51
|
Chang JL, Bashir M, Santiago C, Farrow K, Fung C, Brown AS, Dettman RW, Dizon MLV. Intrauterine Growth Restriction and Hyperoxia as a Cause of White Matter Injury. Dev Neurosci 2018; 40:344-357. [PMID: 30428455 DOI: 10.1159/000494273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 10/03/2018] [Indexed: 01/17/2023] Open
Abstract
Intrauterine growth restriction (IUGR) is estimated to occur in 5% of pregnancies, with placental insufficiency being the most common cause in developed countries. While it is known that white matter injury occurs in premature infants, the extent of IUGR on white matter injury is less defined in term infants. We used a novel murine model that utilizes a thromboxane A2 (TXA2) analog (U46619), a potent vasoconstrictor, to induce maternal hypertension and mimic human placental insufficiency-induced IUGR to study the white matter. We also investigated the role of hyperoxia as an additional risk factor for white matter injury, as IUGR infants are at increased risk of respiratory comorbidities leading to increased oxygen exposure. We found that TXA2 analog-induced IUGR results in white matter injury as demonstrated by altered myelin structure and changes in the oligodendroglial cell/oligodendrocyte population. In addition, our study demonstrates that hyperoxia exposure independently results in white matter perturbation. To our knowledge, this is the first study to report single and combined effects of IUGR with hyperoxia impacting the white matter and motor function. These results draw attention to the need for close monitoring of motor development in IUGR babies following hospital discharge as well as highlighting the importance of limiting, as clinically feasible, the degree of oxygen overexposure to potentially improve motor outcomes in this population of infants.
Collapse
Affiliation(s)
- Jill L Chang
- Division of Neonatology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA,
| | - Mirrah Bashir
- Division of Neonatology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Kathryn Farrow
- Division of Neonatology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Camille Fung
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Ashley S Brown
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Robert W Dettman
- Stanley Manne Children's Research Institute, Chicago, Illinois, USA
| | - Maria L V Dizon
- Division of Neonatology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
52
|
Gao Z, Chen L, Xiong Q, Xiao N, Jiang W, Liu Y, Wu X, Hou W. Degraded Synergistic Recruitment of sEMG Oscillations for Cerebral Palsy Infants Crawling. Front Neurol 2018; 9:760. [PMID: 30279674 PMCID: PMC6153367 DOI: 10.3389/fneur.2018.00760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/22/2018] [Indexed: 11/22/2022] Open
Abstract
Background: Synergistic recruitment of muscular activities is a generally accepted mechanism for motor function control, and motor dysfunction, such as cerebral palsy (CP), destroyed the synergistic electromyography activities of muscle group for limb movement. However, very little is known how motor dysfunction of CP affects the organization of the myoelectric frequency components due to the abnormal motor unit recruiting patterns. Objectives: Exploring whether the myoelectric activity can be represented with synergistic recruitment of surface electromyography (sEMG) frequency components; evaluating the effect of CP motor dysfunction on the synergistic recruitment of sEMG oscillations. Methods: Twelve CP infants and 17 typically developed (TD) infants are recruited for self-paced crawling on hands and knees. sEMG signals have been recorded from bilateral biceps brachii (BB) and triceps brachii (TB) muscles. Multi-scale oscillations are extracted via multivariate empirical mode decomposition (MEMD), and non-negative matrix factorization (NMF) method is employed to obtain synergistic pattern of these sEMG oscillations. The coefficient curve of sEMG oscillation synergies are adopted to quantify the time-varying recruitment of BB and TB myoelectric activity during infants crawling. Results: Three patterns of sEMG oscillation synergies with specific frequency ranges are extracted in BB and TB of CP or TD infants. The contribution of low-frequency oscillation synergy of BB in CP group is significantly less than that in TD group (p < 0.05) during forward swing phase for slow contraction; however, this low-frequency oscillation synergy keep higher level during the backward swing phase crawling. For the myoelectric activities of TB, there is not enough high-frequency oscillation recruitment of sEMG for the fast contraction in propulsive phase of CP infants crawling. Conclusion: Our results reveal that, the myoelectric activities of a muscle can be manifested as sEMG oscillation synergies, and motor dysfunction of CP degrade the synergistic recruitment of sEMG oscillations due to the impaired CNS regulation and destroyed MU/muscle fiber. Our preliminary work suggests that time-varying coefficient curve of sEMG oscillation synergies is a potential index to evaluate the abnormal recruitment of electromyography activities affected by CP disorders.
Collapse
Affiliation(s)
- Zhixian Gao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Lin Chen
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Qiliang Xiong
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Nong Xiao
- Department of Rehabilitation Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Jiang
- Department of Rehabilitation Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Liu
- Department of Rehabilitation Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoying Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
- Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Wensheng Hou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
- Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| |
Collapse
|
53
|
Guzik A, Drużbicki M, Kwolek A, Przysada G, Bazarnik-Mucha K, Szczepanik M, Wolan-Nieroda A, Sobolewski M. The paediatric version of Wisconsin gait scale, adaptation for children with hemiplegic cerebral palsy: a prospective observational study. BMC Pediatr 2018; 18:301. [PMID: 30219044 PMCID: PMC6139123 DOI: 10.1186/s12887-018-1273-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 08/31/2018] [Indexed: 11/24/2022] Open
Abstract
Background In clinical practice there is a need for a specific scale enabling detailed and multifactorial assessment of gait in children with spastic hemiplegic cerebral palsy. The practical value of the present study is linked with the attempts to find a new, affordable, easy-to-use tool for gait assessment in children with spastic hemiplegic cerebral palsy. The objective of the study is to evaluate the Wisconsin Gait Scale (WGS) in terms of its inter- and intra-rater reliability in observational assessment of walking in children with hemiplegic cerebral palsy. Methods The study was conducted in a group of 34 patients with hemiplegic cerebral palsy. At the first stage, the original version of the ordinal WGS was used. The WGS, consisting of four subscales, evaluates fourteen gait parameters which can be observed during consecutive gait phases. At the second stage, a modification was introduced in the kinematics description of the knee and weight shift, in relation to the original scale. The same video recordings were rescored using the new, paediatric version of the WGS. Three independent examiners performed the assessment twice. Inter and intra-observer reliability of the modified WGS were determined. Results The findings show very high inter- and intra-observer reliability of the modified WGS. This was reflected by a lack of systematically oriented differences between the repeated measurements, very high value of Spearman’s rank correlation coefficient 0.9 ≤ |R| < 1, very high value of ICC > 0.9, and low value of CV < 2.5% for the specific physical therapists. Conclusions The new, ordinal, paediatric version of WGS, proposed by the authors, seems to be useful as an additional tool that can be used in qualitative observational gait assessment of children with spastic hemiplegic cerebral palsy. Practical dimension of the study lies in the fact that it proposes a simple, easy-to-use tool for a global gait assessment in children with spastic hemiplegic cerebral palsy. However, further research is needed to validate the modified WGS by comparing it to other observational scales and objective 3-dimensional spatiotemporal and kinematic gait parameters. Trial registration anzctr.org.au, ID: ACTRN12617000436370. Registered 24 March 2017.
Collapse
Affiliation(s)
- Agnieszka Guzik
- Institute of Physiotherapy, University of Rzeszów, Warszawska 26 a, 35-205, Rzeszów, Poland.
| | - Mariusz Drużbicki
- Institute of Physiotherapy, University of Rzeszów, Warszawska 26 a, 35-205, Rzeszów, Poland
| | - Andrzej Kwolek
- Institute of Physiotherapy, University of Rzeszów, Warszawska 26 a, 35-205, Rzeszów, Poland
| | - Grzegorz Przysada
- Institute of Physiotherapy, University of Rzeszów, Warszawska 26 a, 35-205, Rzeszów, Poland
| | | | - Magdalena Szczepanik
- Institute of Physiotherapy, University of Rzeszów, Warszawska 26 a, 35-205, Rzeszów, Poland
| | | | | |
Collapse
|
54
|
Steppacher R, North D, Künzle C, Lengnick H, Klima H, Mündermann A, Wegener R. Retrospective Evaluation of Changes in Gait Patterns in Children and Adolescents With Cerebral Palsy After Multilevel Surgery. J Child Neurol 2018; 33:453-462. [PMID: 29683017 DOI: 10.1177/0883073818766681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to retrospectively investigate changes in gait patterns after single-event multilevel surgery in children and adolescents with bilateral cerebral palsy. Three-dimensional instrumented pre- and postoperative gait data of 12 patients were compared to data of 12 healthy control subjects using principal component analysis to reduce the dimensionality of kinematic and kinetic gait data and detect gait differences. The differences between pre- and postoperative data and between postoperative data and data of control subjects were calculated using a linear mixed model. The results revealed 14 significant effects for pre- and postoperative waveforms and 11 significant effects for postoperative and control waveforms. Patients after single-event multilevel surgery walked with smaller internal foot progression angle throughout the gait cycle, lower knee flexion at initial swing, and earlier knee extension during terminal swing. Retained gait deviations included excessive pelvic tilt and internally rotated and flexed hips over the entire gait cycle. Contrary to our hypothesis, postoperative waveforms in the sagittal plane differed more from control waveforms than from preoperative waveforms. These results emphasize the importance of carefully planning further conservative therapy 2 years after single-event multilevel surgery.
Collapse
Affiliation(s)
- Ramona Steppacher
- 1 Zurich University of Applied Sciences, School of Health Professions, Institute of Physiotherapy, Winterthur, Switzerland.,2 Laboratory for Motion Analysis, Department of Paediatric Orthopaedics, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - David North
- 2 Laboratory for Motion Analysis, Department of Paediatric Orthopaedics, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Christoph Künzle
- 3 Department of Paediatric Orthopaedics, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Harald Lengnick
- 3 Department of Paediatric Orthopaedics, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Harry Klima
- 3 Department of Paediatric Orthopaedics, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Annegret Mündermann
- 4 Clinic of Traumatology and Orthopaedics, University Hospital Basel, Basel, Switzerland.,5 Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Regina Wegener
- 2 Laboratory for Motion Analysis, Department of Paediatric Orthopaedics, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| |
Collapse
|
55
|
Martín Lorenzo T, Rocon E, Martínez Caballero I, Lerma Lara S. Medial gastrocnemius structure and gait kinetics in spastic cerebral palsy and typically developing children: A cross-sectional study. Medicine (Baltimore) 2018; 97:e10776. [PMID: 29794756 PMCID: PMC6392514 DOI: 10.1097/md.0000000000010776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To compare medial gastrocnemius muscle-tendon structure, gait propulsive forces, and ankle joint gait kinetics between typically developing children and those with spastic cerebral palsy, and to describe significant associations between structure and function in children with spastic cerebral palsy.A sample of typically developing children (n = 9 /16 limbs) and a sample of children with spastic cerebral palsy (n = 29 /43 limbs) were recruited. Ultrasound and 3-dimensional motion capture were used to assess muscle-tendon structure, and propulsive forces and ankle joint kinetics during gait, respectively.Children with spastic cerebral palsy had shorter fascicles and muscles, and longer Achilles tendons than typically developing children. Furthermore, total negative power and peak negative power at the ankle were greater, while total positive power, peak positive power, net power, total vertical ground reaction force, and peak vertical and anterior ground reaction forces were smaller compared to typically developing children. Correlation analyses revealed that smaller resting ankle joint angles and greater maximum dorsiflexion in children with spastic cerebral palsy accounted for a significant decrease in peak negative power. Furthermore, short fascicles, small fascicle to belly ratios, and large tendon to fascicle ratios accounted for a decrease in propulsive force generation.Alterations observed in the medial gastrocnemius muscle-tendon structure of children with spastic cerebral palsy may impair propulsive mechanisms during gait. Therefore, conventional treatments should be revised on the basis of muscle-tendon adaptations.
Collapse
Affiliation(s)
- Teresa Martín Lorenzo
- Laboratorio de Análisis del Movimiento, Hospital Infantil Universitario Niño Jesús
- Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos
| | - Eduardo Rocon
- Centro de Automática y Robótica, Consejo Superior de Investigaciones Científicas, Arganda del Rey
| | | | - Sergio Lerma Lara
- Facultad de Ciencias de la Salud, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
56
|
Martín Lorenzo T, Rocon E, Martínez Caballero I, Ramírez Barragán A, Lerma Lara S. Prolonged stretching of the ankle plantarflexors elicits muscle-tendon adaptations relevant to ankle gait kinetics in children with spastic cerebral palsy. Med Hypotheses 2017; 109:65-69. [DOI: 10.1016/j.mehy.2017.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
|
57
|
Martín Lorenzo T, Albi Rodríguez G, Rocon E, Martínez Caballero I, Lerma Lara S. Relationship of medial gastrocnemius relative fascicle excursion and ankle joint power and work performance during gait in typically developing children: A cross-sectional study. Medicine (Baltimore) 2017; 96:e7572. [PMID: 28723790 PMCID: PMC5521930 DOI: 10.1097/md.0000000000007572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Muscle fascicles lengthen in response to chronic passive stretch through in-series sarcomere addition in order to maintain an optimum sarcomere length. In turn, the muscles' force generating capacity, maximum excursion, and contraction velocity is enhanced. Thus, longer fascicles suggest a greater capacity to develop joint power and work. However, static fascicle length measurements may not be taking sarcomere length differences into account. Thus, we considered relative fascicle excursions through passive ankle dorsiflexion may better correlate with the capacity to generate joint power and work than fascicle length. Therefore, the aim of the present study was to determine if medial gastrocnemius relative fascicle excursions correlate with ankle joint power and work generation during gait in typically developing children. A sample of typically developing children (n = 10) were recruited for this study and data analysis was carried out on 20 legs. Medial gastrocnemius relative fascicle excursion from resting joint angle to maximum dorsiflexion was estimated from trigonometric relations of medial gastrocnemius pennation angle and thickness obtained from B-mode real-time ultrasonography. Furthermore, a three-dimensional motion capture system was used to obtain ankle joint work and power during the stance phase of gait. Significant correlations were found between relative fascicle excursion and peak power absorption (-) r(14) = -0.61, P = .012 accounting for 31% variability, positive work r(18) = 0.56, P = .021 accounting for 31% variability, and late stance positive work r(15) = 0.51, P = .037 accounting for 26% variability. The large unexplained variance may be attributed to mechanics of neighboring structures (e.g., soleus or Achilles tendon mechanics) and proximal joint kinetics which may also contribute to ankle joint power and work performance, and were not taken into account. Further studies are encouraged to provide greater insight on the relationship between relative fascicle excursions and joint function.
Collapse
Affiliation(s)
- Teresa Martín Lorenzo
- Laboratorio de Análisis del Movimiento, Hospital Infantil Universitario Niño Jesús
- Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón
| | - Gustavo Albi Rodríguez
- Servicio de Radiodiagnóstico, Hospital Infantil Universitario Niño Jesús
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid
| | - Eduardo Rocon
- Centro de Automática y Robótica, Consejo Superior de Investigaciones Científicas, Arganda del Rey
| | | | - Sergio Lerma Lara
- Laboratorio de Análisis del Movimiento, Hospital Infantil Universitario Niño Jesús
- Facultad de Ciencias de la Salud, CSEU La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|