formula: see text], 50-80 Hz). Finally, functional connectivity assessment was explored via network segregation and integration analyses. MAIN RESULTS Spectra variation showed waveform and vision-dependent activation within cortical regions specific to both postural adaptation and habituation. Generalized spectral variation yielded significant shifts from low to high frequencies in CE adaptation trials, with overall activity suppressed in habituation; OE trials showed the opposite phenomenon, with both adaptation and habituation yielding increases in spectral power. Finally, our analysis of functional dynamics reveals novel cortical networks implicated in postural control using EEG source-space brain networks. In particular, our reported significant increase in local θ connectivity may signify the planning of corrective steps and/or the analysis of falling consequences, while α band network integration results reflect an inhibition of error detection within the cingulate cortex, likely due to habituation. SIGNIFICANCE Our findings principally suggest that specific cortical waveforms are dependent upon the availability of visual feedback, and we furthermore present the first evidence that local and global brain networks undergo characteristic modification during postural control.
Collapse
Affiliation(s)
- K J Edmunds
- Institute for Biomedical and Neural Engineering, Reykjavık University, Reykjavık, Iceland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Edwards AE, Guven O, Furman MD, Arshad Q, Bronstein AM. Electroencephalographic Correlates of Continuous Postural Tasks of Increasing Difficulty. Neuroscience 2018; 395:35-48. [DOI: 10.1016/j.neuroscience.2018.10.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/13/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022]
|
53
|
Peterson SM, Furuichi E, Ferris DP. Effects of virtual reality high heights exposure during beam-walking on physiological stress and cognitive loading. PLoS One 2018; 13:e0200306. [PMID: 29979750 PMCID: PMC6034883 DOI: 10.1371/journal.pone.0200306] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/22/2018] [Indexed: 11/25/2022] Open
Abstract
Virtual reality has been increasingly used in research on balance rehabilitation because it provides robust and novel sensory experiences in controlled environments. We studied 19 healthy young subjects performing a balance beam walking task in two virtual reality conditions and with unaltered view (15 minutes each) to determine if virtual reality high heights exposure induced stress. We recorded number of steps off the beam, heart rate, electrodermal activity, response time to an auditory cue, and high-density electroencephalography (EEG). We hypothesized that virtual high heights exposure would increase measures of physiological stress compared to unaltered viewing at low heights. We found that the virtual high height condition increased heart rate variability and heart rate frequency power relative to virtual low heights. Virtual reality use resulted in increased number of step-offs, heart rate, electrodermal activity, and response time compared to the unaltered viewing at low heights condition. Our results indicated that virtual reality decreased dynamic balance performance and increased physical and cognitive loading compared to unaltered viewing at low heights. In virtual reality, we found significant decreases in source-localized EEG peak amplitude relative to unaltered viewing in the anterior cingulate, which is considered important in sensing loss of balance. Our findings indicate that virtual reality provides realistic experiences that can induce physiological stress in humans during dynamic balance tasks, but virtual reality use impairs physical and cognitive performance during balance.
Collapse
Affiliation(s)
- Steven M Peterson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Emily Furuichi
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
54
|
Turcato AM, Godi M, Giardini M, Arcolin I, Nardone A, Giordano A, Schieppati M. Abnormal gait pattern emerges during curved trajectories in high-functioning Parkinsonian patients walking in line at normal speed. PLoS One 2018; 13:e0197264. [PMID: 29750815 PMCID: PMC5947908 DOI: 10.1371/journal.pone.0197264] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
Background Several patients with Parkinson´s disease (PD) can walk normally along straight trajectories, and impairment in their stride length and cadence may not be easily discernible. Do obvious abnormalities occur in these high-functioning patients when more challenging trajectories are travelled, such as circular paths, which normally implicate a graded modulation in the duration of the interlimb gait cycle phases? Methods We compared a cohort of well-treated mildly to moderately affected PD patients to a group of age-matched healthy subjects (HS), by deliberately including HS spontaneously walking at the same speed of the patients with PD. All participants performed, in random order: linear and circular walking (clockwise and counter-clockwise) at self-selected speed. By means of pressure-sensitive insoles, we recorded walking speed, cadence, duration of single support, double support, swing phase, and stride time. Stride length-cadence relationships were built for linear and curved walking. Stride-to-stride variability of temporal gait parameters was also estimated. Results Walking speed, cadence or stride length were not different between PD and HS during linear walking. Speed, cadence and stride length diminished during curved walking in both groups, stride length more in PD than HS. In PD compared to HS, the stride length-cadence relationship was altered during curved walking. Duration of the double-support phase was also increased during curved walking, as was variability of the single support, swing phase and double support phase. Conclusion The spatio-temporal gait pattern and variability are significantly modified in well-treated, high-functioning patients with PD walking along circular trajectories, even when they exhibit no changes in speed in straight-line walking. The increased variability of the gait phases during curved walking is an identifying characteristic of PD. We discuss our findings in term of interplay between control of balance and of locomotor progression: the former is challenged by curved trajectories even in high-functioning patients, while the latter may not be critically affected.
Collapse
Affiliation(s)
- Anna Maria Turcato
- Division of Physical Medicine and Rehabilitation, ICS Maugeri SPA SB, Institute of Veruno, IRCCS, Veruno, Novara, Italy
| | - Marco Godi
- Division of Physical Medicine and Rehabilitation, ICS Maugeri SPA SB, Institute of Veruno, IRCCS, Veruno, Novara, Italy
- * E-mail:
| | - Marica Giardini
- Division of Physical Medicine and Rehabilitation, ICS Maugeri SPA SB, Institute of Veruno, IRCCS, Veruno, Novara, Italy
| | - Ilaria Arcolin
- Division of Physical Medicine and Rehabilitation, ICS Maugeri SPA SB, Institute of Veruno, IRCCS, Veruno, Novara, Italy
| | - Antonio Nardone
- Centro Studi Attività Motorie, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
- Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Andrea Giordano
- Unit of Bioengineering, ICS Maugeri SPA SB, Institute of Veruno, IRCCS, Veruno, Novara, Italy
| | - Marco Schieppati
- Department of Exercise & Sports Science, International University of Health, Exercise and Sports, LUNEX University, Differdange, Luxembourg
| |
Collapse
|
55
|
State-dependent alpha peak frequency shifts: Experimental evidence, potential mechanisms and functional implications. Neuroscience 2017; 360:146-154. [PMID: 28739525 DOI: 10.1016/j.neuroscience.2017.07.037] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 06/30/2017] [Accepted: 07/16/2017] [Indexed: 11/20/2022]
Abstract
Neural populations produce complex oscillatory patterns thought to implement brain function. The dominant rhythm in the healthy adult human brain is formed by alpha oscillations with a typical power peak most commonly found between 8 and 12Hz. This alpha peak frequency has been repeatedly discussed as a highly heritable and stable neurophysiological "trait" marker reflecting anatomical properties of the brain, and individuals' general cognitive capacity. However, growing evidence suggests that the alpha peak frequency is highly volatile at shorter time scales, dependent on the individuals' "state". Based on the converging experimental and theoretical results from numerous recent studies, here we propose that alpha frequency variability forms the basis of an adaptive mechanism mirroring the activation level of neural populations which has important functional implications. We here integrate experimental and computational perspectives to shed new light on the potential role played by shifts in alpha peak frequency and discuss resulting implications. We further propose a potential mechanism by which alpha oscillations are regulated in a noisy network of spiking neurons in presence of delayed feedback.
Collapse
|
56
|
Shaping Intrinsic Neural Oscillations with Periodic Stimulation. J Neurosci 2017; 36:5328-37. [PMID: 27170129 DOI: 10.1523/jneurosci.0236-16.2016] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/05/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Rhythmic brain activity plays an important role in neural processing and behavior. Features of these oscillations, including amplitude, phase, and spectrum, can be influenced by internal states (e.g., shifts in arousal, attention or cognitive ability) or external stimulation. Electromagnetic stimulation techniques such as transcranial magnetic stimulation, transcranial direct current stimulation, and transcranial alternating current stimulation are used increasingly in both research and clinical settings. Currently, the mechanisms whereby time-dependent external stimuli influence population-scale oscillations remain poorly understood. Here, we provide computational insights regarding the mapping between periodic pulsatile stimulation parameters such as amplitude and frequency and the response dynamics of recurrent, nonlinear spiking neural networks. Using a cortical model built of excitatory and inhibitory neurons, we explored a wide range of stimulation intensities and frequencies systematically. Our results suggest that rhythmic stimulation can form the basis of a control paradigm in which one can manipulate the intrinsic oscillatory properties of driven networks via a plurality of input-driven mechanisms. Our results show that, in addition to resonance and entrainment, nonlinear acceleration is involved in shaping the rhythmic response of our modeled network. Such nonlinear acceleration of spontaneous and synchronous oscillatory activity in a neural network occurs in regimes of intense, high-frequency rhythmic stimulation. These results open new perspectives on the manipulation of synchronous neural activity for basic and clinical research. SIGNIFICANCE STATEMENT Oscillatory activity is widely recognized as a core mechanism for information transmission within and between brain circuits. Noninvasive stimulation methods can shape this activity, something that is increasingly capitalized upon in basic research and clinical practice. Here, we provide computational insights on the mechanistic bases for such effects. Our results show that rhythmic stimulation forms the basis of a control paradigm in which one can manipulate the intrinsic oscillatory properties of driven networks via a plurality of input-driven mechanisms. In addition to resonance and entrainment, nonlinear acceleration is involved in shaping the rhythmic response of our modeled network, particularly in regimes of high-frequency rhythmic stimulation. These results open new perspectives on the manipulation of synchronous neural activity for basic and clinical research.
Collapse
|
57
|
Christie S, di Fronso S, Bertollo M, Werthner P. Individual Alpha Peak Frequency in Ice Hockey Shooting Performance. Front Psychol 2017; 8:762. [PMID: 28559868 PMCID: PMC5433296 DOI: 10.3389/fpsyg.2017.00762] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/26/2017] [Indexed: 11/18/2022] Open
Abstract
There are several important inter- and intra-individual variations in individual alpha peak frequency (IAPF) in the cognitive domain. The rationale for the present study was to extend the research on IAPF in the cognitive domain to IAPF in the sport domain. Specifically, the purpose of the present study was twofold: (a) to explore whether baseline IAPF is related to performance in an ice hockey shooting task and (b) to explore whether a shooting task has an effect on IAPF variability. The present investigation is one of the first studies to examine links between IAPF and sport performance. Study results did not show significant changes in IAPF when comparing baseline IAPF and pre- to post-task IAPF across three performance levels. The findings support previous literature in the cognitive domain suggesting that IAPF is a stable neurophysiological marker. Future research should consider the following methodological suggestions: (a) measuring IAPF during sport performance instead of at a resting state, (b) changing the pre-performance resting baseline instructions to take into account sport-specific mental preparation,
Collapse
Affiliation(s)
- Sommer Christie
- Faculty of Kinesiology, University of Calgary, CalgaryAB, Canada
| | - Selenia di Fronso
- Behavioral Imaging and Neural Dynamics Center, Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-PescaraChieti, Italy
| | - Maurizio Bertollo
- Behavioral Imaging and Neural Dynamics Center, Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-PescaraChieti, Italy
| | - Penny Werthner
- Faculty of Kinesiology, University of Calgary, CalgaryAB, Canada
| |
Collapse
|
58
|
Wittenberg E, Thompson J, Nam CS, Franz JR. Neuroimaging of Human Balance Control: A Systematic Review. Front Hum Neurosci 2017; 11:170. [PMID: 28443007 PMCID: PMC5385364 DOI: 10.3389/fnhum.2017.00170] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/22/2017] [Indexed: 12/13/2022] Open
Abstract
This review examined 83 articles using neuroimaging modalities to investigate the neural correlates underlying static and dynamic human balance control, with aims to support future mobile neuroimaging research in the balance control domain. Furthermore, this review analyzed the mobility of the neuroimaging hardware and research paradigms as well as the analytical methodology to identify and remove movement artifact in the acquired brain signal. We found that the majority of static balance control tasks utilized mechanical perturbations to invoke feet-in-place responses (27 out of 38 studies), while cognitive dual-task conditions were commonly used to challenge balance in dynamic balance control tasks (20 out of 32 studies). While frequency analysis and event related potential characteristics supported enhanced brain activation during static balance control, that in dynamic balance control studies was supported by spatial and frequency analysis. Twenty-three of the 50 studies utilizing EEG utilized independent component analysis to remove movement artifacts from the acquired brain signals. Lastly, only eight studies used truly mobile neuroimaging hardware systems. This review provides evidence to support an increase in brain activation in balance control tasks, regardless of mechanical, cognitive, or sensory challenges. Furthermore, the current body of literature demonstrates the use of advanced signal processing methodologies to analyze brain activity during movement. However, the static nature of neuroimaging hardware and conventional balance control paradigms prevent full mobility and limit our knowledge of neural mechanisms underlying balance control.
Collapse
Affiliation(s)
- Ellen Wittenberg
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State UniversityRaleigh, NC, USA
| | - Jessica Thompson
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State UniversityChapel Hill, NC, USA
| | - Chang S Nam
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State UniversityRaleigh, NC, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State UniversityChapel Hill, NC, USA
| |
Collapse
|
59
|
Hutt A, Mierau A, Lefebvre J. Dynamic Control of Synchronous Activity in Networks of Spiking Neurons. PLoS One 2016; 11:e0161488. [PMID: 27669018 PMCID: PMC5036852 DOI: 10.1371/journal.pone.0161488] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/06/2016] [Indexed: 11/19/2022] Open
Abstract
Oscillatory brain activity is believed to play a central role in neural coding. Accumulating evidence shows that features of these oscillations are highly dynamic: power, frequency and phase fluctuate alongside changes in behavior and task demands. The role and mechanism supporting this variability is however poorly understood. We here analyze a network of recurrently connected spiking neurons with time delay displaying stable synchronous dynamics. Using mean-field and stability analyses, we investigate the influence of dynamic inputs on the frequency of firing rate oscillations. We show that afferent noise, mimicking inputs to the neurons, causes smoothing of the system’s response function, displacing equilibria and altering the stability of oscillatory states. Our analysis further shows that these noise-induced changes cause a shift of the peak frequency of synchronous oscillations that scales with input intensity, leading the network towards critical states. We lastly discuss the extension of these principles to periodic stimulation, in which externally applied driving signals can trigger analogous phenomena. Our results reveal one possible mechanism involved in shaping oscillatory activity in the brain and associated control principles.
Collapse
Affiliation(s)
- Axel Hutt
- Deutscher Wetterdienst, Section FE12 - Data Assimilation, 63067, Offenbach am Main, Germany
| | - Andreas Mierau
- Institute of Movement and Neurosciences, German Sport University, Cologne, Germany
| | - Jérémie Lefebvre
- Krembil Research Institute, University Health Network, Toronto, Ontario, M5T 2S8, Canada
- Department of Mathematics, University of Toronto, Toronto, Ontario, M5S 3G3, Canada
- * E-mail:
| |
Collapse
|