51
|
Mandal PK, Banerjee A, Tripathi M, Sharma A. A Comprehensive Review of Magnetoencephalography (MEG) Studies for Brain Functionality in Healthy Aging and Alzheimer's Disease (AD). Front Comput Neurosci 2018; 12:60. [PMID: 30190674 PMCID: PMC6115612 DOI: 10.3389/fncom.2018.00060] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022] Open
Abstract
Neural oscillations were established with their association with neurophysiological activities and the altered rhythmic patterns are believed to be linked directly to the progression of cognitive decline. Magnetoencephalography (MEG) is a non-invasive technique to record such neuronal activity due to excellent temporal and fair amount of spatial resolution. Single channel, connectivity as well as brain network analysis using MEG data in resting state and task-based experiments were analyzed from existing literature. Single channel analysis studies reported a less complex, more regular and predictable oscillations in Alzheimer's disease (AD) primarily in the left parietal, temporal and occipital regions. Investigations on both functional connectivity (FC) and effective (EC) connectivity analysis demonstrated a loss of connectivity in AD compared to healthy control (HC) subjects found in higher frequency bands. It has been reported from multiplex network of MEG study in AD in the affected regions of hippocampus, posterior default mode network (DMN) and occipital areas, however, conclusions cannot be drawn due to limited availability of clinical literature. Potential utilization of high spatial resolution in MEG likely to provide information related to in-depth brain functioning and underlying factors responsible for changes in neuronal waves in AD. This review is a comprehensive report to investigate diagnostic biomarkers for AD may be identified by from MEG data. It is also important to note that MEG data can also be utilized for the same pursuit in combination with other imaging modalities.
Collapse
Affiliation(s)
- Pravat K. Mandal
- Neuroimaging and Neurospectroscopy Lab, National Brain Research Centre, Gurgaon, India
- Department of Neurodegeneration, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Anwesha Banerjee
- Neuroimaging and Neurospectroscopy Lab, National Brain Research Centre, Gurgaon, India
| | - Manjari Tripathi
- Department of Neurology, All Indian Institute of Medical Sciences, New Delhi, India
| | - Ankita Sharma
- Neuroimaging and Neurospectroscopy Lab, National Brain Research Centre, Gurgaon, India
| |
Collapse
|
52
|
López-Sanz D, Serrano N, Maestú F. The Role of Magnetoencephalography in the Early Stages of Alzheimer's Disease. Front Neurosci 2018; 12:572. [PMID: 30158852 PMCID: PMC6104188 DOI: 10.3389/fnins.2018.00572] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/30/2018] [Indexed: 01/01/2023] Open
Abstract
The ever increasing proportion of aged people in modern societies is leading to a substantial increase in the number of people affected by dementia, and Alzheimer’s Disease (AD) in particular, which is the most common cause for dementia. Throughout the course of the last decades several different compounds have been tested to stop or slow disease progression with limited success, which is giving rise to a strong interest toward the early stages of the disease. Alzheimer’s disease has an extended an insidious preclinical stage in which brain pathology accumulates slowly until clinical symptoms are observable in prodromal stages and in dementia. For this reason, the scientific community is focusing into investigating early signs of AD which could lead to the development of validated biomarkers. While some CSF and PET biomarkers have already been introduced in the clinical practice, the use of non-invasive measures of brain function as early biomarkers is still under investigation. However, the electrophysiological mechanisms and the early functional alterations underlying preclinical Alzheimer’s Disease is still scarcely studied. This work aims to briefly review the most relevant findings in the field of electrophysiological brain changes as measured by magnetoencephalography (MEG). MEG has proven its utility in some clinical areas. However, although its clinical relevance in dementia is still limited, a growing number of studies highlighted its sensitivity in these preclinical stages. Studies focusing on different analytical approaches will be reviewed. Furthermore, their potential applications to establish early diagnosis and determine subsequent progression to dementia are discussed.
Collapse
Affiliation(s)
- David López-Sanz
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Noelia Serrano
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain
| |
Collapse
|
53
|
Pu Y, Cheyne DO, Cornwell BR, Johnson BW. Non-invasive Investigation of Human Hippocampal Rhythms Using Magnetoencephalography: A Review. Front Neurosci 2018; 12:273. [PMID: 29755314 PMCID: PMC5932174 DOI: 10.3389/fnins.2018.00273] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
Hippocampal rhythms are believed to support crucial cognitive processes including memory, navigation, and language. Due to the location of the hippocampus deep in the brain, studying hippocampal rhythms using non-invasive magnetoencephalography (MEG) recordings has generally been assumed to be methodologically challenging. However, with the advent of whole-head MEG systems in the 1990s and development of advanced source localization techniques, simulation and empirical studies have provided evidence that human hippocampal signals can be sensed by MEG and reliably reconstructed by source localization algorithms. This paper systematically reviews simulation studies and empirical evidence of the current capacities and limitations of MEG “deep source imaging” of the human hippocampus. Overall, these studies confirm that MEG provides a unique avenue to investigate human hippocampal rhythms in cognition, and can bridge the gap between animal studies and human hippocampal research, as well as elucidate the functional role and the behavioral correlates of human hippocampal oscillations.
Collapse
Affiliation(s)
- Yi Pu
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, NSW, Australia.,Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | - Douglas O Cheyne
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Brian R Cornwell
- Brain and Psychological Sciences Research Centre, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Blake W Johnson
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, NSW, Australia.,Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
54
|
Proudfoot M, Colclough GL, Quinn A, Wuu J, Talbot K, Benatar M, Nobre AC, Woolrich MW, Turner MR. Increased cerebral functional connectivity in ALS: A resting-state magnetoencephalography study. Neurology 2018; 90:e1418-e1424. [PMID: 29661904 PMCID: PMC5902786 DOI: 10.1212/wnl.0000000000005333] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE We sought to assess cortical function in amyotrophic lateral sclerosis (ALS) using noninvasive neural signal recording. METHODS Resting-state magnetoencephalography was used to measure power fluctuations in neuronal oscillations from distributed cortical parcels in 24 patients with ALS and 24 healthy controls. A further 9 patients with primary lateral sclerosis and a group of 15 asymptomatic carriers of genetic mutations associated with ALS were also studied. RESULTS Increased functional connectivity, particularly from the posterior cingulate cortex, was demonstrated in both patient groups compared to healthy controls. Directionally similar patterns were also evident in the asymptomatic genetic mutation carrier group. CONCLUSION Increased cortical functional connectivity elevation is a quantitative marker that reflects ALS pathology across its clinical spectrum, and may develop during the presymptomatic period. The amelioration of pathologic magnetoencephalography signals might be a marker sensitive enough to provide proof-of-principle in the development of future neuroprotective therapeutics.
Collapse
Affiliation(s)
- Malcolm Proudfoot
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL
| | - Giles L Colclough
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL
| | - Andrew Quinn
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL
| | - Joanne Wuu
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL
| | - Kevin Talbot
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL
| | - Michael Benatar
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL
| | - Anna C Nobre
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL
| | - Mark W Woolrich
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL.
| | - Martin R Turner
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL.
| |
Collapse
|
55
|
Mondragón-Rodríguez S, Salas-Gallardo A, González-Pereyra P, Macías M, Ordaz B, Peña-Ortega F, Aguilar-Vázquez A, Orta-Salazar E, Díaz-Cintra S, Perry G, Williams S. Phosphorylation of Tau protein correlates with changes in hippocampal theta oscillations and reduces hippocampal excitability in Alzheimer's model. J Biol Chem 2018; 293:8462-8472. [PMID: 29632073 DOI: 10.1074/jbc.ra117.001187] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/14/2018] [Indexed: 01/15/2023] Open
Abstract
Tau hyperphosphorylation at several sites, including those close to the microtubule domain region (MDr), is considered a key pathological event in the development of Alzheimer's disease (AD). Recent studies indicate that at the very early stage of this disease, increased phosphorylation in Tau's MDr domain correlates with reduced levels of neuronal excitability. Mechanistically, we show that pyramidal neurons and some parvalbumin-positive interneurons in 1-month-old triple-transgenic AD mice accumulate hyperphosphorylated Tau protein and that this accumulation correlates with changes in theta oscillations in hippocampal neurons. Pyramidal neurons from young triple-transgenic AD mice exhibited less spike accommodation and power increase in subthreshold membrane oscillations. Furthermore, triple-transgenic AD mice challenged with the potassium channel blocker 4-aminopyridine had reduced theta amplitude compared with 4-aminopyridine-treated control mice and, unlike these controls, displayed no seizure-like activity after this challenge. Collectively, our results provide new insights into AD pathogenesis and suggest that increases in Tau phosphorylation at the initial stages of the disease represent neuronal responses that compensate for brain circuit overexcitation.
Collapse
Affiliation(s)
- Siddhartha Mondragón-Rodríguez
- From the CONACYT National Council for Science and Technology, 03940 México, México, .,UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, 76230 Querétaro, México
| | - Anahí Salas-Gallardo
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, 76230 Querétaro, México
| | - Perla González-Pereyra
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, 76230 Querétaro, México
| | - Martín Macías
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, 76230 Querétaro, México
| | - Benito Ordaz
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, 76230 Querétaro, México
| | - Fernando Peña-Ortega
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, 76230 Querétaro, México
| | - Azucena Aguilar-Vázquez
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, 76230 Querétaro, México
| | - Erika Orta-Salazar
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, 76230 Querétaro, México
| | - Sofía Díaz-Cintra
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, 76230 Querétaro, México
| | - George Perry
- the UTSA Neuroscience Institute and Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, Texas 78249, and
| | - Sylvain Williams
- the Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Quebec H4H 1R3, Canada
| |
Collapse
|
56
|
van der Flier WM, Scheltens P. Amsterdam Dementia Cohort: Performing Research to Optimize Care. J Alzheimers Dis 2018; 62:1091-1111. [PMID: 29562540 PMCID: PMC5870023 DOI: 10.3233/jad-170850] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2017] [Indexed: 01/01/2023]
Abstract
The Alzheimer center of the VU University Medical Center opened in 2000 and was initiated to combine both patient care and research. Together, to date, all patients forming the Amsterdam Dementia Cohort number almost 6,000 individuals. In this cohort profile, we provide an overview of the results produced based on the Amsterdam Dementia Cohort. We describe the main results over the years in each of these research lines: 1) early diagnosis, 2) heterogeneity, and 3) vascular factors. Among the most important research efforts that have also impacted patients' lives and/or the research field, we count the development of novel, easy to use diagnostic measures such as visual rating scales for MRI and the Amsterdam IADL Questionnaire, insight in different subgroups of AD, and findings on incidence and clinical sequelae of microbleeds. Finally, we describe in the outlook how our research endeavors have improved the lives of our patients.
Collapse
Affiliation(s)
- Wiesje M. van der Flier
- Department of Neurology, Alzheimer Center, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
57
|
Koelewijn L, Bompas A, Tales A, Brookes MJ, Muthukumaraswamy SD, Bayer A, Singh KD. Alzheimer's disease disrupts alpha and beta-band resting-state oscillatory network connectivity. Clin Neurophysiol 2017; 128:2347-2357. [PMID: 28571910 PMCID: PMC5674981 DOI: 10.1016/j.clinph.2017.04.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/17/2017] [Accepted: 04/17/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Neuroimaging studies in Alzheimer's disease (AD) yield conflicting results due to selective investigation. We conducted a comprehensive magnetoencephalography study of connectivity changes in AD and healthy ageing in the resting-state. METHODS We performed a whole-brain, source-space assessment of oscillatory neural signalling in multiple frequencies comparing AD patients, elderly and young controls. We compared eyes-open and closed group oscillatory envelope activity in networks obtained through temporal independent component analysis, and calculated whole-brain node-based amplitude and phase connectivity. RESULTS In bilateral parietotemporal areas, oscillatory envelope amplitude increased with healthy ageing, whereas both local amplitude and node-to-global connectivity decreased with AD. AD-related decreases were spatially specific and restricted to the alpha and beta bands. A significant proportion of the variance in areas of peak group difference was explained by cognitive integrity, in addition to group. None of the groups differed in phase connectivity. Results were highly similar for eyes-open and closed resting-state. CONCLUSIONS These results support the disconnection syndrome hypothesis and suggest that AD shows distinct and unique patterns of disrupted neural functioning, rather than accelerated healthy ageing. SIGNIFICANCE Whole-brain assessments show that disrupted regional oscillatory envelope amplitude and connectivity in the alpha and beta bands play a key role in AD.
Collapse
Affiliation(s)
- Loes Koelewijn
- CUBRIC, School of Psychology, Cardiff University, Maindy Road, Cardiff, UK.
| | - Aline Bompas
- CUBRIC, School of Psychology, Cardiff University, Maindy Road, Cardiff, UK.
| | - Andrea Tales
- Department of Psychology, College of Human and Health Sciences, Swansea University, Swansea, UK.
| | - Matthew J Brookes
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK.
| | | | - Antony Bayer
- School of Medicine, Cardiff University, University Hospital Llandough, Cardiff, UK.
| | - Krish D Singh
- CUBRIC, School of Psychology, Cardiff University, Maindy Road, Cardiff, UK.
| |
Collapse
|
58
|
Emergence of early alterations in network oscillations and functional connectivity in a tau seeding mouse model of Alzheimer's disease pathology. Sci Rep 2017; 7:14189. [PMID: 29079799 PMCID: PMC5660172 DOI: 10.1038/s41598-017-13839-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/02/2017] [Indexed: 12/14/2022] Open
Abstract
Synaptic dysfunction and disconnectivity are core deficits in Alzheimer’s disease (AD), preceding clear changes in histopathology and cognitive functioning. Here, the early and late effects of tau pathology induction on functional network connectivity were investigated in P301L mice. Multichannel EEG oscillations were used to compute (1) coherent activity between the prefrontal cortex (PFC) and hippocampus (HPC) CA1-CA3 networks; (2) phase-amplitude cross frequency coupling (PAC) between theta and gamma oscillations, which is instrumental in adequate cognitive functioning; (3) information processing as assessed by auditory evoked potentials and oscillations in the passive oddball mismatch negativity-like (MMN) paradigm. At the end, the density of tau aggregation and GABA parvalbumin (PV+) interneurons were quantified by immunohistochemistry. Early weakening of EEG theta oscillations and coherent activity were revealed between the PFC and HPC CA1 and drastic impairments in theta–gamma oscillations PAC from week 2 onwards, while PV+ interneurons count was not altered. Moreover, the tau pathology disrupted the MMN complex amplitude and evoked gamma oscillations to standard and deviant stimuli suggesting altered memory formation and recall. The induction of intracellular tau aggregation by tau seed injection results in early altered connectivity and strong theta–gamma oscillations uncoupling, which may be exploited as an early electrophysiological signature of dysfunctional neuronal networks.
Collapse
|
59
|
Engels MMA, Yu M, Stam CJ, Gouw AA, van der Flier WM, Scheltens P, van Straaten ECW, Hillebrand A. Directional information flow in patients with Alzheimer's disease. A source-space resting-state MEG study. Neuroimage Clin 2017; 15:673-681. [PMID: 28702344 PMCID: PMC5486371 DOI: 10.1016/j.nicl.2017.06.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/10/2017] [Accepted: 06/16/2017] [Indexed: 01/24/2023]
Abstract
In a recent magnetoencephalography (MEG) study, we found posterior-to-anterior information flow over the cortex in higher frequency bands in healthy subjects, with a reversed pattern in the theta band. A disruption of information flow may underlie clinical symptoms in Alzheimer's disease (AD). In AD, highly connected regions (hubs) in posterior areas are mostly disrupted. We therefore hypothesized that in AD the information flow from these hub regions would be disturbed. We used resting-state MEG recordings from 27 early-onset AD patients and 26 healthy controls. Using beamformer-based virtual electrodes, we estimated neuronal oscillatory activity for 78 cortical regions of interest (ROIs) and 12 subcortical ROIs of the AAL atlas, and calculated the directed phase transfer entropy (dPTE) as a measure of information flow between these ROIs. Group differences were evaluated using permutation tests and, for the AD group, associations between dPTE and general cognition or CSF biomarkers were determined using Spearman correlation coefficients. We confirmed the previously reported posterior-to-anterior information flow in the higher frequency bands in the healthy controls, and found it to be disturbed in the beta band in AD. Most prominently, the information flow from the precuneus and the visual cortex, towards frontal and subcortical structures, was decreased in AD. These disruptions did not correlate with cognitive impairment or CSF biomarkers. We conclude that AD pathology may affect the flow of information between brain regions, particularly from posterior hub regions, and that changes in the information flow in the beta band indicate an aspect of the pathophysiological process in AD.
Collapse
Affiliation(s)
- M M A Engels
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.
| | - M Yu
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| | - C J Stam
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| | - A A Gouw
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| | - W M van der Flier
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; Department of Epidemiology and Biostatistics, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Ph Scheltens
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - E C W van Straaten
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| | - A Hillebrand
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
60
|
Meyer SS, Rossiter H, Brookes MJ, Woolrich MW, Bestmann S, Barnes GR. Using generative models to make probabilistic statements about hippocampal engagement in MEG. Neuroimage 2017; 149:468-482. [PMID: 28131892 PMCID: PMC5387160 DOI: 10.1016/j.neuroimage.2017.01.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
Magnetoencephalography (MEG) enables non-invasive real time characterization of brain activity. However, convincing demonstrations of signal contributions from deeper sources such as the hippocampus remain controversial and are made difficult by its depth, structural complexity and proximity to neocortex. Here, we demonstrate a method for quantifying hippocampal engagement probabilistically using simulated hippocampal activity and realistic anatomical and electromagnetic source modelling. We construct two generative models, one which supports neuronal current flow on the cortical surface, and one which supports neuronal current flow on both the cortical and hippocampal surface. Using Bayesian model comparison, we then infer which of the two models provides a more likely explanation of the dataset at hand. We also carry out a set of control experiments to rule out bias, including simulating medial temporal lobe sources to assess the risk of falsely positive results, and adding different types of displacements to the hippocampal portion of the mesh to test for anatomical specificity of the results. In addition, we test the robustness of this inference by adding co-registration error and sensor level noise. We find that the model comparison framework is sensitive to hippocampal activity when co-registration error is <3 mm and the sensor-level signal-to-noise ratio (SNR) is >-20 dB. These levels of co-registration error and SNR can now be achieved empirically using recently developed subject-specific head-casts.
Collapse
Affiliation(s)
- Sofie S Meyer
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N3BG, UK.
| | - Holly Rossiter
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N3BG, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity, University of Oxford, Warneford Hospital, Oxford, UK
| | - Sven Bestmann
- Sobell Department for Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Gareth R Barnes
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N3BG, UK
| |
Collapse
|
61
|
Yang H, Wang C, Zhang Y, Xia L, Feng Z, Li D, Xu S, Xie H, Chen F, Shi Y, Wang J. Disrupted Causal Connectivity Anchored in the Posterior Cingulate Cortex in Amnestic Mild Cognitive Impairment. Front Neurol 2017; 8:10. [PMID: 28167926 PMCID: PMC5256067 DOI: 10.3389/fneur.2017.00010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022] Open
Abstract
Amnestic mild cognitive impairment (aMCI) is a transitional stage between normal cognitive aging and Alzheimer’s disease. Previous studies have found that neuronal activity and functional connectivity impaired in many functional networks, especially in the default mode network (DMN), which is related to significantly impaired cognitive and memory functions in aMCI patients. However, few studies have focused on the effective connectivity of the DMN and its subsystems in aMCI patients. The posterior cingulate cortex (PCC) is considered a crucial region in connectivity of the DMN and its key subsystem. In this study, using the coefficient Granger causality analysis approach and using the PCC as the region of interest, we explored changes in the DMN and its subsystems in effective connectivity with other brain regions as well as in correlations among them in 16 aMCI patients and 15 age-matched cognitively normal elderly. Results showed decreased effective connectivity from PCC to whole brain in the left prefrontal cortex, the left medial temporal lobe (MTL), the left fusiform gyrus (FG), and the left cerebellar hemisphere, meanwhile, right temporal lobe showed increased effective connectivity from PCC to the whole brain in aMCI patients compared with normal control. In addition, compared with the normal controls, increased effective connectivity of the whole brain to the PCC in aMCI patients was found in the right thalamus, left medial temporal lobe, left FG, and left cerebellar hemisphere. Compared with the normal controls, no reduced effective connectivity was found in any brain regions from the whole brain to the PCC in aMCI patients. The reduced effective connectivity of the PCC to left MTL showed negative correlation trend with neuropsychological tests (Auditory Verbal Learning Test-immediate recall and clock drawing test) in aMCI patients. Our study shows that aMCI patients have abnormalities in effective connectivity within the PCC-centered DMN network and its posterior subsystems as well as in the cerebellar hemisphere and thalamus. Abnormal integration of networks may be related to cognitive and memory impairment and compensation mechanisms in aMCI patients.
Collapse
Affiliation(s)
- Hong Yang
- Department of Radiology, The First Affiliated Hospital of College of Medicine, Zhejiang University , Hangzhou , China
| | - Chengwei Wang
- Department of CT/MRI, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, China; Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yumei Zhang
- Department of Radiology, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, China; Department of CT/MRI, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, China
| | - Liming Xia
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Zhan Feng
- Department of Radiology, The First Affiliated Hospital of College of Medicine, Zhejiang University , Hangzhou , China
| | - Deqiang Li
- Department of Neurology, The First Affiliated Hospital of College of Medicine, Zhejiang University , Hangzhou , China
| | - Shunliang Xu
- Department of Radiology, The First Affiliated Hospital of College of Medicine, Zhejiang University , Hangzhou , China
| | - Haiyan Xie
- Department of Psychiatry, The Fourth Affiliated Hospital Zhejiang University School of Medicine , Yiwu , China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital of College of Medicine, Zhejiang University , Hangzhou , China
| | - Yushu Shi
- Department of Radiology, The First Affiliated Hospital of College of Medicine, Zhejiang University , Hangzhou , China
| | - Jue Wang
- Center for Cognition and Brain Disorders, Affiliated Hospital, Hangzhou Normal University , Hangzhou , China
| |
Collapse
|
62
|
Amyloid β Peptide-Induced Changes in Prefrontal Cortex Activity and Its Response to Hippocampal Input. INTERNATIONAL JOURNAL OF PEPTIDES 2017; 2017:7386809. [PMID: 28127312 PMCID: PMC5239987 DOI: 10.1155/2017/7386809] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/02/2016] [Indexed: 12/24/2022]
Abstract
Alterations in prefrontal cortex (PFC) function and abnormalities in its interactions with other brain areas (i.e., the hippocampus) have been related to Alzheimer Disease (AD). Considering that these malfunctions correlate with the increase in the brain's amyloid beta (Aβ) peptide production, here we looked for a causal relationship between these pathognomonic signs of AD. Thus, we tested whether or not Aβ affects the activity of the PFC network and the activation of this cortex by hippocampal input stimulation in vitro. We found that Aβ application to brain slices inhibits PFC spontaneous network activity as well as PFC activation, both at the population and at the single-cell level, when the hippocampal input is stimulated. Our data suggest that Aβ can contribute to AD by disrupting PFC activity and its long-range interactions throughout the brain.
Collapse
|
63
|
Liang K, Zhang J, Yin C, Zhou X, Zhou S. Protective effects and mechanism of TPX2 on neurocyte apoptosis of rats in Alzheimer's disease model. Exp Ther Med 2016; 13:576-580. [PMID: 28352333 PMCID: PMC5348683 DOI: 10.3892/etm.2016.4006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022] Open
Abstract
We investigated the protective effects and mechanism of TPX2 on apoptosis of rat neurocytes. A total of 90 SD rats were randomly divided into the drug group, the control group and the blank group, with 30 rats in each group. The rats in the drug group and in the blank group were anesthetized with 10% chloral hydrate (at the dose of 0.5 ml/100 g) and Aβ1-42, with the concentration of 5 µl (1 µg/µl), was injected in the exact position of bilateral hippocampal areas of rats to establish the model. The configured TPX2 inhibitors and edible benne oil were mixed and made into a suspension. After model establishment, the rats were given different treatment methods; the rats in the drug group were given gavage administration in the proportion of 75 mg/kg once a day. The rats in the control group were given intragastric administration with the same proportion of physiological saline once a day. The blank group was the normal healthy group and the rats in this group did not undergo any surgery or drug treatment. Brain tissue in rats were divided into two parts, one part was fixed, dehydrated, paraffin-embedded and made into slices of approximately 5 µm. TUNEL staining was used to examine the apoptosis of brain tissue, H&E staining was used to observe the brain tissue cells of each group, and western blotting for detecting the MAPK, Erk and expression levels of p38 and RT-polymerase chain reaction method was employed to examine mRNA expression levels of MAPK, Erk and p21. After one week, TUNEL staining showed that apoptosis of brain tissue in the drug group was significantly greater than those of the control and blank groups. The protein expression levels of MAPK, Erk and p38 were significantly higher than those of the control group and the normal healthy group; the differences were statistically significant (P<0.05). Western blotting showed that the protein expression levels of MAPK, Erk and p38 of the drug group were significantly lower than those of the control group but higher than those of the normal healthy group; the differences were statistically significant (P<0.05). TPX2 has a protective effect on the apoptosis of brain tissue processed by Aβ1-42, which plays its role through the inhibition of the protein expression levels of MAPK, Erk and p38.
Collapse
Affiliation(s)
- Keshan Liang
- Department of Neurology, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, P.R. China; Department of Neurology, Pingyi Branch of Qilu Hospital, Shandong University, Pingyi, Shandong 273300, P.R. China
| | - Jingling Zhang
- Department of Endocrinology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Chengbin Yin
- Department of Emergency, Qingdao Branch of Qilu Hospital of Shandong University, Qingdao, Shandong 266000, P.R. China
| | - Xueying Zhou
- Department of Neurology, Shangdong University of Traditional Chinese Medicine, Jinan, Shandong 250031, P.R. China
| | - Shengnian Zhou
- Department of Neurology, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|